summaryrefslogtreecommitdiff
path: root/lib/gcc/arm-none-eabi/13.2.1/plugin/include/bitmap.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/gcc/arm-none-eabi/13.2.1/plugin/include/bitmap.h')
-rw-r--r--lib/gcc/arm-none-eabi/13.2.1/plugin/include/bitmap.h1089
1 files changed, 1089 insertions, 0 deletions
diff --git a/lib/gcc/arm-none-eabi/13.2.1/plugin/include/bitmap.h b/lib/gcc/arm-none-eabi/13.2.1/plugin/include/bitmap.h
new file mode 100644
index 0000000..43337d2
--- /dev/null
+++ b/lib/gcc/arm-none-eabi/13.2.1/plugin/include/bitmap.h
@@ -0,0 +1,1089 @@
+/* Functions to support general ended bitmaps.
+ Copyright (C) 1997-2023 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#ifndef GCC_BITMAP_H
+#define GCC_BITMAP_H
+
+/* Implementation of sparse integer sets as a linked list or tree.
+
+ This sparse set representation is suitable for sparse sets with an
+ unknown (a priori) universe.
+
+ Sets are represented as double-linked lists of container nodes of
+ type "struct bitmap_element" or as a binary trees of the same
+ container nodes. Each container node consists of an index for the
+ first member that could be held in the container, a small array of
+ integers that represent the members in the container, and pointers
+ to the next and previous element in the linked list, or left and
+ right children in the tree. In linked-list form, the container
+ nodes in the list are sorted in ascending order, i.e. the head of
+ the list holds the element with the smallest member of the set.
+ In tree form, nodes to the left have a smaller container index.
+
+ For a given member I in the set:
+ - the element for I will have index is I / (bits per element)
+ - the position for I within element is I % (bits per element)
+
+ This representation is very space-efficient for large sparse sets, and
+ the size of the set can be changed dynamically without much overhead.
+ An important parameter is the number of bits per element. In this
+ implementation, there are 128 bits per element. This results in a
+ high storage overhead *per element*, but a small overall overhead if
+ the set is very sparse.
+
+ The storage requirements for linked-list sparse sets are O(E), with E->N
+ in the worst case (a sparse set with large distances between the values
+ of the set members).
+
+ This representation also works well for data flow problems where the size
+ of the set may grow dynamically, but care must be taken that the member_p,
+ add_member, and remove_member operations occur with a suitable access
+ pattern.
+
+ The linked-list set representation works well for problems involving very
+ sparse sets. The canonical example in GCC is, of course, the "set of
+ sets" for some CFG-based data flow problems (liveness analysis, dominance
+ frontiers, etc.).
+
+ For random-access sparse sets of unknown universe, the binary tree
+ representation is likely to be a more suitable choice. Theoretical
+ access times for the binary tree representation are better than those
+ for the linked-list, but in practice this is only true for truely
+ random access.
+
+ Often the most suitable representation during construction of the set
+ is not the best choice for the usage of the set. For such cases, the
+ "view" of the set can be changed from one representation to the other.
+ This is an O(E) operation:
+
+ * from list to tree view : bitmap_tree_view
+ * from tree to list view : bitmap_list_view
+
+ Traversing linked lists or trees can be cache-unfriendly. Performance
+ can be improved by keeping container nodes in the set grouped together
+ in memory, using a dedicated obstack for a set (or group of related
+ sets). Elements allocated on obstacks are released to a free-list and
+ taken off the free list. If multiple sets are allocated on the same
+ obstack, elements freed from one set may be re-used for one of the other
+ sets. This usually helps avoid cache misses.
+
+ A single free-list is used for all sets allocated in GGC space. This is
+ bad for persistent sets, so persistent sets should be allocated on an
+ obstack whenever possible.
+
+ For random-access sets with a known, relatively small universe size, the
+ SparseSet or simple bitmap representations may be more efficient than a
+ linked-list set.
+
+
+ LINKED LIST FORM
+ ================
+
+ In linked-list form, in-order iterations of the set can be executed
+ efficiently. The downside is that many random-access operations are
+ relatively slow, because the linked list has to be traversed to test
+ membership (i.e. member_p/ add_member/remove_member).
+
+ To improve the performance of this set representation, the last
+ accessed element and its index are cached. For membership tests on
+ members close to recently accessed members, the cached last element
+ improves membership test to a constant-time operation.
