diff options
Diffstat (limited to 'share/doc/gcc/MIPS-Options.html')
-rw-r--r-- | share/doc/gcc/MIPS-Options.html | 1302 |
1 files changed, 1302 insertions, 0 deletions
diff --git a/share/doc/gcc/MIPS-Options.html b/share/doc/gcc/MIPS-Options.html new file mode 100644 index 0000000..8dbc1b4 --- /dev/null +++ b/share/doc/gcc/MIPS-Options.html @@ -0,0 +1,1302 @@ +<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> +<html> +<!-- This file documents the use of the GNU compilers. + +Copyright (C) 1988-2023 Free Software Foundation, Inc. + +Permission is granted to copy, distribute and/or modify this document +under the terms of the GNU Free Documentation License, Version 1.3 or +any later version published by the Free Software Foundation; with the +Invariant Sections being "Funding Free Software", the Front-Cover +Texts being (a) (see below), and with the Back-Cover Texts being (b) +(see below). A copy of the license is included in the section entitled +"GNU Free Documentation License". + +(a) The FSF's Front-Cover Text is: + +A GNU Manual + +(b) The FSF's Back-Cover Text is: + +You have freedom to copy and modify this GNU Manual, like GNU + software. Copies published by the Free Software Foundation raise + funds for GNU development. --> +<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ --> +<head> +<title>Using the GNU Compiler Collection (GCC): MIPS Options</title> + +<meta name="description" content="Using the GNU Compiler Collection (GCC): MIPS Options"> +<meta name="keywords" content="Using the GNU Compiler Collection (GCC): MIPS Options"> +<meta name="resource-type" content="document"> +<meta name="distribution" content="global"> +<meta name="Generator" content="makeinfo"> +<meta http-equiv="Content-Type" content="text/html; charset=utf-8"> +<link href="index.html#Top" rel="start" title="Top"> +<link href="Indices.html#Indices" rel="index" title="Indices"> +<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> +<link href="Submodel-Options.html#Submodel-Options" rel="up" title="Submodel Options"> +<link href="MMIX-Options.html#MMIX-Options" rel="next" title="MMIX Options"> +<link href="MicroBlaze-Options.html#MicroBlaze-Options" rel="previous" title="MicroBlaze Options"> +<style type="text/css"> +<!-- +a.summary-letter {text-decoration: none} +blockquote.smallquotation {font-size: smaller} +div.display {margin-left: 3.2em} +div.example {margin-left: 3.2em} +div.indentedblock {margin-left: 3.2em} +div.lisp {margin-left: 3.2em} +div.smalldisplay {margin-left: 3.2em} +div.smallexample {margin-left: 3.2em} +div.smallindentedblock {margin-left: 3.2em; font-size: smaller} +div.smalllisp {margin-left: 3.2em} +kbd {font-style:oblique} +pre.display {font-family: inherit} +pre.format {font-family: inherit} +pre.menu-comment {font-family: serif} +pre.menu-preformatted {font-family: serif} +pre.smalldisplay {font-family: inherit; font-size: smaller} +pre.smallexample {font-size: smaller} +pre.smallformat {font-family: inherit; font-size: smaller} +pre.smalllisp {font-size: smaller} +span.nocodebreak {white-space:nowrap} +span.nolinebreak {white-space:nowrap} +span.roman {font-family:serif; font-weight:normal} +span.sansserif {font-family:sans-serif; font-weight:normal} +ul.no-bullet {list-style: none} +--> +</style> + + +</head> + +<body lang="en_US" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000"> +<a name="MIPS-Options"></a> +<div class="header"> +<p> +Next: <a href="MMIX-Options.html#MMIX-Options" accesskey="n" rel="next">MMIX Options</a>, Previous: <a href="MicroBlaze-Options.html#MicroBlaze-Options" accesskey="p" rel="previous">MicroBlaze Options</a>, Up: <a href="Submodel-Options.html#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Indices.html#Indices" title="Index" rel="index">Index</a>]</p> +</div> +<hr> +<a name="MIPS-Options-1"></a> +<h4 class="subsection">3.19.28 MIPS Options</h4> +<a name="index-MIPS-options"></a> + +<dl compact="compact"> +<dd> +<a name="index-EB-2"></a> +</dd> +<dt><code>-EB</code></dt> +<dd><p>Generate big-endian code. +</p> +<a name="index-EL-2"></a> +</dd> +<dt><code>-EL</code></dt> +<dd><p>Generate little-endian code. This is the default for ‘<samp>mips*el-*-*</samp>’ +configurations. +</p> +<a name="index-march-9"></a> +</dd> +<dt><code>-march=<var>arch</var></code></dt> +<dd><p>Generate code that runs on <var>arch</var>, which can be the name of a +generic MIPS ISA, or the name of a particular processor. +The ISA names are: +‘<samp>mips1</samp>’, ‘<samp>mips2</samp>’, ‘<samp>mips3</samp>’, ‘<samp>mips4</samp>’, +‘<samp>mips32</samp>’, ‘<samp>mips32r2</samp>’, ‘<samp>mips32r3</samp>’, ‘<samp>mips32r5</samp>’, +‘<samp>mips32r6</samp>’, ‘<samp>mips64</samp>’, ‘<samp>mips64r2</samp>’, ‘<samp>mips64r3</samp>’, +‘<samp>mips64r5</samp>’ and ‘<samp>mips64r6</samp>’. +The processor names are: +‘<samp>4kc</samp>’, ‘<samp>4km</samp>’, ‘<samp>4kp</samp>’, ‘<samp>4ksc</samp>’, +‘<samp>4kec</samp>’, ‘<samp>4kem</samp>’, ‘<samp>4kep</samp>’, ‘<samp>4ksd</samp>’, +‘<samp>5kc</samp>’, ‘<samp>5kf</samp>’, +‘<samp>20kc</samp>’, +‘<samp>24kc</samp>’, ‘<samp>24kf2_1</samp>’, ‘<samp>24kf1_1</samp>’, +‘<samp>24kec</samp>’, ‘<samp>24kef2_1</samp>’, ‘<samp>24kef1_1</samp>’, +‘<samp>34kc</samp>’, ‘<samp>34kf2_1</samp>’, ‘<samp>34kf1_1</samp>’, ‘<samp>34kn</samp>’, +‘<samp>74kc</samp>’, ‘<samp>74kf2_1</samp>’, ‘<samp>74kf1_1</samp>’, ‘<samp>74kf3_2</samp>’, +‘<samp>1004kc</samp>’, ‘<samp>1004kf2_1</samp>’, ‘<samp>1004kf1_1</samp>’, +‘<samp>i6400</samp>’, ‘<samp>i6500</samp>’, +‘<samp>interaptiv</samp>’, +‘<samp>loongson2e</samp>’, ‘<samp>loongson2f</samp>’, ‘<samp>loongson3a</samp>’, ‘<samp>gs464</samp>’, +‘<samp>gs464e</samp>’, ‘<samp>gs264e</samp>’, +‘<samp>m4k</samp>’, +‘<samp>m14k</samp>’, ‘<samp>m14kc</samp>’, ‘<samp>m14ke</samp>’, ‘<samp>m14kec</samp>’, +‘<samp>m5100</samp>’, ‘<samp>m5101</samp>’, +‘<samp>octeon</samp>’, ‘<samp>octeon+</samp>’, ‘<samp>octeon2</samp>’, ‘<samp>octeon3</samp>’, +‘<samp>orion</samp>’, +‘<samp>p5600</samp>’, ‘<samp>p6600</samp>’, +‘<samp>r2000</samp>’, ‘<samp>r3000</samp>’, ‘<samp>r3900</samp>’, ‘<samp>r4000</samp>’, ‘<samp>r4400</samp>’, +‘<samp>r4600</samp>’, ‘<samp>r4650</samp>’, ‘<samp>r4700</samp>’, ‘<samp>r5900</samp>’, +‘<samp>r6000</samp>’, ‘<samp>r8000</samp>’, +‘<samp>rm7000</samp>’, ‘<samp>rm9000</samp>’, +‘<samp>r10000</samp>’, ‘<samp>r12000</samp>’, ‘<samp>r14000</samp>’, ‘<samp>r16000</samp>’, +‘<samp>sb1</samp>’, +‘<samp>sr71000</samp>’, +‘<samp>vr4100</samp>’, ‘<samp>vr4111</samp>’, ‘<samp>vr4120</samp>’, ‘<samp>vr4130</samp>’, ‘<samp>vr4300</samp>’, +‘<samp>vr5000</samp>’, ‘<samp>vr5400</samp>’, ‘<samp>vr5500</samp>’, +‘<samp>xlr</samp>’ and ‘<samp>xlp</samp>’. +The special value ‘<samp>from-abi</samp>’ selects the +most compatible architecture for the selected ABI (that is, +‘<samp>mips1</samp>’ for 32-bit ABIs and ‘<samp>mips3</samp>’ for 64-bit ABIs). +</p> +<p>The native Linux/GNU toolchain also supports the value ‘<samp>native</samp>’, +which selects the best architecture option for the host