diff options
author | alk3pInjection <webmaster@raspii.tech> | 2024-02-04 16:16:35 +0800 |
---|---|---|
committer | alk3pInjection <webmaster@raspii.tech> | 2024-02-04 16:16:35 +0800 |
commit | abdaadbcae30fe0c9a66c7516798279fdfd97750 (patch) | |
tree | 00a54a6e25601e43876d03c1a4a12a749d4a914c /share/doc/gccint/SSA-Operands.html |
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
Change-Id: I7303388733328cd98ab9aa3c30236db67f2e9e9c
Diffstat (limited to 'share/doc/gccint/SSA-Operands.html')
-rw-r--r-- | share/doc/gccint/SSA-Operands.html | 471 |
1 files changed, 471 insertions, 0 deletions
diff --git a/share/doc/gccint/SSA-Operands.html b/share/doc/gccint/SSA-Operands.html new file mode 100644 index 0000000..0c8d374 --- /dev/null +++ b/share/doc/gccint/SSA-Operands.html @@ -0,0 +1,471 @@ +<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> +<html> +<!-- Copyright (C) 1988-2023 Free Software Foundation, Inc. + +Permission is granted to copy, distribute and/or modify this document +under the terms of the GNU Free Documentation License, Version 1.3 or +any later version published by the Free Software Foundation; with the +Invariant Sections being "Funding Free Software", the Front-Cover +Texts being (a) (see below), and with the Back-Cover Texts being (b) +(see below). A copy of the license is included in the section entitled +"GNU Free Documentation License". + +(a) The FSF's Front-Cover Text is: + +A GNU Manual + +(b) The FSF's Back-Cover Text is: + +You have freedom to copy and modify this GNU Manual, like GNU + software. Copies published by the Free Software Foundation raise + funds for GNU development. --> +<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ --> +<head> +<title>GNU Compiler Collection (GCC) Internals: SSA Operands</title> + +<meta name="description" content="GNU Compiler Collection (GCC) Internals: SSA Operands"> +<meta name="keywords" content="GNU Compiler Collection (GCC) Internals: SSA Operands"> +<meta name="resource-type" content="document"> +<meta name="distribution" content="global"> +<meta name="Generator" content="makeinfo"> +<meta http-equiv="Content-Type" content="text/html; charset=utf-8"> +<link href="index.html#Top" rel="start" title="Top"> +<link href="Option-Index.html#Option-Index" rel="index" title="Option Index"> +<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> +<link href="Tree-SSA.html#Tree-SSA" rel="up" title="Tree SSA"> +<link href="SSA.html#SSA" rel="next" title="SSA"> +<link href="Annotations.html#Annotations" rel="previous" title="Annotations"> +<style type="text/css"> +<!-- +a.summary-letter {text-decoration: none} +blockquote.smallquotation {font-size: smaller} +div.display {margin-left: 3.2em} +div.example {margin-left: 3.2em} +div.indentedblock {margin-left: 3.2em} +div.lisp {margin-left: 3.2em} +div.smalldisplay {margin-left: 3.2em} +div.smallexample {margin-left: 3.2em} +div.smallindentedblock {margin-left: 3.2em; font-size: smaller} +div.smalllisp {margin-left: 3.2em} +kbd {font-style:oblique} +pre.display {font-family: inherit} +pre.format {font-family: inherit} +pre.menu-comment {font-family: serif} +pre.menu-preformatted {font-family: serif} +pre.smalldisplay {font-family: inherit; font-size: smaller} +pre.smallexample {font-size: smaller} +pre.smallformat {font-family: inherit; font-size: smaller} +pre.smalllisp {font-size: smaller} +span.nocodebreak {white-space:nowrap} +span.nolinebreak {white-space:nowrap} +span.roman {font-family:serif; font-weight:normal} +span.sansserif {font-family:sans-serif; font-weight:normal} +ul.no-bullet {list-style: none} +--> +</style> + + +</head> + +<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000"> +<a name="SSA-Operands"></a> +<div class="header"> +<p> +Next: <a href="SSA.html#SSA" accesskey="n" rel="next">SSA</a>, Previous: <a href="Annotations.html#Annotations" accesskey="p" rel="previous">Annotations</a>, Up: <a href="Tree-SSA.html#Tree-SSA" accesskey="u" rel="up">Tree SSA</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p> +</div> +<hr> +<a name="SSA-Operands-1"></a> +<h3 