summaryrefslogtreecommitdiff
path: root/lib/gcc/arm-none-eabi/13.2.1/plugin/include/value-relation.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/gcc/arm-none-eabi/13.2.1/plugin/include/value-relation.h')
-rw-r--r--lib/gcc/arm-none-eabi/13.2.1/plugin/include/value-relation.h523
1 files changed, 523 insertions, 0 deletions
diff --git a/lib/gcc/arm-none-eabi/13.2.1/plugin/include/value-relation.h b/lib/gcc/arm-none-eabi/13.2.1/plugin/include/value-relation.h
new file mode 100644
index 0000000..3177ecb
--- /dev/null
+++ b/lib/gcc/arm-none-eabi/13.2.1/plugin/include/value-relation.h
@@ -0,0 +1,523 @@
+/* Header file for the value range relational processing.
+ Copyright (C) 2020-2023 Free Software Foundation, Inc.
+ Contributed by Andrew MacLeod <amacleod@redhat.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#ifndef GCC_VALUE_RELATION_H
+#define GCC_VALUE_RELATION_H
+
+
+// This file provides access to a relation oracle which can be used to
+// maintain and query relations and equivalences between SSA_NAMES.
+//
+// The general range_query object provided in value-query.h provides
+// access to an oracle, if one is available, via the oracle() method.
+// There are also a couple of access routines provided, which even if there is
+// no oracle, will return the default VREL_VARYING no relation.
+//
+// Typically, when a ranger object is active, there will be an oracle, and
+// any information available can be directly queried. Ranger also sets and
+// utilizes the relation information to enhance it's range calculations, this
+// is totally transparent to the client, and they are free to make queries.
+//
+// relation_kind is a new enum which represents the different relations,
+// often with a direct mapping to tree codes. ie VREL_EQ is equivalent to
+// EQ_EXPR.
+//
+// A query is made requesting the relation between SSA1 and SSA@ in a basic
+// block, or on an edge, the possible return values are:
+//
+// VREL_EQ, VREL_NE, VREL_LT, VREL_LE, VREL_GT, and VREL_GE mean the same.
+// VREL_VARYING : No relation between the 2 names.
+// VREL_UNDEFINED : Impossible relation (ie, A < B && A > B)
+//
+// The oracle maintains VREL_EQ relations with equivalency sets, so if a
+// relation comes back VREL_EQ, it is also possible to query the set of
+// equivalencies. These are basically bitmaps over ssa_names. An iterator is
+// provided later for this activity.
+//
+// Relations are maintained via the dominance trees and are optimized assuming
+// they are registered in dominance order. When a new relation is added, it
+// is intersected with whatever existing relation exists in the dominance tree
+// and registered at the specified block.
+
+
+// These codes are arranged such that VREL_VARYING is the first code, and all
+// the rest are contiguous.
+
+typedef enum relation_kind_t
+{
+ VREL_VARYING = 0, // No known relation, AKA varying.
+ VREL_UNDEFINED, // Impossible relation, ie (r1 < r2) && (r2 > r1)
+ VREL_LT, // r1 < r2
+ VREL_LE, // r1 <= r2
+ VREL_GT, // r1 > r2
+ VREL_GE, // r1 >= r2
+ VREL_EQ, // r1 == r2
+ VREL_NE, // r1 != r2
+ VREL_PE8, // 8 bit partial equivalency
+ VREL_PE16, // 16 bit partial equivalency
+ VREL_PE32, // 32 bit partial equivalency
+ VREL_PE64, // 64 bit partial equivalency
+ VREL_LAST // terminate, not a real relation.
+} relation_kind;
+
+// General relation kind transformations.