+
+ The following operations can always be performed in O(1) time in
+ list view:
+
+ * clear : bitmap_clear
+ * smallest_member : bitmap_first_set_bit
+ * choose_one : (not implemented, but could be
+ in constant time)
+
+ The following operations can be performed in O(E) time worst-case in
+ list view (with E the number of elements in the linked list), but in
+ O(1) time with a suitable access patterns:
+
+ * member_p : bitmap_bit_p
+ * add_member : bitmap_set_bit / bitmap_set_range
+ * remove_member : bitmap_clear_bit / bitmap_clear_range
+
+ The following operations can be performed in O(E) time in list view:
+
+ * cardinality : bitmap_count_bits
+ * largest_member : bitmap_last_set_bit (but this could
+ in constant time with a pointer to
+ the last element in the chain)
+ * set_size : bitmap_last_set_bit
+
+ In tree view the following operations can all be performed in O(log E)
+ amortized time with O(E) worst-case behavior.
+
+ * smallest_member
+ * largest_member
+ * set_size
+ * member_p
+ * add_member
+ * remove_member
+
+ Additionally, the linked-list sparse set representation supports
+ enumeration of the members in O(E) time:
+
+ * forall : EXECUTE_IF_SET_IN_BITMAP
+ * set_copy : bitmap_copy
+ * set_intersection : bitmap_intersect_p /
+ bitmap_and / bitmap_and_into /
+ EXECUTE_IF_AND_IN_BITMAP
+ * set_union : bitmap_ior / bitmap_ior_into
+ * set_difference : bitmap_intersect_compl_p /
+ bitmap_and_comp / bitmap_and_comp_into /
+ EXECUTE_IF_AND_COMPL_IN_BITMAP
+ * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
+ * set_compare : bitmap_equal_p
+
+ Some operations on 3 sets that occur frequently in data flow problems
+ are also implemented:
+
+ * A | (B & C) : bitmap_ior_and_into
+ * A | (B & ~C) : bitmap_ior_and_compl /
+ bitmap_ior_and_compl_into
+
+
+ BINARY TREE FORM
+ ================
+ An alternate "view" of a bitmap is its binary tree representation.
+ For this representation, splay trees are used because they can be
+ implemented using the same data structures as the linked list, with
+ no overhead for meta-data (like color, or rank) on the tree nodes.
+
+ In binary tree form, random-access to the set is much more efficient
+ than for the linked-list representation. Downsides are the high cost
+ of clearing the set, and the relatively large number of operations
+ necessary to balance the tree. Also, iterating the set members is
+ not supported.
+
+ As for the linked-list representation, the last accessed element and
+ its index are cached, so that membership tests on the latest accessed
+ members is a constant-time operation. Other lookups take O(logE)
+ time amortized (but O(E) time worst-case).
+
+ The following operations can always be performed in O(1) time:
+
+ * choose_one : (not implemented, but could be
+ implemented in constant time)
+
+ The following operations can be performed in O(logE) time amortized
+ but O(E) time worst-case, but in O(1) time if the same element is
+ accessed.
+
+ * member_p : bitmap_bit_p
+ * add_member : bitmap_set_bit
+ * remove_member : bitmap_clear_bit
+
+ The following operations can be performed in O(logE) time amortized
+ but O(E) time worst-case:
+
+ * smallest_member : bitmap_first_set_bit
+ * largest_member : bitmap_last_set_bit
+ * set_size : bitmap_last_set_bit
+
+ The following operations can be performed in O(E) time:
+
+ * clear : bitmap_clear
+
+ The binary tree sparse set representation does *not* support any form
+ of enumeration, and does also *not* support logical operations on sets.
+ The binary tree representation is only supposed to be used for sets
+ on which many random-access membership tests will happen. */
+
+#include "obstack.h"
+#include "array-traits.h"
+
+/* Bitmap memory usage. */
+class bitmap_usage: public mem_usage
+{
+public:
+ /* Default contructor. */
+ bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
+ /* Constructor. */
+ bitmap_usage (size_t allocated, size_t times, size_t peak,
+ uint64_t nsearches, uint64_t search_iter)
+ : mem_usage (allocated, times, peak),
+ m_nsearches (nsearches), m_search_iter (search_iter) {}
+
+ /* Sum the usage with SECOND usage. */
+ bitmap_usage
+ operator+ (const bitmap_usage &second)
+ {
+ return bitmap_usage (m_allocated + second.m_allocated,
+ m_times + second.m_times,