class="section">13.2 SSA Operands</h3> +<a name="index-operands"></a> +<a name="index-virtual-operands"></a> +<a name="index-real-operands"></a> +<a name="index-update_005fstmt-1"></a> + +<p>Almost every GIMPLE statement will contain a reference to a variable +or memory location. Since statements come in different shapes and +sizes, their operands are going to be located at various spots inside +the statement’s tree. To facilitate access to the statement’s +operands, they are organized into lists associated inside each +statement’s annotation. Each element in an operand list is a pointer +to a <code>VAR_DECL</code>, <code>PARM_DECL</code> or <code>SSA_NAME</code> tree node. +This provides a very convenient way of examining and replacing +operands. +</p> +<p>Data flow analysis and optimization is done on all tree nodes +representing variables. Any node for which <code>SSA_VAR_P</code> returns +nonzero is considered when scanning statement operands. However, not +all <code>SSA_VAR_P</code> variables are processed in the same way. For the +purposes of optimization, we need to distinguish between references to +local scalar variables and references to globals, statics, structures, +arrays, aliased variables, etc. The reason is simple, the compiler +can gather complete data flow information for a local scalar. On the +other hand, a global variable may be modified by a function call, it +may not be possible to keep track of all the elements of an array or +the fields of a structure, etc. +</p> +<p>The operand scanner gathers two kinds of operands: <em>real</em> and +<em>virtual</em>. An operand for which <code>is_gimple_reg</code> returns true +is considered real, otherwise it is a virtual operand. We also +distinguish between uses and definitions. An operand is used if its +value is loaded by the statement (e.g., the operand at the RHS of an +assignment). If the statement assigns a new value to the operand, the +operand is considered a definition (e.g., the operand at the LHS of +an assignment). +</p> +<p>Virtual and real operands also have very different data flow +properties. Real operands are unambiguous references to the +full object that they represent. For instance, given +</p> +<div class="smallexample"> +<pre class="smallexample">{ + int a, b; + a = b +} +</pre></div> + +<p>Since <code>a</code> and <code>b</code> are non-aliased locals, the statement +<code>a = b</code> will have one real definition and one real use because +variable <code>a</code> is completely modified with the contents of +variable <code>b</code>. Real definition are also known as <em>killing +definitions</em>. Similarly, the use of <code>b</code> reads all its bits. +</p> +<p>In contrast, virtual operands are used with variables that can have +a partial or ambiguous reference. This includes structures, arrays, +globals, and aliased variables. In these cases, we have two types of +definitions. For globals, structures, and arrays, we can determine from +a statement whether a variable of these types has a killing definition. +If the variable does, then the statement is marked as having a +<em>must definition</em> of that variable. However, if a statement is only +defining a part of the variable (i.e. a field in a structure), or if we +know that a statement might define the variable but we cannot say for sure, +then we mark that statement as having a <em>may definition</em>. For +instance, given +</p> +<div class="smallexample"> +<pre class="smallexample">{ + int a, b, *p; + + if (…) + p = &a; + else + p = &b; + *p = 5; + return *p; +} +</pre></div> + +<p>The assignment <code>*p = 5</code> may be a definition of <code>a</code> or +<code>b</code>. If we cannot determine statically where <code>p</code> is +pointing to at the time of the store operation, we create virtual +definitions to mark that statement as a potential definition site for +<code>a</code> and <code>b</code>. Memory loads are similarly marked with virtual +use operands. Virtual operands are shown in tree dumps right before +the statement that