+relation_kind relation_union (relation_kind r1, relation_kind r2);
+relation_kind relation_intersect (relation_kind r1, relation_kind r2);
+relation_kind relation_negate (relation_kind r);
+relation_kind relation_swap (relation_kind r);
+inline bool relation_lt_le_gt_ge_p (relation_kind r)
+ { return (r >= VREL_LT && r <= VREL_GE); }
+inline bool relation_partial_equiv_p (relation_kind r)
+ { return (r >= VREL_PE8 && r <= VREL_PE64); }
+inline bool relation_equiv_p (relation_kind r)
+ { return r == VREL_EQ || relation_partial_equiv_p (r); }
+
+void print_relation (FILE *f, relation_kind rel);
+
+class relation_oracle
+{
+public:
+ virtual ~relation_oracle () { }
+ // register a relation between 2 ssa names at a stmt.
+ void register_stmt (gimple *, relation_kind, tree, tree);
+ // register a relation between 2 ssa names on an edge.
+ void register_edge (edge, relation_kind, tree, tree);
+
+ // register a relation between 2 ssa names in a basic block.
+ virtual void register_relation (basic_block, relation_kind, tree, tree) = 0;
+ // Query for a relation between two ssa names in a basic block.
+ virtual relation_kind query_relation (basic_block, tree, tree) = 0;
+
+ relation_kind validate_relation (relation_kind, tree, tree);
+ relation_kind validate_relation (relation_kind, vrange &, vrange &);
+
+ virtual void dump (FILE *, basic_block) const = 0;
+ virtual void dump (FILE *) const = 0;
+ void debug () const;
+protected:
+ friend class equiv_relation_iterator;
+ // Return equivalency set for an SSA name in a basic block.
+ virtual const_bitmap equiv_set (tree, basic_block) = 0;
+ // Return partial equivalency record for an SSA name.
+ virtual const class pe_slice *partial_equiv_set (tree) { return NULL; }
+ void valid_equivs (bitmap b, const_bitmap equivs, basic_block bb);
+ // Query for a relation between two equivalency sets in a basic block.
+ virtual relation_kind query_relation (basic_block, const_bitmap,
+ const_bitmap) = 0;
+ friend class path_oracle;
+};
+
+// This class represents an equivalency set, and contains a link to the next
+// one in the list to be searched.
+
+class equiv_chain
+{
+public:
+ bitmap m_names; // ssa-names in equiv set.
+ basic_block m_bb; // Block this belongs to
+ equiv_chain *m_next; // Next in block list.
+ void dump (FILE *f) const; // Show names in this list.
+ equiv_chain *find (unsigned ssa);
+};
+
+class pe_slice
+{
+public:
+ tree ssa_base; // Slice of this name.
+ relation_kind code; // bits that are equivalent.
+ bitmap members; // Other members in the partial equivalency.
+};
+
+// The equivalency oracle maintains equivalencies using the dominator tree.
+// Equivalencies apply to an entire basic block. Equivalencies on edges
+// can be represented only on edges whose destination is a single-pred block,
+// and the equivalence is simply applied to that successor block.
+
+class equiv_oracle : public relation_oracle
+{
+public:
+ equiv_oracle ();
+ ~equiv_oracle ();
+
+ const_bitmap equiv_set (tree ssa, basic_block bb) final override;
+ const pe_slice *partial_equiv_set (tree name) final override;
+ void register_relation (basic_block bb, relation_kind k, tree ssa1,
+ tree ssa2) override;
+
+ void add_partial_equiv (relation_kind, tree, tree);
+ relation_kind partial_equiv (tree ssa1, tree ssa2, tree *base = NULL) const;
+ relation_kind query_relation (basic_block, tree, tree) override;
+ relation_kind query_relation (basic_block, const_bitmap, const_bitmap)
+ override;
+ void dump (FILE *f, basic_block bb) const override;
+ void dump (FILE *f) const override;
+
+protected:
+ bitmap_obstack m_bitmaps;
+ struct obstack m_chain_obstack;
+private:
+ bitmap m_equiv_set; // Index by ssa-name. true if an equivalence exists.
+ vec <equiv_chain *> m_equiv; // Index by BB. list of equivalences.
+ vec <bitmap> m_self_equiv; // Index by ssa-name, self equivalency set.
+ vec <pe_slice> m_partial; // Partial equivalencies.