+ m_peak + second.m_peak,
+ m_nsearches + second.m_nsearches,
+ m_search_iter + second.m_search_iter);
+ }
+
+ /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */
+ inline void
+ dump (mem_location *loc, const mem_usage &total) const
+ {
+ char *location_string = loc->to_string ();
+
+ fprintf (stderr, "%-48s " PRsa (9) ":%5.1f%%"
+ PRsa (9) PRsa (9) ":%5.1f%%"
+ PRsa (11) PRsa (11) "%10s\n",
+ location_string, SIZE_AMOUNT (m_allocated),
+ get_percent (m_allocated, total.m_allocated),
+ SIZE_AMOUNT (m_peak), SIZE_AMOUNT (m_times),
+ get_percent (m_times, total.m_times),
+ SIZE_AMOUNT (m_nsearches), SIZE_AMOUNT (m_search_iter),
+ loc->m_ggc ? "ggc" : "heap");
+
+ free (location_string);
+ }
+
+ /* Dump header with NAME. */
+ static inline void
+ dump_header (const char *name)
+ {
+ fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak",
+ "Times", "N searches", "Search iter", "Type");
+ }
+
+ /* Number search operations. */
+ uint64_t m_nsearches;
+ /* Number of search iterations. */
+ uint64_t m_search_iter;
+};
+
+/* Bitmap memory description. */
+extern mem_alloc_description<bitmap_usage> bitmap_mem_desc;
+
+/* Fundamental storage type for bitmap. */
+
+typedef unsigned long BITMAP_WORD;
+/* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
+ it is used in preprocessor directives -- hence the 1u. */
+#define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
+
+/* Number of words to use for each element in the linked list. */
+
+#ifndef BITMAP_ELEMENT_WORDS
+#define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
+#endif
+
+/* Number of bits in each actual element of a bitmap. */
+
+#define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
+
+/* Obstack for allocating bitmaps and elements from. */
+struct bitmap_obstack {
+ struct bitmap_element *elements;
+ bitmap_head *heads;
+ struct obstack obstack;
+};
+
+/* Bitmap set element. We use a linked list to hold only the bits that
+ are set. This allows for use to grow the bitset dynamically without
+ having to realloc and copy a giant bit array.
+
+ The free list is implemented as a list of lists. There is one
+ outer list connected together by prev fields. Each element of that
+ outer is an inner list (that may consist only of the outer list
+ element) that are connected by the next fields. The prev pointer
+ is undefined for interior elements. This allows
+ bitmap_elt_clear_from to be implemented in unit time rather than
+ linear in the number of elements to be freed. */
+
+struct GTY((chain_next ("%h.next"))) bitmap_element {
+ /* In list form, the next element in the linked list;
+ in tree form, the left child node in the tree. */
+ struct bitmap_element *next;
+ /* In list form, the previous element in the linked list;
+ in tree form, the right child node in the tree. */
+ struct bitmap_element *prev;
+ /* regno/BITMAP_ELEMENT_ALL_BITS. */
+ unsigned int indx;
+ /* Bits that are set, counting from INDX, inclusive */
+ BITMAP_WORD bits[BITMAP_ELEMENT_WORDS];
+};
+
+/* Head of bitmap linked list. The 'current' member points to something
+ already pointed to by the chain started by first, so GTY((skip)) it. */
+
+class GTY(()) bitmap_head {
+public:
+ static bitmap_obstack crashme;
+ /* Poison obstack to not make it not a valid initialized GC bitmap. */
+ CONSTEXPR bitmap_head()
+ : indx (0), tree_form (false), padding (0), alloc_descriptor (0), first (NULL),
+ current (NULL), obstack (&crashme)
+ {}
+ /* Index of last element looked at. */
+ unsigned int indx;
+ /* False if the bitmap is in list form; true if the bitmap is in tree form.
+ Bitmap iterators only work on bitmaps in list form. */
+ unsigned tree_form: 1;
+ /* Next integer is shifted, so padding is needed. */
+ unsigned padding: 2;
+ /* Bitmap UID used for memory allocation statistics. */
+ unsigned alloc_descriptor: 29;
+ /* In list form, the first element in the linked list;
+ in tree form, the root of the tree. */
+ bitmap_element *first;
+ /* Last element looked at. */
+ bitmap_element * GTY((skip(""))) current;
+ /* Obstack to allocate elements from. If NULL, then use GGC allocation. */
+ bitmap_obstack * GTY((skip(""))) obstack;
+
+ /* Dump bitmap. */
+ void dump ();
+
+ /* Get bitmap descriptor UID casted to an unsigned integer pointer.