contains them. To request a tree dump with virtual +operands, use the <samp>-vops</samp> option to <samp>-fdump-tree</samp>: +</p> +<div class="smallexample"> +<pre class="smallexample">{ + int a, b, *p; + + if (…) + p = &a; + else + p = &b; + # a = VDEF <a> + # b = VDEF <b> + *p = 5; + + # VUSE <a> + # VUSE <b> + return *p; +} +</pre></div> + +<p>Notice that <code>VDEF</code> operands have two copies of the referenced +variable. This indicates that this is not a killing definition of +that variable. In this case we refer to it as a <em>may definition</em> +or <em>aliased store</em>. The presence of the second copy of the +variable in the <code>VDEF</code> operand will become important when the +function is converted into SSA form. This will be used to link all +the non-killing definitions to prevent optimizations from making +incorrect assumptions about them. +</p> +<p>Operands are updated as soon as the statement is finished via a call +to <code>update_stmt</code>. If statement elements are changed via +<code>SET_USE</code> or <code>SET_DEF</code>, then no further action is required +(i.e., those macros take care of updating the statement). If changes +are made by manipulating the statement’s tree directly, then a call +must be made to <code>update_stmt</code> when complete. Calling one of the +<code>bsi_insert</code> routines or <code>bsi_replace</code> performs an implicit +call to <code>update_stmt</code>. +</p> +<a name="Operand-Iterators-And-Access-Routines"></a> +<h4 class="subsection">13.2.1 Operand Iterators And Access Routines</h4> +<a name="index-Operand-Iterators"></a> +<a name="index-Operand-Access-Routines"></a> + +<p>Operands are collected by <samp>tree-ssa-operands.cc</samp>. They are stored +inside each statement’s annotation and can be accessed through either the +operand iterators or an access routine. +</p> +<p>The following access routines are available for examining operands: +</p> +<ol> +<li> <code>SINGLE_SSA_{USE,DEF,TREE}_OPERAND</code>: These accessors will return +NULL unless there is exactly one operand matching the specified flags. If +there is exactly one operand, the operand is returned as either a <code>tree</code>, +<code>def_operand_p</code>, or <code>use_operand_p</code>. + +<div class="smallexample"> +<pre class="smallexample">tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags); +use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES); +def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS); +</pre></div> + +</li><li> <code>ZERO_SSA_OPERANDS</code>: This macro returns true if there are no +operands matching the specified flags. + +<div class="smallexample"> +<pre class="smallexample">if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)) + return; +</pre></div> + +</li><li> <code>NUM_SSA_OPERANDS</code>: This macro Returns the number of operands +matching ’flags’. This actually executes a loop to perform the count, so +only use this if it is really needed. + +<div class="smallexample"> +<pre class="smallexample">int count = NUM_SSA_OPERANDS (stmt, flags) +</pre></div> +</li></ol> + + +<p>If you wish to iterate over some or all operands, use the +<code>FOR_EACH_SSA_{USE,DEF,TREE}_OPERAND</code> iterator. For example, to print +all the operands for a statement: +</p> +<div class="smallexample"> +<pre class="smallexample">void +print_ops (tree stmt) +{ + ssa_op_iter; + tree var; + + FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_OPERANDS) + print_generic_expr (stderr, var, TDF_SLIM); +} +</pre></div> + + +<p>How to choose the appropriate iterator: +</p> +<ol> +<li> Determine whether you are need to see the operand pointers, or just the +trees, and choose the appropriate macro: + +<div class="smallexample"> +<pre class="smallexample">Need Macro: +---- ------- +use_operand_p FOR_EACH_SSA_USE_OPERAND +def_operand_p FOR_EACH_SSA_DEF_OPERAND +tree FOR_EACH_SSA_TREE_OPERAND +</pre></div> + +</li><li> You need to declare a variable of the type you are interested +in, and an ssa_op_iter structure which serves as the loop controlling +variable. + +</li><li> Determine which operands you wish to use, and specify the flags of +those you are interested in. They are documented in +<samp>tree-ssa-operands.h</samp>: + +<div class="smallexample"> +<pre class="smallexample">#define SSA_OP_USE 0x01 /* <span class="roman">Real USE operands.