processor. +<samp>-march=native</samp> has no effect if GCC does not recognize +the processor. +</p> +<p>In processor names, a final ‘<samp>000</samp>’ can be abbreviated as ‘<samp>k</samp>’ +(for example, <samp>-march=r2k</samp>). Prefixes are optional, and +‘<samp>vr</samp>’ may be written ‘<samp>r</samp>’. +</p> +<p>Names of the form ‘<samp><var>n</var>f2_1</samp>’ refer to processors with +FPUs clocked at half the rate of the core, names of the form +‘<samp><var>n</var>f1_1</samp>’ refer to processors with FPUs clocked at the same +rate as the core, and names of the form ‘<samp><var>n</var>f3_2</samp>’ refer to +processors with FPUs clocked a ratio of 3:2 with respect to the core. +For compatibility reasons, ‘<samp><var>n</var>f</samp>’ is accepted as a synonym +for ‘<samp><var>n</var>f2_1</samp>’ while ‘<samp><var>n</var>x</samp>’ and ‘<samp><var>b</var>fx</samp>’ are +accepted as synonyms for ‘<samp><var>n</var>f1_1</samp>’. +</p> +<p>GCC defines two macros based on the value of this option. The first +is <code>_MIPS_ARCH</code>, which gives the name of target architecture, as +a string. The second has the form <code>_MIPS_ARCH_<var>foo</var></code>, +where <var>foo</var> is the capitalized value of <code>_MIPS_ARCH</code>. +For example, <samp>-march=r2000</samp> sets <code>_MIPS_ARCH</code> +to <code>"r2000"</code> and defines the macro <code>_MIPS_ARCH_R2000</code>. +</p> +<p>Note that the <code>_MIPS_ARCH</code> macro uses the processor names given +above. In other words, it has the full prefix and does not +abbreviate ‘<samp>000</samp>’ as ‘<samp>k</samp>’. In the case of ‘<samp>from-abi</samp>’, +the macro names the resolved architecture (either <code>"mips1"</code> or +<code>"mips3"</code>). It names the default architecture when no +<samp>-march</samp> option is given. +</p> +<a name="index-mtune-10"></a> +</dd> +<dt><code>-mtune=<var>arch</var></code></dt> +<dd><p>Optimize for <var>arch</var>. Among other things, this option controls +the way instructions are scheduled, and the perceived cost of arithmetic +operations. The list of <var>arch</var> values is the same as for +<samp>-march</samp>. +</p> +<p>When this option is not used, GCC optimizes for the processor +specified by <samp>-march</samp>. By using <samp>-march</samp> and +<samp>-mtune</samp> together, it is possible to generate code that +runs on a family of processors, but optimize the code for one +particular member of that family. +</p> +<p><samp>-mtune</samp> defines the macros <code>_MIPS_TUNE</code> and +<code>_MIPS_TUNE_<var>foo</var></code>, which work in the same way as the +<samp>-march</samp> ones described above. +</p> +<a name="index-mips1"></a> +</dd> +<dt><code>-mips1</code></dt> +<dd><p>Equivalent to <samp>-march=mips1</samp>. +</p> +<a name="index-mips2"></a> +</dd> +<dt><code>-mips2</code></dt> +<dd><p>Equivalent to <samp>-march=mips2</samp>. +</p> +<a name="index-mips3"></a> +</dd> +<dt><code>-mips3</code></dt> +<dd><p>Equivalent to <samp>-march=mips3</samp>. +</p> +<a name="index-mips4"></a> +</dd> +<dt><code>-mips4</code></dt> +<dd><p>Equivalent to <samp>-march=mips4</samp>. +</p> +<a name="index-mips32"></a> +</dd> +<dt><code>-mips32</code></dt> +<dd><p>Equivalent to <samp>-march=mips32</samp>. +</p> +<a name="index-mips32r3"></a> +</dd> +<dt><code>-mips32r3</code></dt> +<dd><p>Equivalent to <samp>-march=mips32r3</samp>. +</p> +<a name="index-mips32r5"></a> +</dd> +<dt><code>-mips32r5</code></dt> +<dd><p>Equivalent to <samp>-march=mips32r5</samp>. +</p> +<a name="index-mips32r6"></a> +</dd> +<dt><code>-mips32r6</code></dt> +<dd><p>Equivalent to <samp>-march=mips32r6</samp>. +</p> +<a name="index-mips64"></a> +</dd> +<dt><code>-mips64</code></dt> +<dd><p>Equivalent to <samp>-march=mips64</samp>. +</p> +<a name="index-mips64r2"></a> +</dd> +<dt><code>-mips64r2</code></dt> +<dd><p>Equivalent to <samp>-march=mips64r2</samp>. +</p> +<a name="index-mips64r3"></a> +</dd> +<dt><code>-mips64r3</code></dt> +<dd><p>Equivalent to <samp>-march=mips64r3</samp>. +</p> +<a name="index-mips64r5"></a> +</dd> +<dt><code>-mips64r5</code></dt> +<dd><p>Equivalent to <samp>-march=mips64r5</samp>. +</p> +<a name="index-mips64r6"></a> +</dd> +<dt><code>-mips64r6</code></dt> +<dd><p>Equivalent to <samp>-march=mips64r6</samp>. +</p> +<a name="index-mips16"></a> +<a name="index-mno_002dmips16"></a> +</dd> +<dt><code>-mips16</code></dt> +<dt><code>-mno-mips16</code></dt> +<dd><p>Generate (do not generate) MIPS16 code. If GCC is targeting a +MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE. +</p> +<p>MIPS16 code generation can also be controlled on a per-function basis +by means of <code>mips16</code> and <code>nomips16</code> attributes. +See <a href="Function-Attributes.html#Function-Attributes">Function Attributes</a>, for more information. +</p> +<a name="index-mflip_002dmips16"></a> +</dd> +<dt><code>-mflip-mips16</code></dt> +<dd><p>Generate MIPS16 code on alternating functions. This option is provided +for regression testing of mixed MIPS16/non-MIPS16 code generation, and is +not intended for ordinary use in compiling user code. +</p> +<a name="index-minterlink_002dcompressed"></a> +<a name="index-mno_002dinterlink_002dcompressed"></a> +</dd> +<dt><code>-minterlink-compressed</code></dt> +<dt><code>-mno-interlink-compressed</code></dt> +<dd><p>Require (do not require) that code using the standard (uncompressed) MIPS ISA +be link-compatible with MIPS16 and microMIPS code, and vice versa. +</p> +<p>For example, code using the standard ISA encoding cannot jump directly +to MIPS16 or microMIPS code; it must either use a call or an indirect jump. +<samp>-minterlink-compressed</samp> therefore disables direct jumps unless GCC +knows that the target of the jump is not compressed. +</p> +<a name="index-minterlink_002dmips16"></a> +<a name="index-mno_002dinterlink_002dmips16"></a> +</dd> +<dt><code>-minterlink-mips16</code></dt> +<dt><code>-mno-interlink-mips16</code></dt> +<dd><p>Aliases of <samp>-minterlink-compressed</samp> and +<samp>-mno-interlink-compressed</samp>. These options predate the microMIPS ASE +and are retained for backwards compatibility. +</p> +<a name="index-mabi_003d32"></a> +<a name="index-mabi_003do64"></a> +<a name="index-mabi_003dn32"></a> +<a name="index-mabi_003d64"></a> +<a name="index-mabi_003deabi"></a> +</dd> +<dt><code>-mabi=32</code></dt> +<dt><code>-mabi=o64</code></dt> +<dt><code>-mabi=n32</code></dt> +<dt><code>-mabi=64</code></dt> +<dt><code>-mabi=eabi</code></dt> +<dd><p>Generate code for the given ABI. +</p> +<p>Note that the EABI has a 32-bit and a 64-bit variant. GCC normally +generates 64-bit code when you select a 64-bit architecture, but you +can use <samp>-mgp32</samp> to get 32-bit code instead. +</p> +<p>For information about the O64 ABI, see +<a href="https://gcc.gnu.org/projects/mipso64-abi.html">https://gcc.gnu.org/projects/mipso64-abi.html</a>. +</p> +<p>GCC supports a variant of the o32 ABI in which floating-point registers +are 64 rather than 32 bits wide. You