+ Shift the descriptor because pointer_hash<Type>::hash is
+ doing >> 3 shift operation. */
+ unsigned *get_descriptor ()
+ {
+ return (unsigned *)(ptrdiff_t)(alloc_descriptor << 3);
+ }
+};
+
+/* Global data */
+extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
+extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
+
+/* Change the view of the bitmap to list, or tree. */
+void bitmap_list_view (bitmap);
+void bitmap_tree_view (bitmap);
+
+/* Clear a bitmap by freeing up the linked list. */
+extern void bitmap_clear (bitmap);
+
+/* Copy a bitmap to another bitmap. */
+extern void bitmap_copy (bitmap, const_bitmap);
+
+/* Move a bitmap to another bitmap. */
+extern void bitmap_move (bitmap, bitmap);
+
+/* True if two bitmaps are identical. */
+extern bool bitmap_equal_p (const_bitmap, const_bitmap);
+
+/* True if the bitmaps intersect (their AND is non-empty). */
+extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
+
+/* True if the complement of the second intersects the first (their
+ AND_COMPL is non-empty). */
+extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
+
+/* True if MAP is an empty bitmap. */
+inline bool bitmap_empty_p (const_bitmap map)
+{
+ return !map->first;
+}
+
+/* True if the bitmap has only a single bit set. */
+extern bool bitmap_single_bit_set_p (const_bitmap);
+
+/* Count the number of bits set in the bitmap. */
+extern unsigned long bitmap_count_bits (const_bitmap);
+
+/* Count the number of unique bits set across the two bitmaps. */
+extern unsigned long bitmap_count_unique_bits (const_bitmap, const_bitmap);
+
+/* Boolean operations on bitmaps. The _into variants are two operand
+ versions that modify the first source operand. The other variants
+ are three operand versions that to not destroy the source bitmaps.
+ The operations supported are &, & ~, |, ^. */
+extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
+extern bool bitmap_and_into (bitmap, const_bitmap);
+extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
+extern bool bitmap_and_compl_into (bitmap, const_bitmap);
+#define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
+extern void bitmap_compl_and_into (bitmap, const_bitmap);
+extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
+extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
+extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
+extern bool bitmap_ior_into (bitmap, const_bitmap);
+extern bool bitmap_ior_into_and_free (bitmap, bitmap *);
+extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
+extern void bitmap_xor_into (bitmap, const_bitmap);
+
+/* DST = A | (B & C). Return true if DST changes. */
+extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
+/* DST = A | (B & ~C). Return true if DST changes. */
+extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
+ const_bitmap B, const_bitmap C);
+/* A |= (B & ~C). Return true if A changes. */
+extern bool bitmap_ior_and_compl_into (bitmap A,
+ const_bitmap B, const_bitmap C);
+
+/* Clear a single bit in a bitmap. Return true if the bit changed. */
+extern bool bitmap_clear_bit (bitmap, int);
+
+/* Set a single bit in a bitmap. Return true if the bit changed. */
+extern bool bitmap_set_bit (bitmap, int);
+
+/* Return true if a bit is set in a bitmap. */
+extern bool bitmap_bit_p (const_bitmap, int);
+
+/* Set and get multiple bit values in a sparse bitmap. This allows a bitmap to
+ function as a sparse array of bit patterns where the patterns are
+ multiples of power of 2. This is more efficient than performing this as
+ multiple individual operations. */
+void bitmap_set_aligned_chunk (bitmap, unsigned int, unsigned int, BITMAP_WORD);
+BITMAP_WORD bitmap_get_aligned_chunk (const_bitmap, unsigned int, unsigned int);
+
+/* Debug functions to print a bitmap. */
+extern void debug_bitmap (const_bitmap);
+extern void debug_bitmap_file (FILE *, const_bitmap);
+
+/* Print a bitmap. */
+extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
+
+/* Initialize and release a bitmap obstack. */
+extern void bitmap_obstack_initialize (bitmap_obstack *);
+extern void bitmap_obstack_release (bitmap_obstack *);
+extern void bitmap_register (bitmap MEM_STAT_DECL);
+extern void dump_bitmap_statistics (void);
+
+/* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
+ to allocate from, NULL for GC'd bitmap. */
+
+inline void
+bitmap_initialize (bitmap head, bitmap_obstack *obstack CXX_MEM_STAT_INFO)
+{
+ head->first = head->current = NULL;
+ head->indx = head->tree_form = 0;
+ head->padding = 0;
+ head->alloc_descriptor = 0;
+ head->obstack = obstack;
+ if (GATHER_STATISTICS)
+ bitmap_register (head PASS_MEM_STAT);
+}
+
+/* Release a bitmap (but not its head). This is suitable for pairing with
+ bitmap_initialize. */
+
+inline void
+bitmap_release (bitmap head)
+{
+ bitmap_clear (head);
+ /* Poison the obstack pointer so the obstack can be safely released.
