diff options
author | alk3pInjection <webmaster@raspii.tech> | 2024-02-04 16:16:35 +0800 |
---|---|---|
committer | alk3pInjection <webmaster@raspii.tech> | 2024-02-04 16:16:35 +0800 |
commit | abdaadbcae30fe0c9a66c7516798279fdfd97750 (patch) | |
tree | 00a54a6e25601e43876d03c1a4a12a749d4a914c /lib/gcc/arm-none-eabi/13.2.1/plugin/include/hash-table.h |
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
Change-Id: I7303388733328cd98ab9aa3c30236db67f2e9e9c
Diffstat (limited to 'lib/gcc/arm-none-eabi/13.2.1/plugin/include/hash-table.h')
-rw-r--r-- | lib/gcc/arm-none-eabi/13.2.1/plugin/include/hash-table.h | 1321 |
1 files changed, 1321 insertions, 0 deletions
diff --git a/lib/gcc/arm-none-eabi/13.2.1/plugin/include/hash-table.h b/lib/gcc/arm-none-eabi/13.2.1/plugin/include/hash-table.h new file mode 100644 index 0000000..c0c6e1c --- /dev/null +++ b/lib/gcc/arm-none-eabi/13.2.1/plugin/include/hash-table.h @@ -0,0 +1,1321 @@ +/* A type-safe hash table template. + Copyright (C) 2012-2023 Free Software Foundation, Inc. + Contributed by Lawrence Crowl <crowl@google.com> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + + +/* This file implements a typed hash table. + The implementation borrows from libiberty's htab_t in hashtab.h. + + + INTRODUCTION TO TYPES + + Users of the hash table generally need to be aware of three types. + + 1. The type being placed into the hash table. This type is called + the value type. + + 2. The type used to describe how to handle the value type within + the hash table. This descriptor type provides the hash table with + several things. + + - A typedef named 'value_type' to the value type (from above). + Provided a suitable Descriptor class it may be a user-defined, + non-POD type. + + - A static member function named 'hash' that takes a value_type + (or 'const value_type &') and returns a hashval_t value. + + - A typedef named 'compare_type' that is used to test when a value + is found. This type is the comparison type. Usually, it will be + the same as value_type and may be a user-defined, non-POD type. + If it is not the same type, you must generally explicitly compute + hash values and pass them to the hash table. + + - A static member function named 'equal' that takes a value_type + and a compare_type, and returns a bool. Both arguments can be + const references. + + - A static function named 'remove' that takes an value_type pointer + and frees the memory allocated by it. This function is used when + individual elements of the table need to be disposed of (e.g., + when deleting a hash table, removing elements from the table, etc). + + - An optional static function named 'keep_cache_entry'. This + function is provided only for garbage-collected elements that + are not marked by the normal gc mark pass. It describes what + what should happen to the element at the end of the gc mark phase. + The return value should be: + - 0 if the element should be deleted + - 1 if the element should be kept and needs to be marked + - -1 if the element should be kept and is already marked. + Returning -1 rather than 1 is purely an optimization. + + 3. The type of the hash table itself. (More later.) + + In very special circumstances, users may need to know about a fourth type. + + 4. The template type used to describe how hash table memory + is allocated. This type is called the allocator type. It is + parameterized on the value type. It provides two functions: + + - A static member function named 'data_alloc'. This function + allocates the data elements in the table. + + - A static member function named 'data_free'. This function + deallocates the data elements in the table. + + Hash table are instantiated with two type arguments. + + * The descriptor type, (2) above. + + * The allocator type, (4) above. In general, you will not need to + provide your own allocator type. By default, hash tables will use + the class template xcallocator, which uses malloc/free for allocation. + + + DEFINING A DESCRIPTOR TYPE + + The first task in using the hash table is to describe the element type. + We compose this into a few steps. + + 1. Decide on a removal policy for values stored in the table. + hash-traits.h provides class templates for the four most common + policies: + + * typed_free_remove implements the static 'remove' member function + by calling free(). + + * typed_noop_remove implements the static 'remove' member function + by doing nothing. + + * ggc_remove