diff options
author | alk3pInjection <webmaster@raspii.tech> | 2024-02-04 16:16:35 +0800 |
---|---|---|
committer | alk3pInjection <webmaster@raspii.tech> | 2024-02-04 16:16:35 +0800 |
commit | abdaadbcae30fe0c9a66c7516798279fdfd97750 (patch) | |
tree | 00a54a6e25601e43876d03c1a4a12a749d4a914c /share/doc/gdb/Bytecode-Descriptions.html |
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
Change-Id: I7303388733328cd98ab9aa3c30236db67f2e9e9c
Diffstat (limited to 'share/doc/gdb/Bytecode-Descriptions.html')
-rw-r--r-- | share/doc/gdb/Bytecode-Descriptions.html | 439 |
1 files changed, 439 insertions, 0 deletions
diff --git a/share/doc/gdb/Bytecode-Descriptions.html b/share/doc/gdb/Bytecode-Descriptions.html new file mode 100644 index 0000000..d09fdcb --- /dev/null +++ b/share/doc/gdb/Bytecode-Descriptions.html @@ -0,0 +1,439 @@ +<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> +<html> +<!-- Copyright (C) 1988-2023 Free Software Foundation, Inc. + +Permission is granted to copy, distribute and/or modify this document +under the terms of the GNU Free Documentation License, Version 1.3 or +any later version published by the Free Software Foundation; with the +Invariant Sections being "Free Software" and "Free Software Needs +Free Documentation", with the Front-Cover Texts being "A GNU Manual," +and with the Back-Cover Texts as in (a) below. + +(a) The FSF's Back-Cover Text is: "You are free to copy and modify +this GNU Manual. Buying copies from GNU Press supports the FSF in +developing GNU and promoting software freedom." --> +<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ --> +<head> +<title>Debugging with GDB: Bytecode Descriptions</title> + +<meta name="description" content="Debugging with GDB: Bytecode Descriptions"> +<meta name="keywords" content="Debugging with GDB: Bytecode Descriptions"> +<meta name="resource-type" content="document"> +<meta name="distribution" content="global"> +<meta name="Generator" content="makeinfo"> +<meta http-equiv="Content-Type" content="text/html; charset=utf-8"> +<link href="index.html#Top" rel="start" title="Top"> +<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> +<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> +<link href="Agent-Expressions.html#Agent-Expressions" rel="up" title="Agent Expressions"> +<link href="Using-Agent-Expressions.html#Using-Agent-Expressions" rel="next" title="Using Agent Expressions"> +<link href="General-Bytecode-Design.html#General-Bytecode-Design" rel="previous" title="General Bytecode Design"> +<style type="text/css"> +<!-- +a.summary-letter {text-decoration: none} +blockquote.smallquotation {font-size: smaller} +div.display {margin-left: 3.2em} +div.example {margin-left: 3.2em} +div.indentedblock {margin-left: 3.2em} +div.lisp {margin-left: 3.2em} +div.smalldisplay {margin-left: 3.2em} +div.smallexample {margin-left: 3.2em} +div.smallindentedblock {margin-left: 3.2em; font-size: smaller} +div.smalllisp {margin-left: 3.2em} +kbd {font-style:oblique} +pre.display {font-family: inherit} +pre.format {font-family: inherit} +pre.menu-comment {font-family: serif} +pre.menu-preformatted {font-family: serif} +pre.smalldisplay {font-family: inherit; font-size: smaller} +pre.smallexample {font-size: smaller} +pre.smallformat {font-family: inherit; font-size: smaller} +pre.smalllisp {font-size: smaller} +span.nocodebreak {white-space:nowrap} +span.nolinebreak {white-space:nowrap} +span.roman {font-family:serif; font-weight:normal} +span.sansserif {font-family:sans-serif; font-weight:normal} +ul.no-bullet {list-style: none} +--> +</style> + + +</head> + +<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000"> +<a name="Bytecode-Descriptions"></a> +<div