can select this combination with +<samp>-mabi=32</samp> <samp>-mfp64</samp>. This ABI relies on the <code>mthc1</code> +and <code>mfhc1</code> instructions and is therefore only supported for +MIPS32R2, MIPS32R3 and MIPS32R5 processors. +</p> +<p>The register assignments for arguments and return values remain the +same, but each scalar value is passed in a single 64-bit register +rather than a pair of 32-bit registers. For example, scalar +floating-point values are returned in ‘<samp>$f0</samp>’ only, not a +‘<samp>$f0</samp>’/‘<samp>$f1</samp>’ pair. The set of call-saved registers also +remains the same in that the even-numbered double-precision registers +are saved. +</p> +<p>Two additional variants of the o32 ABI are supported to enable +a transition from 32-bit to 64-bit registers. These are FPXX +(<samp>-mfpxx</samp>) and FP64A (<samp>-mfp64</samp> <samp>-mno-odd-spreg</samp>). +The FPXX extension mandates that all code must execute correctly +when run using 32-bit or 64-bit registers. The code can be interlinked +with either FP32 or FP64, but not both. +The FP64A extension is similar to the FP64 extension but forbids the +use of odd-numbered single-precision registers. This can be used +in conjunction with the <code>FRE</code> mode of FPUs in MIPS32R5 +processors and allows both FP32 and FP64A code to interlink and +run in the same process without changing FPU modes. +</p> +<a name="index-mabicalls"></a> +<a name="index-mno_002dabicalls"></a> +</dd> +<dt><code>-mabicalls</code></dt> +<dt><code>-mno-abicalls</code></dt> +<dd><p>Generate (do not generate) code that is suitable for SVR4-style +dynamic objects. <samp>-mabicalls</samp> is the default for SVR4-based +systems. +</p> +</dd> +<dt><code>-mshared</code></dt> +<dt><code>-mno-shared</code></dt> +<dd><p>Generate (do not generate) code that is fully position-independent, +and that can therefore be linked into shared libraries. This option +only affects <samp>-mabicalls</samp>. +</p> +<p>All <samp>-mabicalls</samp> code has traditionally been position-independent, +regardless of options like <samp>-fPIC</samp> and <samp>-fpic</samp>. However, +as an extension, the GNU toolchain allows executables to use absolute +accesses for locally-binding symbols. It can also use shorter GP +initialization sequences and generate direct calls to locally-defined +functions. This mode is selected by <samp>-mno-shared</samp>. +</p> +<p><samp>-mno-shared</samp> depends on binutils 2.16 or higher and generates +objects that can only be linked by the GNU linker. However, the option +does not affect the ABI of the final executable; it only affects the ABI +of relocatable objects. Using <samp>-mno-shared</samp> generally makes +executables both smaller and quicker. +</p> +<p><samp>-mshared</samp> is the default. +</p> +<a name="index-mplt"></a> +<a name="index-mno_002dplt"></a> +</dd> +<dt><code>-mplt</code></dt> +<dt><code>-mno-plt</code></dt> +<dd><p>Assume (do not assume) that the static and dynamic linkers +support PLTs and copy relocations. This option only affects +<samp>-mno-shared -mabicalls</samp>. For the n64 ABI, this option +has no effect without <samp>-msym32</samp>. +</p> +<p>You can make <samp>-mplt</samp> the default by configuring +GCC with <samp>--with-mips-plt</samp>. The default is +<samp>-mno-plt</samp> otherwise. +</p> +<a name="index-mxgot-1"></a> +<a name="index-mno_002dxgot-1"></a> +</dd> +<dt><code>-mxgot</code></dt> +<dt><code>-mno-xgot</code></dt> +<dd><p>Lift (do not lift) the usual restrictions on the size of the global +offset table. +</p> +<p>GCC normally uses a single instruction to load values from the GOT. +While this is relatively efficient, it only works if the GOT +is smaller than about 64k. Anything larger causes the linker +to report an error such as: +</p> +<a name="index-relocation-truncated-to-fit-_0028MIPS_0029"></a> +<div class="smallexample"> +<pre class="smallexample">relocation truncated to fit: R_MIPS_GOT16 foobar +</pre></div> + +<p>If this happens, you should recompile your code with <samp>-mxgot</samp>. +This works with very large GOTs, although the code is also +less efficient, since it takes three instructions to fetch the +value of a global symbol. +</p> +<p>Note that some linkers can create multiple GOTs. If you have such a +linker, you should only need to use <samp>-mxgot</samp> when a single object +file accesses more than 64k’s worth of GOT entries. Very few do. +</p> +<p>These options have no effect unless GCC is generating position +independent code. +</p> +<a name="index-mgp32"></a> +</dd> +<dt><code>-mgp32</code></dt> +<dd><p>Assume that general-purpose registers are 32 bits wide. +</p> +<a name="index-mgp64"></a> +</dd> +<dt><code>-mgp64</code></dt> +<dd><p>Assume that general-purpose registers are 64 bits wide. +</p> +<a name="index-mfp32"></a> +</dd> +<dt><code>-mfp32</code></dt> +<dd><p>Assume that floating-point registers are 32 bits wide. +</p> +<a name="index-mfp64"></a> +</dd> +<dt><code>-mfp64</code></dt> +<dd><p>Assume that floating-point registers are 64 bits wide. +</p> +<a name="index-mfpxx"></a> +</dd> +<dt><code>-mfpxx</code></dt> +<dd><p>Do not assume the width of floating-point registers. +</p> +<a name="index-mhard_002dfloat-4"></a> +</dd> +<dt><code>-mhard-float</code></dt> +<dd><p>Use floating-point coprocessor instructions. +</p> +<a name="index-msoft_002dfloat-8"></a> +</dd> +<dt><code>-msoft-float</code></dt> +<dd><p>Do not use floating-point coprocessor instructions. Implement +floating-point calculations using library calls instead. +</p> +<a name="index-mno_002dfloat"></a> +</dd> +<dt><code>-mno-float</code></dt> +<dd><p>Equivalent to <samp>-msoft-float</samp>, but additionally asserts that the +program being compiled does not perform any floating-point operations. +This option is presently supported only by some bare-metal MIPS +configurations, where it may select a special set of libraries +that lack all floating-point support (including, for example, the +floating-point <code>printf</code> formats). +If code compiled with <samp>-mno-float</samp> accidentally contains +floating-point operations, it is likely to suffer a link-time +or run-time failure. +</p> +<a name="index-msingle_002dfloat-1"></a> +</dd> +<dt><code>-msingle-float</code></dt> +<dd><p>Assume that the floating-point coprocessor only supports single-precision +operations. +</p> +<a name="index-mdouble_002dfloat-2"></a> +</dd> +<dt><code>-mdouble-float</code></dt> +<dd><p>Assume that the floating-point coprocessor supports double-precision +operations. This is the default. +</p> +<a name="index-modd_002dspreg"></a> +<a name="index-mno_002dodd_002dspreg"></a> +</dd> +<dt><code>-modd-spreg</code></dt> +<dt><code>-mno-odd-spreg</code></dt> +<dd><p>Enable the use of odd-numbered single-precision floating-point registers +for the o32 ABI. This is the default for processors that are known to +support these registers. When using the o32 FPXX ABI, <samp>-mno-odd-spreg</samp> +is set by default. +</p> +<a name="index-mabs_003d2008"></a> +<a name="index-mabs_003dlegacy"></a> +</dd> +<dt><code>-mabs=2008</code></dt> +<dt><code>-mabs=legacy</code></dt> +<dd><p>These options control the treatment of the special not-a-number (NaN) +IEEE 754 floating-point data with the <code>abs.