</span> */ +#define SSA_OP_DEF 0x02 /* <span class="roman">Real DEF operands.</span> */ +#define SSA_OP_VUSE 0x04 /* <span class="roman">VUSE operands.</span> */ +#define SSA_OP_VDEF 0x08 /* <span class="roman">VDEF operands.</span> */ + +/* <span class="roman">These are commonly grouped operand flags.</span> */ +#define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE) +#define SSA_OP_VIRTUAL_DEFS (SSA_OP_VDEF) +#define SSA_OP_ALL_VIRTUALS (SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_DEFS) +#define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE) +#define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF) +#define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS) +</pre></div> +</li></ol> + +<p>So if you want to look at the use pointers for all the <code>USE</code> and +<code>VUSE</code> operands, you would do something like: +</p> +<div class="smallexample"> +<pre class="smallexample"> use_operand_p use_p; + ssa_op_iter iter; + + FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, (SSA_OP_USE | SSA_OP_VUSE)) + { + process_use_ptr (use_p); + } +</pre></div> + +<p>The <code>TREE</code> macro is basically the same as the <code>USE</code> and +<code>DEF</code> macros, only with the use or def dereferenced via +<code>USE_FROM_PTR (use_p)</code> and <code>DEF_FROM_PTR (def_p)</code>. Since we +aren’t using operand pointers, use and defs flags can be mixed. +</p> +<div class="smallexample"> +<pre class="smallexample"> tree var; + ssa_op_iter iter; + + FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_VUSE) + { + print_generic_expr (stderr, var, TDF_SLIM); + } +</pre></div> + +<p><code>VDEF</code>s are broken into two flags, one for the +<code>DEF</code> portion (<code>SSA_OP_VDEF</code>) and one for the USE portion +(<code>SSA_OP_VUSE</code>). +</p> +<p>There are many examples in the code, in addition to the documentation +in <samp>tree-ssa-operands.h</samp> and <samp>ssa-iterators.h</samp>. +</p> +<p>There are also a couple of variants on the stmt iterators regarding PHI +nodes. +</p> +<p><code>FOR_EACH_PHI_ARG</code> Works exactly like +<code>FOR_EACH_SSA_USE_OPERAND</code>, except it works over <code>PHI</code> arguments +instead of statement operands. +</p> +<div class="smallexample"> +<pre class="smallexample">/* Look at every virtual PHI use. */ +FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES) +{ + my_code; +} + +/* Look at every real PHI use. */ +FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_USES) + my_code; + +/* Look at every PHI use. */ +FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES) + my_code; +</pre></div> + +<p><code>FOR_EACH_PHI_OR_STMT_{USE,DEF}</code> works exactly like +<code>FOR_EACH_SSA_{USE,DEF}_OPERAND</code>, except it will function on +either a statement or a <code>PHI</code> node. These should be used when it is +appropriate but they are not quite as efficient as the individual +<code>FOR_EACH_PHI</code> and <code>FOR_EACH_SSA</code> routines. +</p> +<div class="smallexample"> +<pre class="smallexample">FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags) + { + my_code; + } + +FOR_EACH_PHI_OR_STMT_DEF (def_operand_p, phi, iter, flags) + { + my_code; + } +</pre></div> + +<a name="Immediate-Uses"></a> +<h4 class="subsection">13.2.2 Immediate Uses</h4> +<a name="index-Immediate-Uses"></a> + +<p>Immediate use information is now always available. Using the immediate use +iterators, you may examine every use of any <code>SSA_NAME</code>. For instance, +to change each use of <code>ssa_var</code> to <code>ssa_var2</code> and call fold_stmt on +each stmt after that is done: +</p> +<div class="smallexample"> +<pre class="smallexample"> use_operand_p imm_use_p; + imm_use_iterator iterator; + tree