class="header"> +<p> +Next: <a href="Using-Agent-Expressions.html#Using-Agent-Expressions" accesskey="n" rel="next">Using Agent Expressions</a>, Previous: <a href="General-Bytecode-Design.html#General-Bytecode-Design" accesskey="p" rel="previous">General Bytecode Design</a>, Up: <a href="Agent-Expressions.html#Agent-Expressions" accesskey="u" rel="up">Agent Expressions</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> +</div> +<hr> +<a name="Bytecode-Descriptions-1"></a> +<h3 class="section">F.2 Bytecode Descriptions</h3> + +<p>Each bytecode description has the following form: +</p> +<dl compact="compact"> +<dt><code>add</code> (0x02): <var>a</var> <var>b</var> ⇒ <var>a+b</var></dt> +<dd> +<p>Pop the top two stack items, <var>a</var> and <var>b</var>, as integers; push +their sum, as an integer. +</p> +</dd> +</dl> + +<p>In this example, <code>add</code> is the name of the bytecode, and +<code>(0x02)</code> is the one-byte value used to encode the bytecode, in +hexadecimal. The phrase “<var>a</var> <var>b</var> ⇒ <var>a+b</var>” shows +the stack before and after the bytecode executes. Beforehand, the stack +must contain at least two values, <var>a</var> and <var>b</var>; since the top of +the stack is to the right, <var>b</var> is on the top of the stack, and +<var>a</var> is underneath it. After execution, the bytecode will have +popped <var>a</var> and <var>b</var> from the stack, and replaced them with a +single value, <var>a+b</var>. There may be other values on the stack below +those shown, but the bytecode affects only those shown. +</p> +<p>Here is another example: +</p> +<dl compact="compact"> +<dt><code>const8</code> (0x22) <var>n</var>: ⇒ <var>n</var></dt> +<dd><p>Push the 8-bit integer constant <var>n</var> on the stack, without sign +extension. +</p> +</dd> +</dl> + +<p>In this example, the bytecode <code>const8</code> takes an operand <var>n</var> +directly from the bytecode stream; the operand follows the <code>const8</code> +bytecode itself. We write any such operands immediately after the name +of the bytecode, before the colon, and describe the exact encoding of +the operand in the bytecode stream in the body of the bytecode +description. +</p> +<p>For the <code>const8</code> bytecode, there are no stack items given before +the ⇒; this simply means that the bytecode consumes no values +from the stack. If a bytecode consumes no values, or produces no +values, the list on either side of the ⇒ may be empty. +</p> +<p>If a value is written as <var>a</var>, <var>b</var>, or <var>n</var>, then the bytecode +treats it as an integer. If a value is written is <var>addr</var>, then the +bytecode treats it as an address. +</p> +<p>We do not fully describe the floating point operations here; although +this design can be extended in a clean way to handle floating point +values, they are not of immediate interest to the customer, so we avoid +describing them, to save time. +</p> + +<dl compact="compact"> +<dt><code>float</code> (0x01): ⇒</dt> +<dd> +<p>Prefix for floating-point bytecodes. Not implemented yet. +</p> +</dd> +<dt><code>add</code> (0x02): <var>a</var> <var>b</var> ⇒ <var>a+b</var></dt> +<dd><p>Pop two integers from the stack, and push their sum, as an integer. +</p> +</dd> +<dt><code>sub</code> (0x03): <var>a</var> <var>b</var> ⇒ <var>a-b</var></dt> +<dd><p>Pop two integers from the stack, subtract the top value from the +next-to-top value, and push the difference. +</p> +</dd> +<dt><code>mul</code> (0x04): <var>a</var> <var>b</var> ⇒ <var>a*b</var></dt> +<dd><p>Pop two integers from the stack, multiply them, and push the product on +the stack. Note that, when one multiplies two <var>n</var>-bit