implements the static 'remove' member by doing nothing, + but instead provides routines for gc marking and for PCH streaming. + Use this for garbage-collected data that needs to be preserved across + collections. + + * ggc_cache_remove is like ggc_remove, except that it does not + mark the entries during the normal gc mark phase. Instead it + uses 'keep_cache_entry' (described above) to keep elements that + were not collected and delete those that were. Use this for + garbage-collected caches that should not in themselves stop + the data from being collected. + + You can use these policies by simply deriving the descriptor type + from one of those class template, with the appropriate argument. + + Otherwise, you need to write the static 'remove' member function + in the descriptor class. + + 2. Choose a hash function. Write the static 'hash' member function. + + 3. Decide whether the lookup function should take as input an object + of type value_type or something more restricted. Define compare_type + accordingly. + + 4. Choose an equality testing function 'equal' that compares a value_type + and a compare_type. + + If your elements are pointers, it is usually easiest to start with one + of the generic pointer descriptors described below and override the bits + you need to change. + + AN EXAMPLE DESCRIPTOR TYPE + + Suppose you want to put some_type into the hash table. You could define + the descriptor type as follows. + + struct some_type_hasher : nofree_ptr_hash <some_type> + // Deriving from nofree_ptr_hash means that we get a 'remove' that does + // nothing. This choice is good for raw values. + { + static inline hashval_t hash (const value_type *); + static inline bool equal (const value_type *, const compare_type *); + }; + + inline hashval_t + some_type_hasher::hash (const value_type *e) + { ... compute and return a hash value for E ... } + + inline bool + some_type_hasher::equal (const value_type *p1, const compare_type *p2) + { ... compare P1 vs P2. Return true if they are the 'same' ... } + + + AN EXAMPLE HASH_TABLE DECLARATION + + To instantiate a hash table for some_type: + + hash_table <some_type_hasher> some_type_hash_table; + + There is no need to mention some_type directly, as the hash table will + obtain it using some_type_hasher::value_type. + + You can then use any of the functions in hash_table's public interface. + See hash_table for details. The interface is very similar to libiberty's + htab_t. + + If a hash table is used only in some rare cases, it is possible + to construct the hash_table lazily before first use. This is done + through: + + hash_table <some_type_hasher, true> some_type_hash_table; + + which will cause whatever methods actually need the allocated entries + array to allocate it later. + + + EASY DESCRIPTORS FOR POINTERS + + There are four descriptors for pointer elements, one for each of + the removal policies above: + + * nofree_ptr_hash (based on typed_noop_remove) + * free_ptr_hash (based on typed_free_remove) + * ggc_ptr_hash (based on ggc_remove) + * ggc_cache_ptr_hash (based on ggc_cache_remove) + + These descriptors hash and compare elements by their pointer value, + rather than what they point to. So, to instantiate a hash table over + pointers to whatever_type, without freeing the whatever_types, use: + + hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table; + + + HASH TABLE ITERATORS + + The hash table provides standard C++ iterators. For example, consider a + hash table of some_info. We wish to consume each element of the table: + + extern void consume (some_info *); + + We define a convenience typedef and the hash table: + + typedef hash_table <some_info_hasher> info_table_type; + info_table_type info_table; + + Then we write the loop in typical C++ style: + + for (info_table_type::iterator iter = info_table.begin (); + iter != info_table.end (); + ++iter) + if ((*iter).status == INFO_READY) + consume (&*iter); + + Or with common sub-expression elimination: + + for (info_table_type::iterator iter = info_table.begin (); + iter != info_table.end (); + ++iter) + { + some_info &elem = *iter; + if (elem.status == INFO_READY) + consume (&elem); + } + + One can also use a more typical GCC style: + + typedef some_info *some_info_p; + some_info *elem_ptr; + info_table_type::iterator iter; + FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter) + if (elem_ptr->status == INFO_READY) + consume (elem_ptr); + +*/ + + +#ifndef TYPED_HASHTAB_H +#define TYPED_HASHTAB_H + +#include "statistics.h" +#include "ggc.h" +#include "vec.h" +#include "hashtab.h" +#include "inchash.h" +#include "mem-stats-traits.h" +#include "hash-traits.h" +#include "hash-map-traits.h" + +template<typename, typename, typename> class hash_map; +template<typename, bool, typename> class hash_set; + +/* The ordinary memory allocator. */ +/* FIXME (crowl): This allocator may be extracted for wider sharing later. */ + +template <typename Type> +struct xcallocator +{ + static Type *data_alloc (size_t count); + static void data_free (Type *memory); +}; + + +/* Allocate memory for COUNT data blocks. */ + +template <typename Type> +inline Type * +xcallocator <Type>::data_alloc (size_t count) +{ + return static_cast <Type *> (xcalloc (count, sizeof (Type))); +} + + +/* Free memory for data blocks. */ + +template <typename Type> +inline void +xcallocator <Type>::data_free (Type *memory) +{ + return ::free (memory); +} + + +/* Table of primes and their inversion information. */ + +struct prime_ent +{ + hashval_t prime; + hashval_t inv; + hashval_t inv_m2; /* inverse of prime-2 */ + hashval_t shift; +}; + +extern struct prime_ent const prime_tab[]; + +/* Limit number of comparisons when calling hash_table<>::verify. */ +extern unsigned int hash_table_sanitize_eq_limit; + +/* Functions for computing hash table indexes. */ + +extern unsigned int hash_table_higher_prime_index (unsigned long n) + ATTRIBUTE_PURE; + +extern ATTRIBUTE_NORETURN ATTRIBUTE_COLD void hashtab_chk_error (); + +/* Return X % Y using multiplicative inverse values INV and SHIFT. + + The multiplicative inverses computed above are for 32-bit types, + and requires that we be able to compute a highpart multiply. + + FIX: I am not at all convinced that + 3 loads, 2 multiplications, 3 shifts, and 3 additions + will be faster than + 1 load and 1 modulus + on modern systems running a compiler. */ + +inline hashval_t +mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift) +{ + hashval_t t1, t2, t3, t4, q, r; + + t1 = ((uint64_t)x * inv) >> 32; + t2 = x - t1; + t3 = t2 >> 1; + t4 = t1 + t3; + q = t4 >> shift; + r = x - (q * y); + + return r; +} + +/* Compute the primary table index for HASH given current prime index. */ + +inline hashval_t +hash_table_mod1 (hashval_t hash, unsigned int index) +{ + const struct prime_ent *p = &prime_tab[index]; + gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32); + return mul_mod (hash, p->prime, p->inv, p->shift); +} + +/* Compute the secondary table index for HASH given current prime index. */ + +inline hashval_t +hash_table_mod2 (hashval_t hash, unsigned int index) +{ + const struct prime_ent *p = &prime_tab[index]; + gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32); + return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift); +} + +class mem_usage; + +/* User-facing hash table type. + + The table stores elements of type Descriptor::value_type and uses + the static descriptor functions described at the top of the file + to hash, compare and remove elements. + + Specify the template Allocator to allocate and free memory. + The default is xcallocator. + + Storage is an implementation detail and should not be used outside the + hash table code. + +*/ +template <typename Descriptor, bool Lazy = false, + template<typename Type> class Allocator = xcallocator> +class hash_table +{ + typedef typename Descriptor::value_type value_type; + typedef typename Descriptor::compare_type compare_type; + +public: + explicit hash_table (size_t, bool ggc = false, + bool sanitize_eq_and_hash = true, + bool gather_mem_stats = GATHER_STATISTICS, + mem_alloc_origin origin = HASH_TABLE_ORIGIN + CXX_MEM_STAT_INFO); + explicit hash_table (const hash_table &, bool ggc = false, + bool sanitize_eq_and_hash = true, + bool gather_mem_stats = GATHER_STATISTICS, + mem_alloc_origin origin = HASH_TABLE_ORIGIN + CXX_MEM_STAT_INFO); + ~hash_table (); + + /* Create a hash_table in gc memory. */ + static hash_table * + create_ggc (size_t n, bool sanitize_eq_and_hash = true CXX_MEM_STAT_INFO) + { + hash_table *table = ggc_alloc<hash_table> (); + new (table) hash_table (n, true, sanitize_eq_and_hash, GATHER_STATISTICS, + HASH_TABLE_ORIGIN PASS_MEM_STAT); + return table; + } + + /* Current size (in entries) of the hash table. */ + size_t size () const { return m_size; } + + /* Return the current number of elements in