+ Do not zero it as the bitmap then becomes initialized GC. */
+ head->obstack = &bitmap_head::crashme;
+}
+
+/* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
+extern bitmap bitmap_alloc (bitmap_obstack *obstack CXX_MEM_STAT_INFO);
+#define BITMAP_ALLOC bitmap_alloc
+extern bitmap bitmap_gc_alloc (ALONE_CXX_MEM_STAT_INFO);
+#define BITMAP_GGC_ALLOC bitmap_gc_alloc
+extern void bitmap_obstack_free (bitmap);
+
+/* A few compatibility/functions macros for compatibility with sbitmaps */
+inline void dump_bitmap (FILE *file, const_bitmap map)
+{
+ bitmap_print (file, map, "", "\n");
+}
+extern void debug (const bitmap_head &ref);
+extern void debug (const bitmap_head *ptr);
+
+extern unsigned bitmap_first_set_bit (const_bitmap);
+extern unsigned bitmap_last_set_bit (const_bitmap);
+
+/* Compute bitmap hash (for purposes of hashing etc.) */
+extern hashval_t bitmap_hash (const_bitmap);
+
+/* Do any cleanup needed on a bitmap when it is no longer used. */
+#define BITMAP_FREE(BITMAP) \
+ ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
+
+/* Iterator for bitmaps. */
+
+struct bitmap_iterator
+{
+ /* Pointer to the current bitmap element. */
+ bitmap_element *elt1;
+
+ /* Pointer to 2nd bitmap element when two are involved. */
+ bitmap_element *elt2;
+
+ /* Word within the current element. */
+ unsigned word_no;
+
+ /* Contents of the actually processed word. When finding next bit
+ it is shifted right, so that the actual bit is always the least
+ significant bit of ACTUAL. */
+ BITMAP_WORD bits;
+};
+
+/* Initialize a single bitmap iterator. START_BIT is the first bit to
+ iterate from. */
+
+inline void
+bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
+ unsigned start_bit, unsigned *bit_no)
+{
+ bi->elt1 = map->first;
+ bi->elt2 = NULL;
+
+ gcc_checking_assert (!map->tree_form);
+
+ /* Advance elt1 until it is not before the block containing start_bit. */
+ while (1)
+ {
+ if (!bi->elt1)
+ {
+ bi->elt1 = &bitmap_zero_bits;
+ break;
+ }
+
+ if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
+ break;
+ bi->elt1 = bi->elt1->next;
+ }
+
+ /* We might have gone past the start bit, so reinitialize it. */
+ if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
+ start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
+
+ /* Initialize for what is now start_bit. */
+ bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
+ bi->bits = bi->elt1->bits[bi->word_no];
+ bi->bits >>= start_bit % BITMAP_WORD_BITS;
+
+ /* If this word is zero, we must make sure we're not pointing at the
+ first bit, otherwise our incrementing to the next word boundary
+ will fail. It won't matter if this increment moves us into the
+ next word. */
+ start_bit += !bi->bits;
+
+ *bit_no = start_bit;
+}
+
+/* Initialize an iterator to iterate over the intersection of two
+ bitmaps. START_BIT is the bit to commence from. */
+
+inline void
+bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
+ unsigned start_bit, unsigned *bit_no)
+{
+ bi->elt1 = map1->first;
+ bi->elt2 = map2->first;
+
+ gcc_checking_assert (!map1->tree_form && !map2->tree_form);
+
+ /* Advance elt1 until it is not before the block containing
+ start_bit. */
+ while (1)
+ {
+ if (!bi->elt1)
+ {
+ bi->elt2 = NULL;
+ break;
+ }
+
+ if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
+ break;
+ bi->elt1 = bi->elt1->next;
+ }
+
+ /* Advance elt2 until it is not before elt1. */
+ while (1)
+ {
+ if (!bi->elt2)
+ {
+ bi->elt1 = bi->elt2 = &bitmap_zero_bits;
+ break;
+ }
+
+ if (bi->elt2->indx >= bi->elt1->indx)
+ break;
+ bi->elt2 = bi->elt2->next;
+ }
+
+ /* If we're at the same index, then we have some intersecting bits. */
+ if (bi->elt1->indx == bi->elt2->indx)
+ {
+ /* We might have advanced beyond the start_bit, so reinitialize
+ for that. */
+ if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
+ start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
+
+ bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
+ bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
+ bi->bits >>= start_bit % BITMAP_WORD_BITS;
+ }
+ else
+ {
+ /* Otherwise we must immediately advance elt1, so initialize for
+ that. */
+ bi->word_no = BITMAP_ELEMENT_WORDS - 1;
+ bi->bits = 0;
+ }
+
+ /* If this word is zero, we must make sure we're not pointing at the
+ first bit, otherwise our incrementing to the next word boundary
+ will fail. It won't matter if this increment moves us into the
+ next word. */
+ start_bit += !bi->bits;
+
+ *bit_no = start_bit;
+}
+
+/* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2. */
+