+
+ void limit_check (basic_block bb = NULL);
+ equiv_chain *find_equiv_block (unsigned ssa, int bb) const;
+ equiv_chain *find_equiv_dom (tree name, basic_block bb) const;
+
+ bitmap register_equiv (basic_block bb, unsigned v, equiv_chain *equiv_1);
+ bitmap register_equiv (basic_block bb, equiv_chain *equiv_1,
+ equiv_chain *equiv_2);
+ void register_initial_def (tree ssa);
+ void add_equiv_to_block (basic_block bb, bitmap equiv);
+};
+
+// Summary block header for relations.
+
+class relation_chain_head
+{
+public:
+ bitmap m_names; // ssa_names with relations in this block.
+ class relation_chain *m_head; // List of relations in block.
+ int m_num_relations; // Number of relations in block.
+ relation_kind find_relation (const_bitmap b1, const_bitmap b2) const;
+};
+
+// A relation oracle maintains a set of relations between ssa_names using the
+// dominator tree structures. Equivalencies are considered a subset of
+// a general relation and maintained by an equivalence oracle by transparently
+// passing any EQ_EXPR relations to it.
+// Relations are handled at the basic block level. All relations apply to
+// an entire block, and are thus kept in a summary index by block.
+// Similar to the equivalence oracle, edges are handled by applying the
+// relation to the destination block of the edge, but ONLY if that block
+// has a single successor. For now.
+
+class dom_oracle : public equiv_oracle
+{
+public:
+ dom_oracle ();
+ ~dom_oracle ();
+
+ void register_relation (basic_block bb, relation_kind k, tree op1, tree op2)
+ final override;
+
+ relation_kind query_relation (basic_block bb, tree ssa1, tree ssa2)
+ final override;
+ relation_kind query_relation (basic_block bb, const_bitmap b1,
+ const_bitmap b2) final override;
+
+ void dump (FILE *f, basic_block bb) const final override;
+ void dump (FILE *f) const final override;
+private:
+ bitmap m_tmp, m_tmp2;
+ bitmap m_relation_set; // Index by ssa-name. True if a relation exists
+ vec <relation_chain_head> m_relations; // Index by BB, list of relations.
+ relation_kind find_relation_block (unsigned bb, const_bitmap b1,
+ const_bitmap b2) const;
+ relation_kind find_relation_block (int bb, unsigned v1, unsigned v2,
+ relation_chain **obj = NULL) const;
+ relation_kind find_relation_dom (basic_block bb, unsigned v1, unsigned v2) const;
+ relation_chain *set_one_relation (basic_block bb, relation_kind k, tree op1,
+ tree op2);
+ void register_transitives (basic_block, const class value_relation &);
+
+};
+
+// A path_oracle implements relations in a list. The only sense of ordering
+// is the latest registered relation is the first found during a search.
+// It can be constructed with an optional "root" oracle which will be used
+// to look up any relations not found in the list.
+// This allows the client to walk paths starting at some block and register
+// and query relations along that path, ignoring other edges.
+//
+// For registering a relation, a query if made of the root oracle if there is
+// any known relationship at block BB, and it is combined with this new
+// relation and entered in the list.
+//
+// Queries are resolved by looking first in the list, and only if nothing is
+// found is the root oracle queried at block BB.
+//
+// reset_path is used to clear all locally registered paths to initial state.
+
+class path_oracle : public relation_oracle
+{
+public:
+ path_oracle (relation_oracle *oracle = NULL);
+ ~path_oracle ();
+ const_bitmap equiv_set (tree, basic_block) final override;
+ void register_relation (basic_block, relation_kind, tree, tree) final override;
+ void killing_def (tree);
+ relation_kind query_relation (basic_block, tree, tree) final override;
+ relation_kind query_relation (basic_block, const_bitmap, const_bitmap)
+ final override;
+ void reset_path (relation_oracle *oracle = NULL);
+ void set_root_oracle (relation_oracle *oracle) { m_root = oracle; }
+ void dump (FILE *, basic_block) const final override;
+ void dump (FILE *) const final override;
+private:
+ void register_equiv (basic_block bb, tree ssa1, tree ssa2);
+ equiv_chain m_equiv;
+ relation_chain_head m_relations;
+ relation_oracle *m_root;
+ bitmap m_killed_defs;
+
+ bitmap_obstack m_bitmaps;
+ struct obstack m_chain_obstack;
+};
+
+// Used to assist with iterating over the equivalence list.
