1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <chrono>
#include <thread>
#include <gtest/gtest.h>
#include "execution_barrier.h"
using bluetooth::common::ExecutionBarrier;
static constexpr int kSleepTimeMs = 100;
static constexpr int kSchedulingDelayMaxMs = 5;
TEST(ExecutionBarrierTest, test_two_threads_wait_before_execution) {
ExecutionBarrier execution_barrier;
std::thread caller1([&]() {
auto start = std::chrono::high_resolution_clock::now();
execution_barrier.WaitForExecution();
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> elapsed_ms = end - start;
EXPECT_NEAR(elapsed_ms.count(), kSleepTimeMs, kSchedulingDelayMaxMs);
});
std::thread executor([&]() {
// Wait for kSleepTimeMs so that caller1 starts waiting first
std::this_thread::sleep_for(std::chrono::milliseconds(kSleepTimeMs));
execution_barrier.NotifyFinished();
});
executor.join();
caller1.join();
// Further calls to WaitForExecution() no longer blocks
std::thread caller2([&]() {
auto start = std::chrono::high_resolution_clock::now();
execution_barrier.WaitForExecution();
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> elapsed_ms = end - start;
EXPECT_LT(elapsed_ms.count(), kSchedulingDelayMaxMs);
});
caller2.join();
}
TEST(ExecutionBarrierTest, test_two_threads_execution_before_wait) {
ExecutionBarrier execution_barrier;
std::thread executor([&]() { execution_barrier.NotifyFinished(); });
std::thread caller1([&]() {
// Wait for kSleepTimeMs so that executor finishes running first
std::this_thread::sleep_for(std::chrono::milliseconds(kSleepTimeMs));
auto start = std::chrono::high_resolution_clock::now();
execution_barrier.WaitForExecution();
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> elapsed_ms = end - start;
EXPECT_LT(elapsed_ms.count(), kSchedulingDelayMaxMs);
});
executor.join();
caller1.join();
}
TEST(ExecutionBarrierTest, test_two_callers_one_executor) {
ExecutionBarrier execution_barrier;
std::thread caller1([&]() {
auto start = std::chrono::high_resolution_clock::now();
execution_barrier.WaitForExecution();
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> elapsed_ms = end - start;
EXPECT_NEAR(elapsed_ms.count(), kSleepTimeMs, 5);
});
std::thread caller2([&]() {
auto start = std::chrono::high_resolution_clock::now();
execution_barrier.WaitForExecution();
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> elapsed_ms = end - start;
EXPECT_NEAR(elapsed_ms.count(), kSleepTimeMs, 5);
});
std::thread executor([&]() {
std::this_thread::sleep_for(std::chrono::milliseconds(kSleepTimeMs));
execution_barrier.NotifyFinished();
});
executor.join();
caller1.join();
caller2.join();
}
|