numbers +yielding another <var>n</var>-bit number, it is irrelevant whether the +numbers are signed or not; the results are the same. +</p> +</dd> +<dt><code>div_signed</code> (0x05): <var>a</var> <var>b</var> ⇒ <var>a/b</var></dt> +<dd><p>Pop two signed integers from the stack; divide the next-to-top value by +the top value, and push the quotient. If the divisor is zero, terminate +with an error. +</p> +</dd> +<dt><code>div_unsigned</code> (0x06): <var>a</var> <var>b</var> ⇒ <var>a/b</var></dt> +<dd><p>Pop two unsigned integers from the stack; divide the next-to-top value +by the top value, and push the quotient. If the divisor is zero, +terminate with an error. +</p> +</dd> +<dt><code>rem_signed</code> (0x07): <var>a</var> <var>b</var> ⇒ <var>a modulo b</var></dt> +<dd><p>Pop two signed integers from the stack; divide the next-to-top value by +the top value, and push the remainder. If the divisor is zero, +terminate with an error. +</p> +</dd> +<dt><code>rem_unsigned</code> (0x08): <var>a</var> <var>b</var> ⇒ <var>a modulo b</var></dt> +<dd><p>Pop two unsigned integers from the stack; divide the next-to-top value +by the top value, and push the remainder. If the divisor is zero, +terminate with an error. +</p> +</dd> +<dt><code>lsh</code> (0x09): <var>a</var> <var>b</var> ⇒ <var>a<<b</var></dt> +<dd><p>Pop two integers from the stack; let <var>a</var> be the next-to-top value, +and <var>b</var> be the top value. Shift <var>a</var> left by <var>b</var> bits, and +push the result. +</p> +</dd> +<dt><code>rsh_signed</code> (0x0a): <var>a</var> <var>b</var> ⇒ <code>(signed)</code><var>a>>b</var></dt> +<dd><p>Pop two integers from the stack; let <var>a</var> be the next-to-top value, +and <var>b</var> be the top value. Shift <var>a</var> right by <var>b</var> bits, +inserting copies of the top bit at the high end, and push the result. +</p> +</dd> +<dt><code>rsh_unsigned</code> (0x0b): <var>a</var> <var>b</var> ⇒ <var>a>>b</var></dt> +<dd><p>Pop two integers from the stack; let <var>a</var> be the next-to-top value, +and <var>b</var> be the top value. Shift <var>a</var> right by <var>b</var> bits, +inserting zero bits at the high end, and push the result. +</p> +</dd> +<dt><code>log_not</code> (0x0e): <var>a</var> ⇒ <var>!a</var></dt> +<dd><p>Pop an integer from the stack; if it is zero, push the value one; +otherwise, push the value zero. +</p> +</dd> +<dt><code>bit_and</code> (0x0f): <var>a</var> <var>b</var> ⇒ <var>a&b</var></dt> +<dd><p>Pop two integers from the stack, and push their bitwise <code>and</code>. +</p> +</dd> +<dt><code>bit_or</code> (0x10): <var>a</var> <var>b</var> ⇒ <var>a|b</var></dt> +<dd><p>Pop two integers from the stack, and push their bitwise <code>or</code>. +</p> +</dd> +<dt><code>bit_xor</code> (0x11): <var>a</var> <var>b</var> ⇒ <var>a^b</var></dt> +<dd><p>Pop two integers from the stack, and push their bitwise +exclusive-<code>or</code>. +</p> +</dd> +<dt><code>bit_not</code> (0x12): <var>a</var> ⇒ <var>~a</var></dt> +<dd><p>Pop an integer from the stack, and push its bitwise complement. +</p> +</dd> +<dt><code>equal</code> (0x13): <var>a</var> <var>b</var> ⇒ <var>a=b</var></dt> +<dd><p>Pop two integers from the stack; if they are equal, push the value one; +otherwise, push the value zero. +</p> +</dd> +<dt><code>less_signed</code> (0x14): <var>a</var> <var>b</var> ⇒ <var>a<b</var></dt> +<dd><p>Pop two signed integers from the stack; if the next-to-top value is less +than the top value, push the value one; otherwise, push the value zero. +</p> +</dd> +<dt><code>less_unsigned</code> (0x15): <var>a</var> <var>b</var> ⇒ <var>a<b</var></dt> +<dd><p>Pop two unsigned integers from the stack; if