1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
/******************************************************************************
*
* Copyright (C) 2015 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#include <gtest/gtest.h>
#include "AllocationTestHarness.h"
#include "osi/include/time.h"
// Generous upper bound: 10 seconds
static const uint32_t TEST_TIME_DELTA_UPPER_BOUND_MS = 10 * 1000;
class TimeTest : public AllocationTestHarness {};
//
// Test that the return value of time_get_os_boottime_ms() is not zero.
//
// NOTE: For now this test is disabled, because the return value
// of time_get_os_boottime_ms() is 32-bits integer that could wrap-around
// in 49.7 days. It should be re-enabled if/after the wrap-around issue
// is resolved (e.g., if the return value is 64-bits integer).
//
#if 0
TEST_F(TimeTest, test_time_get_os_boottime_ms_not_zero) {
uint32_t t1 = time_get_os_boottime_ms();
ASSERT_TRUE(t1 > 0);
}
#endif
//
// Test that the return value of time_get_os_boottime_us() is not zero.
//
TEST_F(TimeTest, test_time_get_os_boottime_us_not_zero) {
uint64_t t1 = time_get_os_boottime_us();
ASSERT_TRUE(t1 > 0);
}
//
// Test that the return value of time_get_os_boottime_ms()
// is monotonically increasing within reasonable boundries.
//
TEST_F(TimeTest, test_time_get_os_boottime_ms_increases_upper_bound) {
uint32_t t1 = time_get_os_boottime_ms();
uint32_t t2 = time_get_os_boottime_ms();
ASSERT_TRUE((t2 - t1) < TEST_TIME_DELTA_UPPER_BOUND_MS);
}
//
// Test that the return value of time_get_os_boottime_us()
// is monotonically increasing within reasonable boundries.
//
TEST_F(TimeTest, test_time_get_os_boottime_us_increases_upper_bound) {
uint64_t t1 = time_get_os_boottime_us();
uint64_t t2 = time_get_os_boottime_us();
ASSERT_TRUE((t2 - t1) < TEST_TIME_DELTA_UPPER_BOUND_MS * 1000);
}
//
// Test that the return value of time_get_os_boottime_ms()
// is increasing.
//
TEST_F(TimeTest, test_time_get_os_boottime_ms_increases_lower_bound) {
static const uint32_t TEST_TIME_SLEEP_MS = 100;
struct timespec delay;
delay.tv_sec = TEST_TIME_SLEEP_MS / 1000;
delay.tv_nsec = 1000 * 1000 * (TEST_TIME_SLEEP_MS % 1000);
// Take two timestamps with sleep in-between
uint32_t t1 = time_get_os_boottime_ms();
int err = nanosleep(&delay, &delay);
uint32_t t2 = time_get_os_boottime_ms();
ASSERT_TRUE(err == 0);
ASSERT_TRUE((t2 - t1) >= TEST_TIME_SLEEP_MS);
ASSERT_TRUE((t2 - t1) < TEST_TIME_DELTA_UPPER_BOUND_MS);
}
//
// Test that the return value of time_get_os_boottime_us()
// is increasing.
//
TEST_F(TimeTest, test_time_get_os_boottime_us_increases_lower_bound) {
static const uint64_t TEST_TIME_SLEEP_US = 100 * 1000;
struct timespec delay;
delay.tv_sec = TEST_TIME_SLEEP_US / (1000 * 1000);
delay.tv_nsec = 1000 * (TEST_TIME_SLEEP_US % (1000 * 1000));
// Take two timestamps with sleep in-between
uint64_t t1 = time_get_os_boottime_us();
int err = nanosleep(&delay, &delay);
uint64_t t2 = time_get_os_boottime_us();
ASSERT_TRUE(err == 0);
ASSERT_TRUE(t2 > t1);
ASSERT_TRUE((t2 - t1) >= TEST_TIME_SLEEP_US);
ASSERT_TRUE((t2 - t1) < TEST_TIME_DELTA_UPPER_BOUND_MS * 1000);
}
//
// Test that the return value of time_gettimeofday_us() is not zero.
//
TEST_F(TimeTest, test_time_gettimeofday_us_not_zero) {
uint64_t t1 = time_gettimeofday_us();
ASSERT_TRUE(t1 > 0);
}
//
// Test that the return value of time_gettimeofday_us()
// is monotonically increasing within reasonable boundaries.
//
TEST_F(TimeTest, test_time_gettimeofday_us_increases_upper_bound) {
uint64_t t1 = time_gettimeofday_us();
uint64_t t2 = time_gettimeofday_us();
ASSERT_TRUE((t2 - t1) < TEST_TIME_DELTA_UPPER_BOUND_MS * 1000);
}
//
// Test that the return value of time_gettimeofday_us()
// is increasing.
//
TEST_F(TimeTest, test_time_gettimeofday_us_increases_lower_bound) {
static const uint64_t TEST_TIME_SLEEP_US = 100 * 1000;
struct timespec delay;
delay.tv_sec = TEST_TIME_SLEEP_US / (1000 * 1000);
delay.tv_nsec = 1000 * (TEST_TIME_SLEEP_US % (1000 * 1000));
// Take two timestamps with sleep in-between
uint64_t t1 = time_gettimeofday_us();
int err = nanosleep(&delay, &delay);
uint64_t t2 = time_gettimeofday_us();
ASSERT_TRUE(err == 0);
ASSERT_TRUE(t2 > t1);
ASSERT_TRUE((t2 - t1) >= TEST_TIME_SLEEP_US);
ASSERT_TRUE((t2 - t1) < TEST_TIME_DELTA_UPPER_BOUND_MS * 1000);
}
|