<i>fmt</i></code> and +<code>neg.<i>fmt</i></code> machine instructions. +</p> +<p>By default or when <samp>-mabs=legacy</samp> is used the legacy +treatment is selected. In this case these instructions are considered +arithmetic and avoided where correct operation is required and the +input operand might be a NaN. A longer sequence of instructions that +manipulate the sign bit of floating-point datum manually is used +instead unless the <samp>-ffinite-math-only</samp> option has also been +specified. +</p> +<p>The <samp>-mabs=2008</samp> option selects the IEEE 754-2008 treatment. In +this case these instructions are considered non-arithmetic and therefore +operating correctly in all cases, including in particular where the +input operand is a NaN. These instructions are therefore always used +for the respective operations. +</p> +<a name="index-mnan_003d2008"></a> +<a name="index-mnan_003dlegacy"></a> +</dd> +<dt><code>-mnan=2008</code></dt> +<dt><code>-mnan=legacy</code></dt> +<dd><p>These options control the encoding of the special not-a-number (NaN) +IEEE 754 floating-point data. +</p> +<p>The <samp>-mnan=legacy</samp> option selects the legacy encoding. In this +case quiet NaNs (qNaNs) are denoted by the first bit of their trailing +significand field being 0, whereas signaling NaNs (sNaNs) are denoted +by the first bit of their trailing significand field being 1. +</p> +<p>The <samp>-mnan=2008</samp> option selects the IEEE 754-2008 encoding. In +this case qNaNs are denoted by the first bit of their trailing +significand field being 1, whereas sNaNs are denoted by the first bit of +their trailing significand field being 0. +</p> +<p>The default is <samp>-mnan=legacy</samp> unless GCC has been configured with +<samp>--with-nan=2008</samp>. +</p> +<a name="index-mllsc"></a> +<a name="index-mno_002dllsc"></a> +</dd> +<dt><code>-mllsc</code></dt> +<dt><code>-mno-llsc</code></dt> +<dd><p>Use (do not use) ‘<samp>ll</samp>’, ‘<samp>sc</samp>’, and ‘<samp>sync</samp>’ instructions to +implement atomic memory built-in functions. When neither option is +specified, GCC uses the instructions if the target architecture +supports them. +</p> +<p><samp>-mllsc</samp> is useful if the runtime environment can emulate the +instructions and <samp>-mno-llsc</samp> can be useful when compiling for +nonstandard ISAs. You can make either option the default by +configuring GCC with <samp>--with-llsc</samp> and <samp>--without-llsc</samp> +respectively. <samp>--with-llsc</samp> is the default for some +configurations; see the installation documentation for details. +</p> +<a name="index-mdsp-1"></a> +<a name="index-mno_002ddsp"></a> +</dd> +<dt><code>-mdsp</code></dt> +<dt><code>-mno-dsp</code></dt> +<dd><p>Use (do not use) revision 1 of the MIPS DSP ASE. +See <a href="MIPS-DSP-Built_002din-Functions.html#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>. This option defines the +preprocessor macro <code>__mips_dsp</code>. It also defines +<code>__mips_dsp_rev</code> to 1. +</p> +<a name="index-mdspr2"></a> +<a name="index-mno_002ddspr2"></a> +</dd> +<dt><code>-mdspr2</code></dt> +<dt><code>-mno-dspr2</code></dt> +<dd><p>Use (do not use) revision 2 of the MIPS DSP ASE. +See <a href="MIPS-DSP-Built_002din-Functions.html#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>. This option defines the +preprocessor macros <code>__mips_dsp</code> and <code>__mips_dspr2</code>. +It also defines <code>__mips_dsp_rev</code> to 2. +</p> +<a name="index-msmartmips"></a> +<a name="index-mno_002dsmartmips"></a> +</dd> +<dt><code>-msmartmips</code></dt> +<dt><code>-mno-smartmips</code></dt> +<dd><p>Use (do not use) the MIPS SmartMIPS ASE. +</p> +<a name="index-mpaired_002dsingle"></a> +<a name="index-mno_002dpaired_002dsingle"></a> +</dd> +<dt><code>-mpaired-single</code></dt> +<dt><code>-mno-paired-single</code></dt> +<dd><p>Use (do not use) paired-single floating-point instructions. +See <a href="MIPS-Paired_002dSingle-Support.html#MIPS-Paired_002dSingle-Support">MIPS Paired-Single Support</a>. This option requires +hardware floating-point support to be enabled. +</p> +<a name="index-mdmx"></a> +<a name="index-mno_002dmdmx"></a> +</dd> +<dt><code>-mdmx</code></dt> +<dt><code>-mno-mdmx</code></dt> +<dd><p>Use (do not use) MIPS Digital Media Extension instructions. +This option can only be used when generating 64-bit code and requires +hardware floating-point support to be enabled. +</p> +<a name="index-mips3d"></a> +<a name="index-mno_002dmips3d"></a> +</dd> +<dt><code>-mips3d</code></dt> +<dt><code>-mno-mips3d</code></dt> +<dd><p>Use (do not use) the MIPS-3D ASE. See <a href="MIPS_002d3D-Built_002din-Functions.html#MIPS_002d3D-Built_002din-Functions">MIPS-3D Built-in Functions</a>. +The option <samp>-mips3d</samp> implies <samp>-mpaired-single</samp>. +</p> +<a name="index-mmicromips"></a> +<a name="index-mno_002dmmicromips"></a> +</dd> +<dt><code>-mmicromips</code></dt> +<dt><code>-mno-micromips</code></dt> +<dd><p>Generate (do not generate) microMIPS code. +</p> +<p>MicroMIPS code generation can also be controlled on a per-function basis +by means of <code>micromips</code> and <code>nomicromips</code> attributes. +See <a href="Function-Attributes.html#Function-Attributes">Function Attributes</a>, for more information. +</p> +<a name="index-mmt"></a> +<a name="index-mno_002dmt"></a> +</dd> +<dt><code>-mmt</code></dt> +<dt><code>-mno-mt</code></dt> +<dd><p>Use (do not use) MT Multithreading instructions. +</p> +<a name="index-mmcu-1"></a> +<a name="index-mno_002dmcu"></a> +</dd> +<dt><code>-mmcu</code></dt> +<dt><code>-mno-mcu</code></dt> +<dd><p>Use (do not use) the MIPS MCU ASE instructions. +</p> +<a name="index-meva"></a> +<a name="index-mno_002deva"></a> +</dd> +<dt><code>-meva</code></dt> +<dt><code>-mno-eva</code></dt> +<dd><p>Use (do not use) the MIPS Enhanced Virtual Addressing instructions. +</p> +<a name="index-mvirt"></a> +<a name="index-mno_002dvirt"></a> +</dd> +<dt><code>-mvirt</code></dt> +<dt><code>-mno-virt</code></dt> +<dd><p>Use (do not use) the MIPS Virtualization (VZ) instructions. +</p> +<a name="index-mxpa"></a> +<a name="index-mno_002dxpa"></a> +</dd> +<dt><code>-mxpa</code></dt> +<dt><code>-mno-xpa</code></dt> +<dd><p>Use (do not use) the MIPS eXtended Physical Address (XPA) instructions. +</p> +<a name="index-mcrc"></a> +<a name="index-mno_002dcrc"></a> +</dd> +<dt><code>-mcrc</code></dt> +<dt><code>-mno-crc</code></dt> +<dd><p>Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions. +</p> +<a name="index-mginv"></a> +<a name="index-mno_002dginv"></a> +</dd> +<dt><code>-mginv</code></dt> +<dt><code>-mno-ginv</code></dt> +<dd><p>Use (do not use) the MIPS Global INValidate (GINV) instructions. +</p> +<a