the next-to-top value is less +than the top value, push the value one; otherwise, push the value zero. +</p> +</dd> +<dt><code>ext</code> (0x16) <var>n</var>: <var>a</var> ⇒ <var>a</var>, sign-extended from <var>n</var> bits</dt> +<dd><p>Pop an unsigned value from the stack; treating it as an <var>n</var>-bit +twos-complement value, extend it to full length. This means that all +bits to the left of bit <var>n-1</var> (where the least significant bit is bit +0) are set to the value of bit <var>n-1</var>. Note that <var>n</var> may be +larger than or equal to the width of the stack elements of the bytecode +engine; in this case, the bytecode should have no effect. +</p> +<p>The number of source bits to preserve, <var>n</var>, is encoded as a single +byte unsigned integer following the <code>ext</code> bytecode. +</p> +</dd> +<dt><code>zero_ext</code> (0x2a) <var>n</var>: <var>a</var> ⇒ <var>a</var>, zero-extended from <var>n</var> bits</dt> +<dd><p>Pop an unsigned value from the stack; zero all but the bottom <var>n</var> +bits. +</p> +<p>The number of source bits to preserve, <var>n</var>, is encoded as a single +byte unsigned integer following the <code>zero_ext</code> bytecode. +</p> +</dd> +<dt><code>ref8</code> (0x17): <var>addr</var> ⇒ <var>a</var></dt> +<dt><code>ref16</code> (0x18): <var>addr</var> ⇒ <var>a</var></dt> +<dt><code>ref32</code> (0x19): <var>addr</var> ⇒ <var>a</var></dt> +<dt><code>ref64</code> (0x1a): <var>addr</var> ⇒ <var>a</var></dt> +<dd><p>Pop an address <var>addr</var> from the stack. For bytecode +<code>ref</code><var>n</var>, fetch an <var>n</var>-bit value from <var>addr</var>, using the +natural target endianness. Push the fetched value as an unsigned +integer. +</p> +<p>Note that <var>addr</var> may not be aligned in any particular way; the +<code>ref<var>n</var></code> bytecodes should operate correctly for any address. +</p> +<p>If attempting to access memory at <var>addr</var> would cause a processor +exception of some sort, terminate with an error. +</p> +</dd> +<dt><code>ref_float</code> (0x1b): <var>addr</var> ⇒ <var>d</var></dt> +<dt><code>ref_double</code> (0x1c): <var>addr</var> ⇒ <var>d</var></dt> +<dt><code>ref_long_double</code> (0x1d): <var>addr</var> ⇒ <var>d</var></dt> +<dt><code>l_to_d</code> (0x1e): <var>a</var> ⇒ <var>d</var></dt> +<dt><code>d_to_l</code> (0x1f): <var>d</var> ⇒ <var>a</var></dt> +<dd><p>Not implemented yet. +</p> +</dd> +<dt><code>dup</code> (0x28): <var>a</var> => <var>a</var> <var>a</var></dt> +<dd><p>Push another copy of the stack’s top element. +</p> +</dd> +<dt><code>swap</code> (0x2b): <var>a</var> <var>b</var> => <var>b</var> <var>a</var></dt> +<dd><p>Exchange the top two items on the stack. +</p> +</dd> +<dt><code>pop</code> (0x29): <var>a</var> =></dt> +<dd><p>Discard the top value on the stack. +</p> +</dd> +<dt><code>pick</code> (0x32) <var>n</var>: <var>a</var> … <var>b</var> => <var>a</var> … <var>b</var> <var>a</var></dt> +<dd><p>Duplicate an item from the stack and push it on the top of the stack. +<var>n</var>, a single byte, indicates the stack item to copy. If <var>n</var> +is zero, this is the same as <code>dup</code>; if <var>n</var> is one, it copies +the item under the top item, etc. If <var>n</var> exceeds the number of +items on the stack, terminate with an error. +</p> +</dd> +<dt><code>rot</code> (0x33): <var>a</var> <var>b</var> <var>c</var> => <var>c</var> <var>a</var> <var>b</var></dt> +<dd><p>Rotate the top three items on the stack. The top item (c) becomes the third +item, the next-to-top item (b) becomes the top item and the third item (a) from +the top becomes the next-to-top item. +</p> +</dd> +<dt><code>if_goto</code> (0x20) <var>offset</var>: <var>a</var> ⇒</dt> +<dd><p>Pop an integer off the stack; if it is non-zero, branch to the given +offset in the bytecode string. Otherwise, continue to the next +instruction in the bytecode stream. In other words, if <var>a</var> is +non-zero, set the <code>pc</code> register to <code>start</code> + <var>offset</var>. +Thus, an offset of zero denotes the beginning of the expression. +</p> +<p>The <var>offset</var> is stored as a sixteen-bit unsigned value, stored +immediately following the <code>if_goto</code> bytecode. It is always stored +most significant byte first, regardless of the target’s normal +endianness. The offset is not guaranteed to fall at any particular +alignment within the bytecode stream; thus, on machines where fetching a +16-bit on an unaligned address raises an exception, you should fetch the +offset one byte at a time. +</p> +</dd> +<dt><code>goto</code> (0x21) <var>offset</var>: ⇒</dt> +<dd><p>Branch unconditionally to <var>offset</var>; in other words, set the +<code>pc</code> register to <code>start</code> + <var>offset</var>. +</p> +<p>The offset is stored in the same way as for the <code>if_goto</code> bytecode. +</p> +</dd> +<dt><code>const8</code> (0x22) <var>n</var>: ⇒ <var>n</var></dt> +<dt><code>const16</code> (0x23) <var>n</var>: ⇒ <var>n</var></dt> +<dt><code>const32</code> (0x24) <var>n</var>: ⇒ <var>n</var></dt> +<dt><code>const64</code> (0x25) <var>n</var>: ⇒ <var>n</var></dt> +<dd><p>Push the integer constant <var>n</var> on the stack, without sign extension. +To produce a small negative value, push a small twos-complement value, +and then sign-extend it using the <code>ext</code> bytecode. +</p> +<p>The constant <var>n</var> is stored in the appropriate number of bytes +following the <code>const</code><var>b</var> bytecode. The constant <var>n</var> is +always stored most significant byte first, regardless of the target’s +normal endianness. The constant is not guaranteed to fall at any +particular alignment within the bytecode stream; thus, on machines where +fetching a 16-bit on an unaligned address raises an exception, you +should fetch <var>n</var> one byte at a time. +</p> +</dd> +<dt><code>reg</code> (0x26) <var>n</var>: ⇒ <var>a</var></dt> +<dd><p>Push the value of register number <var>n</var>, without sign extension. The +registers are numbered following GDB’s conventions. +</p> +<p>The register number <var>n</var> is encoded as a 16-bit unsigned integer +immediately following the <code>reg</code> bytecode. It is always stored most +significant byte first, regardless of the target’s normal endianness. +The register number is not guaranteed to fall at any particular +alignment within the bytecode stream; thus, on machines where fetching a +16-bit on an unaligned address raises an exception, you should fetch the +register number one byte at a time. +</p> +</dd> +<dt><code>getv</code> (0x2c) <var>n</var>: ⇒ <var>v</var></dt> +<dd><p>Push the value of trace state variable number <var>n</var>, without sign +extension. +</p> +<p>The variable number <var>n</var> is encoded as a 16-bit unsigned integer +immediately following the <code>getv</code> bytecode. It is always stored most +significant byte first, regardless of the target’s normal endianness. +The variable number is not guaranteed to fall at any particular +alignment within the bytecode stream; thus, on machines where fetching a +16-bit on an unaligned address raises an exception, you should fetch the +register number one byte at a time. +</p> +</dd> +<dt><code>setv</code> (0x2d) <var>n</var>: <var>v</var> ⇒ <var>v</var></dt> +<dd><p>Set trace state variable number <var>n</var> to the value found on the