ssa_var, stmt; + + + FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var) + { + FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator) + SET_USE (imm_use_p, ssa_var_2); + fold_stmt (stmt); + } +</pre></div> + +<p>There are 2 iterators which can be used. <code>FOR_EACH_IMM_USE_FAST</code> is +used when the immediate uses are not changed, i.e., you are looking at the +uses, but not setting them. +</p> +<p>If they do get changed, then care must be taken that things are not changed +under the iterators, so use the <code>FOR_EACH_IMM_USE_STMT</code> and +<code>FOR_EACH_IMM_USE_ON_STMT</code> iterators. They attempt to preserve the +sanity of the use list by moving all the uses for a statement into +a controlled position, and then iterating over those uses. Then the +optimization can manipulate the stmt when all the uses have been +processed. This is a little slower than the FAST version since it adds a +placeholder element and must sort through the list a bit for each statement. +This placeholder element must be also be removed if the loop is +terminated early; a destructor takes care of that when leaving the +<code>FOR_EACH_IMM_USE_STMT</code> scope. +</p> +<p>There are checks in <code>verify_ssa</code> which verify that the immediate use list +is up to date, as well as checking that an optimization didn’t break from the +loop without using this macro. It is safe to simply ’break’; from a +<code>FOR_EACH_IMM_USE_FAST</code> traverse. +</p> +<p>Some useful functions and macros: +</p><ol> +<li> <code>has_zero_uses (ssa_var)</code> : Returns true if there are no uses of +<code>ssa_var</code>. +</li><li> <code>has_single_use (ssa_var)</code> : Returns true if there is only a +single use of <code>ssa_var</code>. +</li><li> <code>single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt)</code> : +Returns true if there is only a single use of <code>ssa_var</code>, and also returns +the use pointer and statement it occurs in, in the second and third parameters. +</li><li> <code>num_imm_uses (ssa_var)</code> : Returns the number of immediate uses of +<code>ssa_var</code>. It is better not to use this if possible since it simply +utilizes a loop to count the uses. +</li><li> <code>PHI_ARG_INDEX_FROM_USE (use_p)</code> : Given a use within a <code>PHI</code> +node, return the index number for the use. An assert is triggered if the use +isn’t located in a <code>PHI</code> node. +</li><li> <code>USE_STMT (use_p)</code> : Return the statement a use occurs in. +</li></ol> + +<p>Note that uses are not put into an immediate use list until their statement is +actually inserted into the instruction stream via a <code>bsi_*</code> routine. +</p> +<p>It is also still possible to utilize lazy updating of statements, but this +should be used only when absolutely required. Both alias analysis and the +dominator optimizations currently do this. +</p> +<p>When lazy updating is being used, the immediate use information is out of date +and cannot be used reliably. Lazy updating is achieved by simply marking +statements modified via calls to <code>gimple_set_modified</code> instead of +<code>update_stmt</code>. When lazy updating is no longer required, all the +modified statements must have <code>update_stmt</code> called in order to bring them +up to date. This must be done before the optimization is finished, or +<code>verify_ssa</code> will trigger an abort. +</p> +<p>This is done with a simple loop over the instruction stream: +</p><div class="smallexample"> +<pre class="smallexample"> block_stmt_iterator bsi; + basic_block bb; + FOR_EACH_BB (bb) + { + for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi)) + update_stmt_if_modified (bsi_stmt (bsi)); + } +</pre></div> + +<hr> +<div class="header"> +<p> +Next: <a href="SSA.html#SSA" accesskey="n" rel="next">SSA</a>, Previous: <a href="Annotations.html#Annotations" accesskey="p" rel="previous">Annotations</a>, Up: <a href="Tree-SSA.html#Tree-SSA" accesskey="u" rel="up">Tree SSA</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p> +</div> + + + +</body> +</html> |