name="index-mloongson_002dmmi"></a> +<a name="index-mno_002dloongson_002dmmi"></a> +</dd> +<dt><code>-mloongson-mmi</code></dt> +<dt><code>-mno-loongson-mmi</code></dt> +<dd><p>Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI). +</p> +<a name="index-mloongson_002dext"></a> +<a name="index-mno_002dloongson_002dext"></a> +</dd> +<dt><code>-mloongson-ext</code></dt> +<dt><code>-mno-loongson-ext</code></dt> +<dd><p>Use (do not use) the MIPS Loongson EXTensions (EXT) instructions. +</p> +<a name="index-mloongson_002dext2"></a> +<a name="index-mno_002dloongson_002dext2"></a> +</dd> +<dt><code>-mloongson-ext2</code></dt> +<dt><code>-mno-loongson-ext2</code></dt> +<dd><p>Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions. +</p> +<a name="index-mlong64"></a> +</dd> +<dt><code>-mlong64</code></dt> +<dd><p>Force <code>long</code> types to be 64 bits wide. See <samp>-mlong32</samp> for +an explanation of the default and the way that the pointer size is +determined. +</p> +<a name="index-mlong32"></a> +</dd> +<dt><code>-mlong32</code></dt> +<dd><p>Force <code>long</code>, <code>int</code>, and pointer types to be 32 bits wide. +</p> +<p>The default size of <code>int</code>s, <code>long</code>s and pointers depends on +the ABI. All the supported ABIs use 32-bit <code>int</code>s. The n64 ABI +uses 64-bit <code>long</code>s, as does the 64-bit EABI; the others use +32-bit <code>long</code>s. Pointers are the same size as <code>long</code>s, +or the same size as integer registers, whichever is smaller. +</p> +<a name="index-msym32"></a> +<a name="index-mno_002dsym32"></a> +</dd> +<dt><code>-msym32</code></dt> +<dt><code>-mno-sym32</code></dt> +<dd><p>Assume (do not assume) that all symbols have 32-bit values, regardless +of the selected ABI. This option is useful in combination with +<samp>-mabi=64</samp> and <samp>-mno-abicalls</samp> because it allows GCC +to generate shorter and faster references to symbolic addresses. +</p> +<a name="index-G-2"></a> +</dd> +<dt><code>-G <var>num</var></code></dt> +<dd><p>Put definitions of externally-visible data in a small data section +if that data is no bigger than <var>num</var> bytes. GCC can then generate +more efficient accesses to the data; see <samp>-mgpopt</samp> for details. +</p> +<p>The default <samp>-G</samp> option depends on the configuration. +</p> +<a name="index-mlocal_002dsdata"></a> +<a name="index-mno_002dlocal_002dsdata"></a> +</dd> +<dt><code>-mlocal-sdata</code></dt> +<dt><code>-mno-local-sdata</code></dt> +<dd><p>Extend (do not extend) the <samp>-G</samp> behavior to local data too, +such as to static variables in C. <samp>-mlocal-sdata</samp> is the +default for all configurations. +</p> +<p>If the linker complains that an application is using too much small data, +you might want to try rebuilding the less performance-critical parts with +<samp>-mno-local-sdata</samp>. You might also want to build large +libraries with <samp>-mno-local-sdata</samp>, so that the libraries leave +more room for the main program. +</p> +<a name="index-mextern_002dsdata"></a> +<a name="index-mno_002dextern_002dsdata"></a> +</dd> +<dt><code>-mextern-sdata</code></dt> +<dt><code>-mno-extern-sdata</code></dt> +<dd><p>Assume (do not assume) that externally-defined data is in +a small data section if the size of that data is within the <samp>-G</samp> limit. +<samp>-mextern-sdata</samp> is the default for all configurations. +</p> +<p>If you compile a module <var>Mod</var> with <samp>-mextern-sdata</samp> <samp>-G +<var>num</var></samp> <samp>-mgpopt</samp>, and <var>Mod</var> references a variable <var>Var</var> +that is no bigger than <var>num</var> bytes, you must make sure that <var>Var</var> +is placed in a small data section. If <var>Var</var> is defined by another +module, you must either compile that module with a high-enough +<samp>-G</samp> setting or attach a <code>section</code> attribute to <var>Var</var>’s +definition. If <var>Var</var> is common, you must link the application +with a high-enough <samp>-G</samp> setting. +</p> +<p>The easiest way of satisfying these restrictions is to compile +and link every module with the same <samp>-G</samp> option. However, +you may wish to build a library that supports several different +small data limits. You can do this by compiling the library with +the highest supported <samp>-G</samp> setting and additionally using +<samp>-mno-extern-sdata</samp> to stop the library from making assumptions +about externally-defined data. +</p> +<a name="index-mgpopt"></a> +<a name="index-mno_002dgpopt"></a> +</dd> +<dt><code>-mgpopt</code></dt> +<dt><code>-mno-gpopt</code></dt> +<dd><p>Use (do not use) GP-relative accesses for symbols that are known to be +in a small data section; see <samp>-G</samp>, <samp>-mlocal-sdata</samp> and +<samp>-mextern-sdata</samp>. <samp>-mgpopt</samp> is the default for all +configurations. +</p> +<p><samp>-mno-gpopt</samp> is useful for cases where the <code>$gp</code> register +might not hold the value of <code>_gp</code>. For example, if the code is +part of a library that might be used in a boot monitor, programs that +call boot monitor routines pass an unknown value in <code>$gp</code>. +(In such situations, the boot monitor itself is usually compiled +with <samp>-G0</samp>.) +</p> +<p><samp>-mno-gpopt</samp> implies <samp>-mno-local-sdata</samp> and +<samp>-mno-extern-sdata</samp>. +</p> +<a name="index-membedded_002ddata"></a> +<a name="index-mno_002dembedded_002ddata"></a> +</dd> +<dt><code>-membedded-data</code></dt> +<dt><code>-mno-embedded-data</code></dt> +<dd><p>Allocate variables to the read-only data section first if possible, then +next in the small data section if possible, otherwise in data. This gives +slightly slower code than the default, but reduces the amount of RAM required +when executing, and thus may be preferred for some embedded systems. +</p> +<a name="index-muninit_002dconst_002din_002drodata"></a> +<a name="index-mno_002duninit_002dconst_002din_002drodata"></a> +</dd> +<dt><code>-muninit-const-in-rodata</code></dt> +<dt><code>-mno-uninit-const-in-rodata</code></dt> +<dd><p>Put uninitialized <code>const</code> variables in the read-only data section. +This option is only meaningful in conjunction with <samp>-membedded-data</samp>. +</p> +<a name="index-mcode_002dreadable"></a> +</dd> +<dt><code>-mcode-readable=<var>setting</var></code></dt> +<dd><p>Specify whether GCC may generate code that reads from executable sections. +There are three possible settings: +</p> +<dl compact="compact"> +<dt><code>-mcode-readable=yes</code></dt> +<dd><p>Instructions may freely access executable sections. This is the +default setting. +</p> +</dd> +<dt><code>-mcode-readable=pcrel</code></dt> +<dd><p>MIPS16 PC-relative load instructions can access executable sections, +but other instructions must not do so. This option is useful on 4KSc +and 4KSd processors when the code TLBs have the Read Inhibit bit set. +It is also useful on processors that can be configured