+inline void
+bmp_iter_and_compl_init (bitmap_iterator *bi,
+ const_bitmap map1, const_bitmap map2,
+ unsigned start_bit, unsigned *bit_no)
+{
+ bi->elt1 = map1->first;
+ bi->elt2 = map2->first;
+
+ gcc_checking_assert (!map1->tree_form && !map2->tree_form);
+
+ /* Advance elt1 until it is not before the block containing start_bit. */
+ while (1)
+ {
+ if (!bi->elt1)
+ {
+ bi->elt1 = &bitmap_zero_bits;
+ break;
+ }
+
+ if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
+ break;
+ bi->elt1 = bi->elt1->next;
+ }
+
+ /* Advance elt2 until it is not before elt1. */
+ while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
+ bi->elt2 = bi->elt2->next;
+
+ /* We might have advanced beyond the start_bit, so reinitialize for
+ that. */
+ if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
+ start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
+
+ bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
+ bi->bits = bi->elt1->bits[bi->word_no];
+ if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
+ bi->bits &= ~bi->elt2->bits[bi->word_no];
+ bi->bits >>= start_bit % BITMAP_WORD_BITS;
+
+ /* If this word is zero, we must make sure we're not pointing at the
+ first bit, otherwise our incrementing to the next word boundary
+ will fail. It won't matter if this increment moves us into the
+ next word. */
+ start_bit += !bi->bits;
+
+ *bit_no = start_bit;
+}
+
+/* Advance to the next bit in BI. We don't advance to the next
+ nonzero bit yet. */
+
+inline void
+bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
+{
+ bi->bits >>= 1;
+ *bit_no += 1;
+}
+
+/* Advance to first set bit in BI. */
+
+inline void
+bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
+{
+#if (GCC_VERSION >= 3004)
+ {
+ unsigned int n = __builtin_ctzl (bi->bits);
+ gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
+ bi->bits >>= n;
+ *bit_no += n;
+ }
+#else
+ while (!(bi->bits & 1))
+ {
+ bi->bits >>= 1;
+ *bit_no += 1;
+ }
+#endif
+}
+
+/* Advance to the next nonzero bit of a single bitmap, we will have
+ already advanced past the just iterated bit. Return true if there
+ is a bit to iterate. */
+
+inline bool
+bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
+{
+ /* If our current word is nonzero, it contains the bit we want. */
+ if (bi->bits)
+ {
+ next_bit:
+ bmp_iter_next_bit (bi, bit_no);
+ return true;
+ }
+
+ /* Round up to the word boundary. We might have just iterated past
+ the end of the last word, hence the -1. It is not possible for
+ bit_no to point at the beginning of the now last word. */
+ *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
+ / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
+ bi->word_no++;
+
+ while (1)
+ {
+ /* Find the next nonzero word in this elt. */
+ while (bi->word_no != BITMAP_ELEMENT_WORDS)
+ {
+ bi->bits = bi->elt1->bits[bi->word_no];
+ if (bi->bits)
+ goto next_bit;
+ *bit_no += BITMAP_WORD_BITS;
+ bi->word_no++;
+ }
+
+ /* Make sure we didn't remove the element while iterating. */
+ gcc_checking_assert (bi->elt1->indx != -1U);
+
+ /* Advance to the next element. */
+ bi->elt1 = bi->elt1->next;
+ if (!bi->elt1)
+ return false;
+ *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
+ bi->word_no = 0;
+ }
+}
+
+/* Advance to the next nonzero bit of an intersecting pair of
+ bitmaps. We will have already advanced past the just iterated bit.
+ Return true if there is a bit to iterate. */
+
+inline bool
+bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
+{
+ /* If our current word is nonzero, it contains the bit we want. */
+ if (bi->bits)
+ {
+ next_bit:
+ bmp_iter_next_bit (bi, bit_no);
+ return true;
+ }
+
+ /* Round up to the word boundary. We might have just iterated past
+ the end of the last word, hence the -1. It is not possible for
+ bit_no to point at the beginning of the now last word. */
+ *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
+ / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
+ bi->word_no++;
+
+ while (1)
+ {
+ /* Find the next nonzero word in this elt. */
+ while (bi->word_no != BITMAP_ELEMENT_WORDS)
+ {
+ bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
+ if (bi->bits)
+ goto next_bit;
+ *bit_no += BITMAP_WORD_BITS;
+ bi->word_no++;
+ }
+
+ /* Advance to the next identical element. */
+ do
+ {
+ /* Make sure we didn't remove the element while iterating. */
+ gcc_checking_assert (bi->elt1->indx != -1U);
+
+ /* Advance elt1 while it is less than elt2. We always want
+ to advance one elt. */
+ do
+ {
+ bi->elt1 = bi->elt1->next;
+ if (!bi->elt1)
+ return false;
+ }