+class equiv_relation_iterator {
+public:
+ equiv_relation_iterator (relation_oracle *oracle, basic_block bb, tree name,
+ bool full = true, bool partial = false);
+ void next ();
+ tree get_name (relation_kind *rel = NULL);
+protected:
+ relation_oracle *m_oracle;
+ const_bitmap m_bm;
+ const pe_slice *m_pe;
+ bitmap_iterator m_bi;
+ unsigned m_y;
+ tree m_name;
+};
+
+#define FOR_EACH_EQUIVALENCE(oracle, bb, name, equiv_name) \
+ for (equiv_relation_iterator iter (oracle, bb, name, true, false); \
+ ((equiv_name) = iter.get_name ()); \
+ iter.next ())
+
+#define FOR_EACH_PARTIAL_EQUIV(oracle, bb, name, equiv_name, equiv_rel) \
+ for (equiv_relation_iterator iter (oracle, bb, name, false, true); \
+ ((equiv_name) = iter.get_name (&equiv_rel)); \
+ iter.next ())
+
+#define FOR_EACH_PARTIAL_AND_FULL_EQUIV(oracle, bb, name, equiv_name, \
+ equiv_rel) \
+ for (equiv_relation_iterator iter (oracle, bb, name, true, true); \
+ ((equiv_name) = iter.get_name (&equiv_rel)); \
+ iter.next ())
+
+// -----------------------------------------------------------------------
+
+// Range-ops deals with a LHS and 2 operands. A relation trio is a set of
+// 3 potential relations packed into a single unsigned value.
+// 1 - LHS relation OP1
+// 2 - LHS relation OP2
+// 3 - OP1 relation OP2
+// VREL_VARYING is a value of 0, and is the default for each position.
+class relation_trio
+{
+public:
+ relation_trio ();
+ relation_trio (relation_kind lhs_op1, relation_kind lhs_op2,
+ relation_kind op1_op2);
+ relation_kind lhs_op1 ();
+ relation_kind lhs_op2 ();
+ relation_kind op1_op2 ();
+ relation_trio swap_op1_op2 ();
+
+ static relation_trio lhs_op1 (relation_kind k);
+ static relation_trio lhs_op2 (relation_kind k);
+ static relation_trio op1_op2 (relation_kind k);
+
+protected:
+ unsigned m_val;
+};
+
+// Default VREL_VARYING for all 3 relations.
+#define TRIO_VARYING relation_trio ()
+
+#define TRIO_SHIFT 4
+#define TRIO_MASK 0x000F
+
+// These 3 classes are shortcuts for when a caller has a single relation to
+// pass as a trio, it can simply construct the appropriate one. The other
+// unspecified relations will be VREL_VARYING.