to have a dual +instruction/data SRAM interface and that, like the M4K, automatically +redirect PC-relative loads to the instruction RAM. +</p> +</dd> +<dt><code>-mcode-readable=no</code></dt> +<dd><p>Instructions must not access executable sections. This option can be +useful on targets that are configured to have a dual instruction/data +SRAM interface but that (unlike the M4K) do not automatically redirect +PC-relative loads to the instruction RAM. +</p></dd> +</dl> + +<a name="index-msplit_002daddresses"></a> +<a name="index-mno_002dsplit_002daddresses"></a> +</dd> +<dt><code>-msplit-addresses</code></dt> +<dt><code>-mno-split-addresses</code></dt> +<dd><p>Enable (disable) use of the <code>%hi()</code> and <code>%lo()</code> assembler +relocation operators. This option has been superseded by +<samp>-mexplicit-relocs</samp> but is retained for backwards compatibility. +</p> +<a name="index-mexplicit_002drelocs-2"></a> +<a name="index-mno_002dexplicit_002drelocs-2"></a> +</dd> +<dt><code>-mexplicit-relocs</code></dt> +<dt><code>-mno-explicit-relocs</code></dt> +<dd><p>Use (do not use) assembler relocation operators when dealing with symbolic +addresses. The alternative, selected by <samp>-mno-explicit-relocs</samp>, +is to use assembler macros instead. +</p> +<p><samp>-mexplicit-relocs</samp> is the default if GCC was configured +to use an assembler that supports relocation operators. +</p> +<a name="index-mcheck_002dzero_002ddivision-1"></a> +<a name="index-mno_002dcheck_002dzero_002ddivision"></a> +</dd> +<dt><code>-mcheck-zero-division</code></dt> +<dt><code>-mno-check-zero-division</code></dt> +<dd><p>Trap (do not trap) on integer division by zero. +</p> +<p>The default is <samp>-mcheck-zero-division</samp>. +</p> +<a name="index-mdivide_002dtraps"></a> +<a name="index-mdivide_002dbreaks"></a> +</dd> +<dt><code>-mdivide-traps</code></dt> +<dt><code>-mdivide-breaks</code></dt> +<dd><p>MIPS systems check for division by zero by generating either a +conditional trap or a break instruction. Using traps results in +smaller code, but is only supported on MIPS II and later. Also, some +versions of the Linux kernel have a bug that prevents trap from +generating the proper signal (<code>SIGFPE</code>). Use <samp>-mdivide-traps</samp> to +allow conditional traps on architectures that support them and +<samp>-mdivide-breaks</samp> to force the use of breaks. +</p> +<p>The default is usually <samp>-mdivide-traps</samp>, but this can be +overridden at configure time using <samp>--with-divide=breaks</samp>. +Divide-by-zero checks can be completely disabled using +<samp>-mno-check-zero-division</samp>. +</p> +<a name="index-mload_002dstore_002dpairs"></a> +<a name="index-mno_002dload_002dstore_002dpairs"></a> +</dd> +<dt><code>-mload-store-pairs</code></dt> +<dt><code>-mno-load-store-pairs</code></dt> +<dd><p>Enable (disable) an optimization that pairs consecutive load or store +instructions to enable load/store bonding. This option is enabled by +default but only takes effect when the selected architecture is known +to support bonding. +</p> +<a name="index-munaligned_002daccess-1"></a> +<a name="index-mno_002dunaligned_002daccess-1"></a> +</dd> +<dt><code>-munaligned-access</code></dt> +<dt><code>-mno-unaligned-access</code></dt> +<dd><p>Enable (disable) direct unaligned access for MIPS Release 6. +MIPSr6 requires load/store unaligned-access support, +by hardware or trap&emulate. +So <samp>-mno-unaligned-access</samp> may be needed by kernel. +</p> +<a name="index-mmemcpy-2"></a> +<a name="index-mno_002dmemcpy"></a> +</dd> +<dt><code>-mmemcpy</code></dt> +<dt><code>-mno-memcpy</code></dt> +<dd><p>Force (do not force) the use of <code>memcpy</code> for non-trivial block +moves. The default is <samp>-mno-memcpy</samp>, which allows GCC to inline +most constant-sized copies. +</p> +<a name="index-mlong_002dcalls-6"></a> +<a name="index-mno_002dlong_002dcalls-3"></a> +</dd> +<dt><code>-mlong-calls</code></dt> +<dt><code>-mno-long-calls</code></dt> +<dd><p>Disable (do not disable) use of the <code>jal</code> instruction. Calling +functions using <code>jal</code> is more efficient but requires the caller +and callee to be in the same 256 megabyte segment. +</p> +<p>This option has no effect on abicalls code. The default is +<samp>-mno-long-calls</samp>. +</p> +<a name="index-mmad"></a> +<a name="index-mno_002dmad"></a> +</dd> +<dt><code>-mmad</code></dt> +<dt><code>-mno-mad</code></dt> +<dd><p>Enable (disable) use of the <code>mad</code>, <code>madu</code> and <code>mul</code> +instructions, as provided by the R4650 ISA. +</p> +<a name="index-mimadd"></a> +<a name="index-mno_002dimadd"></a> +</dd> +<dt><code>-mimadd</code></dt> +<dt><code>-mno-imadd</code></dt> +<dd><p>Enable (disable) use of the <code>madd</code> and <code>msub</code> integer +instructions. The default is <samp>-mimadd</samp> on architectures +that support <code>madd</code> and <code>msub</code> except for the 74k +architecture where it was found to generate slower code. +</p> +<a name="index-mfused_002dmadd-1"></a> +<a name="index-mno_002dfused_002dmadd-1"></a> +</dd> +<dt><code>-mfused-madd</code></dt> +<dt><code>-mno-fused-madd</code></dt> +<dd><p>Enable (disable) use of the floating-point multiply-accumulate +instructions, when they are available. The default is +<samp>-mfused-madd</samp>. +</p> +<p>On the R8000 CPU when multiply-accumulate instructions are used, +the intermediate product is calculated to infinite precision +and is not subject to the FCSR Flush to Zero bit. This may be +undesirable in some circumstances. On other processors the result +is numerically identical to the equivalent computation using +separate multiply, add, subtract and negate instructions. +</p> +<a name="index-nocpp"></a> +</dd> +<dt><code>-nocpp</code></dt> +<dd><p>Tell the MIPS assembler to not run its preprocessor over user +assembler files (with a ‘<samp>.s</samp>’ suffix) when assembling them. +</p> +<a name="index-mfix_002d24k"></a> +<a name="index-mno_002dfix_002d24k"></a> +</dd> +<dt><code>-mfix-24k</code></dt> +<dt><code>-mno-fix-24k</code></dt> +<dd><p>Work around the 24K E48 (lost data on stores during refill) errata. +The workarounds are implemented by the assembler rather than by GCC. +</p> +<a name="index-mfix_002dr4000"></a> +<a name="index-mno_002dfix_002dr4000"></a> +</dd> +<dt><code>-mfix-r4000</code></dt> +<dt><code>-mno-fix-r4000</code></dt> +<dd><p>Work around certain R4000 CPU errata: +</p><ul class="no-bullet"> +<li>- A double-word or a variable shift may give an incorrect result if executed +immediately after starting an integer division. +</li><li>- A double-word or a variable shift may give an incorrect result if executed +while an integer multiplication is in progress. +</li><li>- An integer division may give an incorrect result if started in a delay slot +of a taken branch or a jump. +</li></ul> + +<a name="index-mfix_002dr4400"></a> +<a name="index-mno_002dfix_002dr4400"></a> +</dd> +<dt><code>-mfix-r4400</code></dt> +<dt><code>-mno-fix-r4400</code></dt> +<dd><p>Work