+ while (bi->elt1->indx < bi->elt2->indx);
+
+ /* Make sure we didn't remove the element while iterating. */
+ gcc_checking_assert (bi->elt2->indx != -1U);
+
+ /* Advance elt2 to be no less than elt1. This might not
+ advance. */
+ while (bi->elt2->indx < bi->elt1->indx)
+ {
+ bi->elt2 = bi->elt2->next;
+ if (!bi->elt2)
+ return false;
+ }
+ }
+ while (bi->elt1->indx != bi->elt2->indx);
+
+ *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
+ bi->word_no = 0;
+ }
+}
+
+/* Advance to the next nonzero bit in the intersection of
+ complemented bitmaps. We will have already advanced past the just
+ iterated bit. */
+
+inline bool
+bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
+{
+ /* If our current word is nonzero, it contains the bit we want. */
+ if (bi->bits)
+ {
+ next_bit:
+ bmp_iter_next_bit (bi, bit_no);
+ return true;
+ }
+
+ /* Round up to the word boundary. We might have just iterated past
+ the end of the last word, hence the -1. It is not possible for
+ bit_no to point at the beginning of the now last word. */
+ *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
+ / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
+ bi->word_no++;
+
+ while (1)
+ {
+ /* Find the next nonzero word in this elt. */
+ while (bi->word_no != BITMAP_ELEMENT_WORDS)
+ {
+ bi->bits = bi->elt1->bits[bi->word_no];
+ if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
+ bi->bits &= ~bi->elt2->bits[bi->word_no];
+ if (bi->bits)
+ goto next_bit;
+ *bit_no += BITMAP_WORD_BITS;
+ bi->word_no++;
+ }
+
+ /* Make sure we didn't remove the element while iterating. */
+ gcc_checking_assert (bi->elt1->indx != -1U);
+
+ /* Advance to the next element of elt1. */
+ bi->elt1 = bi->elt1->next;
+ if (!bi->elt1)
+ return false;
+
+ /* Make sure we didn't remove the element while iterating. */
+ gcc_checking_assert (! bi->elt2 || bi->elt2->indx != -1U);
+
+ /* Advance elt2 until it is no less than elt1. */
+ while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
+ bi->elt2 = bi->elt2->next;
+
+ *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
+ bi->word_no = 0;
+ }
+}
+
+/* If you are modifying a bitmap you are currently iterating over you
+ have to ensure to
+ - never remove the current bit;
+ - if you set or clear a bit before the current bit this operation
+ will not affect the set of bits you are visiting during the iteration;
+ - if you set or clear a bit after the current bit it is unspecified
+ whether that affects the set of bits you are visiting during the
+ iteration.
+ If you want to remove the current bit you can delay this to the next
+ iteration (and after the iteration in case the last iteration is
+ affected). */
+
+/* Loop over all bits set in BITMAP, starting with MIN and setting
+ BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
+ should be treated as a read-only variable as it contains loop
+ state. */
+
+#ifndef EXECUTE_IF_SET_IN_BITMAP
+/* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */
+#define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
+ for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
+ bmp_iter_set (&(ITER), &(BITNUM)); \
+ bmp_iter_next (&(ITER), &(BITNUM)))
+#endif
+
+/* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
+ and setting BITNUM to the bit number. ITER is a bitmap iterator.
+ BITNUM should be treated as a read-only variable as it contains
+ loop state. */
+
+#define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
+ for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
+ &(BITNUM)); \
+ bmp_iter_and (&(ITER), &(BITNUM)); \
+ bmp_iter_next (&(ITER), &(BITNUM)))
+
+/* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
+ and setting BITNUM to the bit number. ITER is a bitmap iterator.
+ BITNUM should be treated as a read-only variable as it contains
+ loop state. */
+
+#define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
+ for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
+ &(BITNUM)); \
+ bmp_iter_and_compl (&(ITER), &(BITNUM)); \
+ bmp_iter_next (&(ITER), &(BITNUM)))
+
+/* A class that ties the lifetime of a bitmap to its scope. */
+class auto_bitmap
+{
+ public:
+ auto_bitmap (ALONE_CXX_MEM_STAT_INFO)
+ { bitmap_initialize (&m_bits, &bitmap_default_obstack PASS_MEM_STAT); }
+ explicit auto_bitmap (bitmap_obstack *o CXX_MEM_STAT_INFO)
+ { bitmap_initialize (&m_bits, o PASS_MEM_STAT); }
+ ~auto_bitmap () { bitmap_clear (&m_bits); }
+ // Allow calling bitmap functions on our bitmap.
+ operator bitmap () { return &m_bits; }
+
+ private:
+ // Prevent making a copy that references our bitmap.