+
+inline relation_trio::relation_trio ()
+{
+ STATIC_ASSERT (VREL_LAST <= (1 << TRIO_SHIFT));
+ m_val = 0;
+}
+
+inline relation_trio::relation_trio (relation_kind lhs_op1,
+ relation_kind lhs_op2,
+ relation_kind op1_op2)
+{
+ STATIC_ASSERT (VREL_LAST <= (1 << TRIO_SHIFT));
+ unsigned i1 = (unsigned) lhs_op1;
+ unsigned i2 = ((unsigned) lhs_op2) << TRIO_SHIFT;
+ unsigned i3 = ((unsigned) op1_op2) << (TRIO_SHIFT * 2);
+ m_val = i1 | i2 | i3;
+}
+
+inline relation_trio
+relation_trio::lhs_op1 (relation_kind k)
+{
+ return relation_trio (k, VREL_VARYING, VREL_VARYING);
+}
+inline relation_trio
+relation_trio::lhs_op2 (relation_kind k)
+{
+ return relation_trio (VREL_VARYING, k, VREL_VARYING);
+}
+inline relation_trio
+relation_trio::op1_op2 (relation_kind k)
+{
+ return relation_trio (VREL_VARYING, VREL_VARYING, k);
+}
+
+inline relation_kind
+relation_trio::lhs_op1 ()
+{
+ return (relation_kind) (m_val & TRIO_MASK);
+}
+
+inline relation_kind
+relation_trio::lhs_op2 ()
+{
+ return (relation_kind) ((m_val >> TRIO_SHIFT) & TRIO_MASK);
+}
+
+inline relation_kind
+relation_trio::op1_op2 ()
+{
+ return (relation_kind) ((m_val >> (TRIO_SHIFT * 2)) & TRIO_MASK);
+}
+
+inline relation_trio
+relation_trio::swap_op1_op2 ()
+{
+ return relation_trio (lhs_op2 (), lhs_op1 (), relation_swap (op1_op2 ()));
+}
+
+// -----------------------------------------------------------------------
+
+// The value-relation class is used to encapsulate the representation of an
+// individual relation between 2 ssa-names, and to facilitate operating on
+// the relation.
+
+class value_relation
+{
+public:
+ value_relation ();
+ value_relation (relation_kind kind, tree n1, tree n2);
+ void set_relation (relation_kind kind, tree n1, tree n2);
+
+ inline relation_kind kind () const { return related; }
+ inline tree op1 () const { return name1; }
+ inline tree op2 () const { return name2; }
+
+ relation_trio create_trio (tree lhs, tree op1, tree op2);
+ bool union_ (value_relation &p);
+ bool intersect (value_relation &p);
+ void negate ();
+ bool apply_transitive (const value_relation &rel);
+
+ void dump (FILE *f) const;
+private:
+ relation_kind related;
+ tree name1, name2;
+};
+
+// Set relation R between ssa_name N1 and N2.
+
+inline void
+value_relation::set_relation (relation_kind r, tree n1, tree n2)
+{
+ gcc_checking_assert (TREE_CODE (n1) == SSA_NAME
+ && TREE_CODE (n2) == SSA_NAME);
+ related = r;
+ name1 = n1;
+ name2 = n2;
+}
+
+// Default constructor.
+
+inline
+value_relation::value_relation ()
+{
+ related = VREL_VARYING;
+ name1 = NULL_TREE;
+ name2 = NULL_TREE;
+}
+
+// Constructor for relation R between SSA version N1 and N2.
+
+inline
+value_relation::value_relation (relation_kind kind, tree n1, tree n2)
+{
+ set_relation (kind, n1, n2);
+}
+
+// Return the number of bits associated with partial equivalency T.
+// Return 0 if this is not a supported partial equivalency relation.
+
+inline int
+pe_to_bits (relation_kind t)
+{
+ switch (t)
+ {
+ case VREL_PE8:
+ return 8;
+ case VREL_PE16:
+ return 16;
+ case VREL_PE32:
+ return 32;
+ case VREL_PE64:
+ return 64;
+ default:
+ return 0;
+ }
+}
+
+// Return the partial equivalency code associated with the number of BITS.
+// return VREL_VARYING if there is no exact match.
+
+inline relation_kind
+bits_to_pe (int bits)
+{
+ switch (bits)
+ {
+ case 8:
+ return VREL_PE8;
+ case 16:
+ return VREL_PE16;
+ case 32:
+ return VREL_PE32;
+ case 64:
+ return VREL_PE64;
+ default:
+ return VREL_VARYING;
+ }
+}
+
+// Given partial equivalencies T1 and T2, return the smallest kind.
+
+inline relation_kind
+pe_min (relation_kind t1, relation_kind t2)
+{
+ gcc_checking_assert (relation_partial_equiv_p (t1));
+ gcc_checking_assert (relation_partial_equiv_p (t2));
+ // VREL_PE are declared small to large, so simple min will suffice.
+ return MIN (t1, t2);
+}
+#endif /* GCC_VALUE_RELATION_H */