around certain R4400 CPU errata: +</p><ul class="no-bullet"> +<li>- A double-word or a variable shift may give an incorrect result if executed +immediately after starting an integer division. +</li></ul> + +<a name="index-mfix_002dr10000"></a> +<a name="index-mno_002dfix_002dr10000"></a> +</dd> +<dt><code>-mfix-r10000</code></dt> +<dt><code>-mno-fix-r10000</code></dt> +<dd><p>Work around certain R10000 errata: +</p><ul class="no-bullet"> +<li>- <code>ll</code>/<code>sc</code> sequences may not behave atomically on revisions +prior to 3.0. They may deadlock on revisions 2.6 and earlier. +</li></ul> + +<p>This option can only be used if the target architecture supports +branch-likely instructions. <samp>-mfix-r10000</samp> is the default when +<samp>-march=r10000</samp> is used; <samp>-mno-fix-r10000</samp> is the default +otherwise. +</p> +<a name="index-mfix_002dr5900"></a> +</dd> +<dt><code>-mfix-r5900</code></dt> +<dt><code>-mno-fix-r5900</code></dt> +<dd><p>Do not attempt to schedule the preceding instruction into the delay slot +of a branch instruction placed at the end of a short loop of six +instructions or fewer and always schedule a <code>nop</code> instruction there +instead. The short loop bug under certain conditions causes loops to +execute only once or twice, due to a hardware bug in the R5900 chip. The +workaround is implemented by the assembler rather than by GCC. +</p> +<a name="index-mfix_002drm7000"></a> +</dd> +<dt><code>-mfix-rm7000</code></dt> +<dt><code>-mno-fix-rm7000</code></dt> +<dd><p>Work around the RM7000 <code>dmult</code>/<code>dmultu</code> errata. The +workarounds are implemented by the assembler rather than by GCC. +</p> +<a name="index-mfix_002dvr4120"></a> +</dd> +<dt><code>-mfix-vr4120</code></dt> +<dt><code>-mno-fix-vr4120</code></dt> +<dd><p>Work around certain VR4120 errata: +</p><ul class="no-bullet"> +<li>- <code>dmultu</code> does not always produce the correct result. +</li><li>- <code>div</code> and <code>ddiv</code> do not always produce the correct result if one +of the operands is negative. +</li></ul> +<p>The workarounds for the division errata rely on special functions in +<samp>libgcc.a</samp>. At present, these functions are only provided by +the <code>mips64vr*-elf</code> configurations. +</p> +<p>Other VR4120 errata require a NOP to be inserted between certain pairs of +instructions. These errata are handled by the assembler, not by GCC itself. +</p> +<a name="index-mfix_002dvr4130"></a> +</dd> +<dt><code>-mfix-vr4130</code></dt> +<dd><p>Work around the VR4130 <code>mflo</code>/<code>mfhi</code> errata. The +workarounds are implemented by the assembler rather than by GCC, +although GCC avoids using <code>mflo</code> and <code>mfhi</code> if the +VR4130 <code>macc</code>, <code>macchi</code>, <code>dmacc</code> and <code>dmacchi</code> +instructions are available instead. +</p> +<a name="index-mfix_002dsb1"></a> +</dd> +<dt><code>-mfix-sb1</code></dt> +<dt><code>-mno-fix-sb1</code></dt> +<dd><p>Work around certain SB-1 CPU core errata. +(This flag currently works around the SB-1 revision 2 +“F1” and “F2” floating-point errata.) +</p> +<a name="index-mr10k_002dcache_002dbarrier"></a> +</dd> +<dt><code>-mr10k-cache-barrier=<var>setting</var></code></dt> +<dd><p>Specify whether GCC should insert cache barriers to avoid the +side effects of speculation on R10K processors. +</p> +<p>In common with many processors, the R10K tries to predict the outcome +of a conditional branch and speculatively executes instructions from +the “taken” branch. It later aborts these instructions if the +predicted outcome is wrong. However, on the R10K, even aborted +instructions can have side effects. +</p> +<p>This problem only affects kernel stores and, depending on the system, +kernel loads. As an example, a speculatively-executed store may load +the target memory into cache and mark the cache line as dirty, even if +the store itself is later aborted. If a DMA operation writes to the +same area of memory before the “dirty” line is flushed, the cached +data overwrites the DMA-ed data. See the R10K processor manual +for a full description, including other potential problems. +</p> +<p>One workaround is to insert cache barrier instructions before every memory +access that might be speculatively executed and that might have side +effects even if aborted. <samp>-mr10k-cache-barrier=<var>setting</var></samp> +controls GCC’s implementation of this workaround. It assumes that +aborted accesses to any byte in the following regions does not have +side effects: +</p> +<ol> +<li> the memory occupied by the current function’s stack frame; + +</li><li> the memory occupied by an incoming stack argument; + +</li><li> the memory occupied by an object with a link-time-constant address. +</li></ol> + +<p>It is the kernel’s responsibility to ensure that speculative +accesses to these regions are indeed safe. +</p> +<p>If the input program contains a function declaration such as: +</p> +<div class="smallexample"> +<pre class="smallexample">void foo (void); +</pre></div> + +<p>then the implementation of <code>foo</code> must allow <code>j foo</code> and +<code>jal foo</code> to be executed speculatively. GCC honors this +restriction for functions it compiles itself. It expects non-GCC +functions (such as hand-written assembly code) to do the same. +</p> +<p>The option has three forms: +</p> +<dl compact="compact"> +<dt><code>-mr10k-cache-barrier=load-store</code></dt> +<dd><p>Insert a cache barrier before a load or store that might be +speculatively executed and that might have side effects even +if aborted. +</p> +</dd> +<dt><code>-mr10k-cache-barrier=store</code></dt> +<dd><p>Insert a cache barrier before a store that might be speculatively +executed and that might have side effects even if aborted. +</p> +</dd> +<dt><code>-mr10k-cache-barrier=none</code></dt> +<dd><p>Disable the insertion of cache barriers. This is the default setting. +</p></dd> +</dl> + +<a name="index-mflush_002dfunc"></a> +</dd> +<dt><code>-mflush-func=<var>func</var></code></dt> +<dt><code>-mno-flush-func</code></dt> +<dd><p>Specifies the function to call to flush the I and D caches, or to not +call any such function. If called, the function must take the same +arguments as the common <code>_flush_func</code>, that is, the address of the +memory range for which the cache is being flushed, the size of the +memory range, and the number 3 (to flush both caches). The default +depends on the target GCC was configured for, but commonly is either +<code>_flush_func</code> or <code>__cpu_flush</code>. +</p> +<a name="index-mbranch_002dcost-3"></a> +</dd> +<dt><code>mbranch-cost=<var>num</var></code></dt> +<dd><p>Set the cost of branches to roughly <var>num</var> “simple” instructions. +This cost is only a heuristic and is not guaranteed to produce +consistent results across releases. A zero cost redundantly selects +the default, which is based on