top +of the stack. The stack is unchanged, so that the value is readily +available if the assignment is part of a larger expression. The +handling of <var>n</var> is as described for <code>getv</code>. +</p> +</dd> +<dt><code>trace</code> (0x0c): <var>addr</var> <var>size</var> ⇒</dt> +<dd><p>Record the contents of the <var>size</var> bytes at <var>addr</var> in a trace +buffer, for later retrieval by GDB. +</p> +</dd> +<dt><code>trace_quick</code> (0x0d) <var>size</var>: <var>addr</var> ⇒ <var>addr</var></dt> +<dd><p>Record the contents of the <var>size</var> bytes at <var>addr</var> in a trace +buffer, for later retrieval by GDB. <var>size</var> is a single byte +unsigned integer following the <code>trace</code> opcode. +</p> +<p>This bytecode is equivalent to the sequence <code>dup const8 <var>size</var> +trace</code>, but we provide it anyway to save space in bytecode strings. +</p> +</dd> +<dt><code>trace16</code> (0x30) <var>size</var>: <var>addr</var> ⇒ <var>addr</var></dt> +<dd><p>Identical to trace_quick, except that <var>size</var> is a 16-bit big-endian +unsigned integer, not a single byte. This should probably have been +named <code>trace_quick16</code>, for consistency. +</p> +</dd> +<dt><code>tracev</code> (0x2e) <var>n</var>: ⇒ <var>a</var></dt> +<dd><p>Record the value of trace state variable number <var>n</var> in the trace +buffer. The handling of <var>n</var> is as described for <code>getv</code>. +</p> +</dd> +<dt><code>tracenz</code> (0x2f) <var>addr</var> <var>size</var> ⇒</dt> +<dd><p>Record the bytes at <var>addr</var> in a trace buffer, for later retrieval +by GDB. Stop at either the first zero byte, or when <var>size</var> bytes +have been recorded, whichever occurs first. +</p> +</dd> +<dt><code>printf</code> (0x34) <var>numargs</var> <var>string</var> ⇒</dt> +<dd><p>Do a formatted print, in the style of the C function <code>printf</code>). +The value of <var>numargs</var> is the number of arguments to expect on the +stack, while <var>string</var> is the format string, prefixed with a +two-byte length. The last byte of the string must be zero, and is +included in the length. The format string includes escaped sequences +just as it appears in C source, so for instance the format string +<code>"\t%d\n"</code> is six characters long, and the output will consist of +a tab character, a decimal number, and a newline. At the top of the +stack, above the values to be printed, this bytecode will pop a +“function” and “channel”. If the function is nonzero, then the +target may treat it as a function and call it, passing the channel as +a first argument, as with the C function <code>fprintf</code>. If the +function is zero, then the target may simply call a standard formatted +print function of its choice. In all, this bytecode pops 2 + +<var>numargs</var> stack elements, and pushes nothing. +</p> +</dd> +<dt><code>end</code> (0x27): ⇒</dt> +<dd><p>Stop executing bytecode; the result should be the top element of the +stack. If the purpose of the expression was to compute an lvalue or a +range of memory, then the next-to-top of the stack is the lvalue’s +address, and the top of the stack is the lvalue’s size, in bytes. +</p> +</dd> +</dl> + + +<hr> +<div class="header"> +<p> +Next: <a href="Using-Agent-Expressions.html#Using-Agent-Expressions" accesskey="n" rel="next">Using Agent Expressions</a>, Previous: <a href="General-Bytecode-Design.html#General-Bytecode-Design" accesskey="p" rel="previous">General Bytecode Design</a>, Up: <a href="Agent-Expressions.html#Agent-Expressions" accesskey="u" rel="up">Agent Expressions</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> +</div> + + + +</body> +</html> |