+ auto_bitmap (const auto_bitmap &);
+ auto_bitmap &operator = (const auto_bitmap &);
+ auto_bitmap (auto_bitmap &&);
+ auto_bitmap &operator = (auto_bitmap &&);
+
+ bitmap_head m_bits;
+};
+
+extern void debug (const auto_bitmap &ref);
+extern void debug (const auto_bitmap *ptr);
+
+/* Base class for bitmap_view; see there for details. */
+template<typename T, typename Traits = array_traits<T> >
+class base_bitmap_view
+{
+public:
+ typedef typename Traits::element_type array_element_type;
+
+ base_bitmap_view (const T &, bitmap_element *);
+ operator const_bitmap () const { return &m_head; }
+
+private:
+ base_bitmap_view (const base_bitmap_view &);
+
+ bitmap_head m_head;
+};
+
+/* Provides a read-only bitmap view of a single integer bitmask or a
+ constant-sized array of integer bitmasks, or of a wrapper around such
+ bitmasks. */
+template<typename T, typename Traits>
+class bitmap_view<T, Traits, true> : public base_bitmap_view<T, Traits>
+{
+public:
+ bitmap_view (const T &array)
+ : base_bitmap_view<T, Traits> (array, m_bitmap_elements) {}
+
+private:
+ /* How many bitmap_elements we need to hold a full T. */
+ static const size_t num_bitmap_elements
+ = CEIL (CHAR_BIT
+ * sizeof (typename Traits::element_type)
+ * Traits::constant_size,
+ BITMAP_ELEMENT_ALL_BITS);
+ bitmap_element m_bitmap_elements[num_bitmap_elements];
+};
+
+/* Initialize the view for array ARRAY, using the array of bitmap
+ elements in BITMAP_ELEMENTS (which is known to contain enough
+ entries). */
+template<typename T, typename Traits>
+base_bitmap_view<T, Traits>::base_bitmap_view (const T &array,
+ bitmap_element *bitmap_elements)
+{
+ m_head.obstack = NULL;
+
+ /* The code currently assumes that each element of ARRAY corresponds
+ to exactly one bitmap_element. */
+ const size_t array_element_bits = CHAR_BIT * sizeof (array_element_type);
+ STATIC_ASSERT (BITMAP_ELEMENT_ALL_BITS % array_element_bits == 0);
+ size_t array_step = BITMAP_ELEMENT_ALL_BITS / array_element_bits;
+ size_t array_size = Traits::size (array);
+
+ /* Process each potential bitmap_element in turn. The loop is written
+ this way rather than per array element because usually there are
+ only a small number of array elements per bitmap element (typically
+ two or four). The inner loops should therefore unroll completely. */
+ const array_element_type *array_elements = Traits::base (array);
+ unsigned int indx = 0;
+ for (size_t array_base = 0;
+ array_base < array_size;
+ array_base += array_step, indx += 1)
+ {
+ /* How many array elements are in this particular bitmap_element. */
+ unsigned int array_count
+ = (STATIC_CONSTANT_P (array_size % array_step == 0)
+ ? array_step : MIN (array_step, array_size - array_base));
+
+ /* See whether we need this bitmap element. */
+ array_element_type ior = array_elements[array_base];
+ for (size_t i = 1; i < array_count; ++i)
+ ior |= array_elements[array_base + i];
+ if (ior == 0)
+ continue;
+
+ /* Grab the next bitmap element and chain it. */
+ bitmap_element *bitmap_element = bitmap_elements++;
+ if (m_head.current)
+ m_head.current->next = bitmap_element;
+ else
+ m_head.first = bitmap_element;
+ bitmap_element->prev = m_head.current;
+ bitmap_element->next = NULL;
+ bitmap_element->indx = indx;
+ m_head.current = bitmap_element;
+ m_head.indx = indx;
+
+ /* Fill in the bits of the bitmap element. */
+ if (array_element_bits < BITMAP_WORD_BITS)
+ {
+ /* Multiple array elements fit in one element of
+ bitmap_element->bits. */
+ size_t array_i = array_base;
+ for (unsigned int word_i = 0; word_i < BITMAP_ELEMENT_WORDS;
+ ++word_i)
+ {
+ BITMAP_WORD word = 0;
+ for (unsigned int shift = 0;
+ shift < BITMAP_WORD_BITS && array_i < array_size;
+ shift += array_element_bits)
+ word |= array_elements[array_i++] << shift;
+ bitmap_element->bits[word_i] = word;
+ }
+ }
+ else
+ {
+ /* Array elements are the same size as elements of
+ bitmap_element->bits, or are an exact multiple of that size. */
+ unsigned int word_i = 0;
+ for (unsigned int i = 0; i < array_count; ++i)
+ for (unsigned int shift = 0; shift < array_element_bits;
+ shift += BITMAP_WORD_BITS)
+ bitmap_element->bits[word_i++]
+ = array_elements[array_base + i] >> shift;
+ while (word_i < BITMAP_ELEMENT_WORDS)
+ bitmap_element->bits[word_i++] = 0;
+ }
+ }
+}
+
+#endif /* GCC_BITMAP_H */