the <samp>-mtune</samp> setting. +</p> +<a name="index-mbranch_002dlikely"></a> +<a name="index-mno_002dbranch_002dlikely"></a> +</dd> +<dt><code>-mbranch-likely</code></dt> +<dt><code>-mno-branch-likely</code></dt> +<dd><p>Enable or disable use of Branch Likely instructions, regardless of the +default for the selected architecture. By default, Branch Likely +instructions may be generated if they are supported by the selected +architecture. An exception is for the MIPS32 and MIPS64 architectures +and processors that implement those architectures; for those, Branch +Likely instructions are not be generated by default because the MIPS32 +and MIPS64 architectures specifically deprecate their use. +</p> +<a name="index-mcompact_002dbranches_003dnever"></a> +<a name="index-mcompact_002dbranches_003doptimal"></a> +<a name="index-mcompact_002dbranches_003dalways"></a> +</dd> +<dt><code>-mcompact-branches=never</code></dt> +<dt><code>-mcompact-branches=optimal</code></dt> +<dt><code>-mcompact-branches=always</code></dt> +<dd><p>These options control which form of branches will be generated. The +default is <samp>-mcompact-branches=optimal</samp>. +</p> +<p>The <samp>-mcompact-branches=never</samp> option ensures that compact branch +instructions will never be generated. +</p> +<p>The <samp>-mcompact-branches=always</samp> option ensures that a compact +branch instruction will be generated if available for MIPS Release 6 onwards. +If a compact branch instruction is not available (or pre-R6), +a delay slot form of the branch will be used instead. +</p> +<p>If it is used for MIPS16/microMIPS targets, it will be just ignored now. +The behaviour for MIPS16/microMIPS may change in future, +since they do have some compact branch instructions. +</p> +<p>The <samp>-mcompact-branches=optimal</samp> option will cause a delay slot +branch to be used if one is available in the current ISA and the delay +slot is successfully filled. If the delay slot is not filled, a compact +branch will be chosen if one is available. +</p> +<a name="index-mfp_002dexceptions"></a> +</dd> +<dt><code>-mfp-exceptions</code></dt> +<dt><code>-mno-fp-exceptions</code></dt> +<dd><p>Specifies whether FP exceptions are enabled. This affects how +FP instructions are scheduled for some processors. +The default is that FP exceptions are +enabled. +</p> +<p>For instance, on the SB-1, if FP exceptions are disabled, and we are emitting +64-bit code, then we can use both FP pipes. Otherwise, we can only use one +FP pipe. +</p> +<a name="index-mvr4130_002dalign"></a> +</dd> +<dt><code>-mvr4130-align</code></dt> +<dt><code>-mno-vr4130-align</code></dt> +<dd><p>The VR4130 pipeline is two-way superscalar, but can only issue two +instructions together if the first one is 8-byte aligned. When this +option is enabled, GCC aligns pairs of instructions that it +thinks should execute in parallel. +</p> +<p>This option only has an effect when optimizing for the VR4130. +It normally makes code faster, but at the expense of making it bigger. +It is enabled by default at optimization level <samp>-O3</samp>. +</p> +<a name="index-msynci"></a> +</dd> +<dt><code>-msynci</code></dt> +<dt><code>-mno-synci</code></dt> +<dd><p>Enable (disable) generation of <code>synci</code> instructions on +architectures that support it. The <code>synci</code> instructions (if +enabled) are generated when <code>__builtin___clear_cache</code> is +compiled. +</p> +<p>This option defaults to <samp>-mno-synci</samp>, but the default can be +overridden by configuring GCC with <samp>--with-synci</samp>. +</p> +<p>When compiling code for single processor systems, it is generally safe +to use <code>synci</code>. However, on many multi-core (SMP) systems, it +does not invalidate the instruction caches on all cores and may lead +to undefined behavior. +</p> +<a name="index-mrelax_002dpic_002dcalls"></a> +</dd> +<dt><code>-mrelax-pic-calls</code></dt> +<dt><code>-mno-relax-pic-calls</code></dt> +<dd><p>Try to turn PIC calls that are normally dispatched via register +<code>$25</code> into direct calls. This is only possible if the linker can +resolve the destination at link time and if the destination is within +range for a direct call. +</p> +<p><samp>-mrelax-pic-calls</samp> is the default if GCC was configured to use +an assembler and a linker that support the <code>.reloc</code> assembly +directive and <samp>-mexplicit-relocs</samp> is in effect. With +<samp>-mno-explicit-relocs</samp>, this optimization can be performed by the +assembler and the linker alone without help from the compiler. +</p> +<a name="index-mmcount_002dra_002daddress"></a> +<a name="index-mno_002dmcount_002dra_002daddress"></a> +</dd> +<dt><code>-mmcount-ra-address</code></dt> +<dt><code>-mno-mcount-ra-address</code></dt> +<dd><p>Emit (do not emit) code that allows <code>_mcount</code> to modify the +calling function’s return address. When enabled, this option extends +the usual <code>_mcount</code> interface with a new <var>ra-address</var> +parameter, which has type <code>intptr_t *</code> and is passed in register +<code>$12</code>. <code>_mcount</code> can then modify the return address by +doing both of the following: +</p><ul> +<li> Returning the new address in register <code>$31</code>. +</li><li> Storing the new address in <code>*<var>ra-address</var></code>, +if <var>ra-address</var> is nonnull. +</li></ul> + +<p>The default is <samp>-mno-mcount-ra-address</samp>. +</p> +<a name="index-mframe_002dheader_002dopt"></a> +</dd> +<dt><code>-mframe-header-opt</code></dt> +<dt><code>-mno-frame-header-opt</code></dt> +<dd><p>Enable (disable) frame header optimization in the o32 ABI. When using the +o32 ABI, calling functions will allocate 16 bytes on the stack for the called +function to write out register arguments. When enabled, this optimization +will suppress the allocation of the frame header if it can be determined that +it is unused. +</p> +<p>This optimization is off by default at all optimization levels. +</p> +<a name="index-mlxc1_002dsxc1"></a> +</dd> +<dt><code>-mlxc1-sxc1</code></dt> +<dt><code>-mno-lxc1-sxc1</code></dt> +<dd><p>When applicable, enable (disable) the generation of <code>lwxc1</code>, +<code>swxc1</code>, <code>ldxc1</code>, <code>sdxc1</code> instructions. Enabled by default. +</p> +<a name="index-mmadd4"></a> +</dd> +<dt><code>-mmadd4</code></dt> +<dt><code>-mno-madd4</code></dt> +<dd><p>When applicable, enable (disable) the generation of 4-operand <code>madd.s</code>, +<code>madd.d</code> and related instructions. Enabled by default. +</p> +</dd> +</dl> + +<hr> +<div class="header"> +<p> +Next: <a href="MMIX-Options.html#MMIX-Options" accesskey="n" rel="next">MMIX Options</a>, Previous: <a href="MicroBlaze-Options.html#MicroBlaze-Options" accesskey="p" rel="previous">MicroBlaze Options</a>, Up: <a href="Submodel-Options.html#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Indices.html#Indices" title="Index" rel="index">Index</a>]</p> +</div> + + + +</body> +</html> |