this hash table. */ + size_t elements () const { return m_n_elements - m_n_deleted; } + + /* Return the current number of elements in this hash table. */ + size_t elements_with_deleted () const { return m_n_elements; } + + /* This function clears all entries in this hash table. */ + void empty () { if (elements ()) empty_slow (); } + + /* Return true when there are no elements in this hash table. */ + bool is_empty () const { return elements () == 0; } + + /* This function clears a specified SLOT in a hash table. It is + useful when you've already done the lookup and don't want to do it + again. */ + void clear_slot (value_type *); + + /* This function searches for a hash table entry equal to the given + COMPARABLE element starting with the given HASH value. It cannot + be used to insert or delete an element. */ + value_type &find_with_hash (const compare_type &, hashval_t); + + /* Like find_slot_with_hash, but compute the hash value from the element. */ + value_type &find (const value_type &value) + { + return find_with_hash (value, Descriptor::hash (value)); + } + + value_type *find_slot (const value_type &value, insert_option insert) + { + return find_slot_with_hash (value, Descriptor::hash (value), insert); + } + + /* This function searches for a hash table slot containing an entry + equal to the given COMPARABLE element and starting with the given + HASH. To delete an entry, call this with insert=NO_INSERT, then + call clear_slot on the slot returned (possibly after doing some + checks). To insert an entry, call this with insert=INSERT, then + write the value you want into the returned slot. When inserting an + entry, NULL may be returned if memory allocation fails. */ + value_type *find_slot_with_hash (const compare_type &comparable, + hashval_t hash, enum insert_option insert); + + /* This function deletes an element with the given COMPARABLE value + from hash table starting with the given HASH. If there is no + matching element in the hash table, this function does nothing. */ + void remove_elt_with_hash (const compare_type &, hashval_t); + + /* Like remove_elt_with_hash, but compute the hash value from the + element. */ + void remove_elt (const value_type &value) + { + remove_elt_with_hash (value, Descriptor::hash (value)); + } + + /* This function scans over the entire hash table calling CALLBACK for + each live entry. If CALLBACK returns false, the iteration stops. + ARGUMENT is passed as CALLBACK's second argument. */ + template <typename Argument, + int (*Callback) (value_type *slot, Argument argument)> + void traverse_noresize (Argument argument); + + /* Like traverse_noresize, but does resize the table when it is too empty + to improve effectivity of subsequent calls. */ + template <typename Argument, + int (*Callback) (value_type *slot, Argument argument)> + void traverse (Argument argument); + + class iterator + { + public: + iterator () : m_slot (NULL), m_limit (NULL) {} + + iterator (value_type *slot, value_type *limit) : + m_slot (slot), m_limit (limit) {} + + inline value_type &operator * () { return *m_slot; } + void slide (); + inline iterator &operator ++ (); + bool operator != (const iterator &other) const + { + return m_slot != other.m_slot || m_limit != other.m_limit; + } + + private: + value_type *m_slot; + value_type *m_limit; + }; + + iterator begin () const + { + if (Lazy && m_entries == NULL) + return iterator (); + check_complete_insertion (); + iterator iter (m_entries, m_entries + m_size); + iter.slide (); + return iter; + } + + iterator end () const { return iterator (); } + + double collisions () const + { + return m_searches ? static_cast <double> (m_collisions) / m_searches : 0; + } + +private: + /* FIXME: Make the class assignable. See pr90959. */ + void operator= (hash_table&); + + template<typename T> friend void gt_ggc_mx (hash_table<T> *); + template<typename T> friend void gt_pch_nx (hash_table<T> *); + template<typename T> friend void + hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *); + template<typename T, typename U, typename V> friend void + gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *); + template<typename T, typename U> + friend void gt_pch_nx (hash_set<T, false, U> *, gt_pointer_operator, void *); + template<typename T> friend void gt_pch_nx (hash_table<T> *, + gt_pointer_operator, void *); + + template<typename T> friend void gt_cleare_cache (hash_table<T> *); + + void empty_slow (); + + value_type *alloc_entries (size_t n CXX_MEM_STAT_INFO) const; + value_type *find_empty_slot_for_expand (hashval_t); + void verify (const compare_type &comparable, hashval_t hash); + bool too_empty_p (unsigned int); + void expand (); + static bool is_deleted (value_type &v) + { + /* Traits are supposed to avoid recognizing elements as both empty + and deleted, but to fail safe in case custom traits fail to do + that, make sure we never test for is_deleted without having + first ruled out is_empty. */ + gcc_checking_assert (!Descriptor::is_empty (v)); + return Descriptor::is_deleted (v); + } + + static bool is_empty (value_type &v) + { + return Descriptor::is_empty (v); + } + + static void mark_deleted (value_type &v) + { + Descriptor::mark_deleted (v); + /* Traits are supposed to refuse to set elements as deleted if + those would be indistinguishable from empty, but to fail safe + in case custom traits fail to do that, check that the + just-deleted element does not look empty. */ + gcc_checking_assert (!Descriptor::is_empty (v)); + } + + static void mark_empty (value_type &v) + { + Descriptor::mark_empty (v); + } + +public: + void check_complete_insertion () const + { +#if CHECKING_P + if (!m_inserting_slot) + return; + + gcc_checking_assert (m_inserting_slot >= &m_entries[0] + && m_inserting_slot < &m_entries[m_size]); + + if (!is_empty (*m_inserting_slot)) + m_inserting_slot = NULL; + else + gcc_unreachable (); +#endif + } + +private: + value_type *check_insert_slot (value_type *ret) + { +#if CHECKING_P + gcc_checking_assert (is_empty (*ret)); + m_inserting_slot = ret; +#endif + return ret; + } + +#if CHECKING_P + mutable value_type *m_inserting_slot; +#endif + + /* Table itself. */ + value_type *m_entries; + + size_t m_size; + + /* Current number of elements including also deleted elements. */ + size_t m_n_elements; + + /* Current number of deleted elements in the table. */ + size_t m_n_deleted; + + /* The following member is used for debugging. Its value is number + of all calls of `htab_find_slot' for the hash table. */ + unsigned int m_searches; + + /* The following member is used for debugging. Its value is number + of collisions fixed for time of work with the hash table. */ + unsigned int m_collisions; + + /* Current size (in entries) of the hash table, as an index into the + table of primes. */ + unsigned int m_size_prime_index; + + /* if m_entries is stored in ggc memory. */ + bool m_ggc; + + /* True if the table should be sanitized for equal and hash functions. */ + bool m_sanitize_eq_and_hash; + + /* If we should gather memory statistics for the table. */ +#if GATHER_STATISTICS + bool m_gather_mem_stats; +#else + static const bool m_gather_mem_stats = false; +#endif +}; + +/* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include + mem-stats.h after hash_table declaration. */ + +#include "mem-stats.h" +#include "hash-map.h" + +extern mem_alloc_description<mem_usage>& hash_table_usage (void); + +/* Support function for statistics. */ +extern void dump_hash_table_loc_statistics (void); + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +hash_table<Descriptor, Lazy, Allocator>::hash_table (size_t size, bool ggc, + bool sanitize_eq_and_hash, + bool gather_mem_stats + ATTRIBUTE_UNUSED, + mem_alloc_origin origin + MEM_STAT_DECL) : +#if CHECKING_P + m_inserting_slot (0), +#endif + m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0), + m_ggc (ggc), m_sanitize_eq_and_hash (sanitize_eq_and_hash) +#if GATHER_STATISTICS + , m_gather_mem_stats (gather_mem_stats) +#endif +{ + unsigned int size_prime_index; + + size_prime_index = hash_table_higher_prime_index (size); + size = prime_tab[size_prime_index].prime; + + if (m_gather_mem_stats) + hash_table_usage ().register_descriptor (this, origin, ggc + FINAL_PASS_MEM_STAT); + + if (Lazy) + m_entries = NULL; + else + m_entries = alloc_entries (size PASS_MEM_STAT); + m_size = size; + m_size_prime_index = size_prime_index; +} + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +hash_table<Descriptor, Lazy, Allocator>::hash_table (const hash_table &h, + bool ggc, + bool sanitize_eq_and_hash, + bool gather_mem_stats + ATTRIBUTE_UNUSED, + mem_alloc_origin origin + MEM_STAT_DECL) : +#if CHECKING_P + m_inserting_slot (0), +#endif + m_n_elements (h.m_n_elements), m_n_deleted (h.m_n_deleted), + m_searches (0), m_collisions (0), m_ggc (ggc), + m_sanitize_eq_and_hash (sanitize_eq_and_hash) +#if GATHER_STATISTICS + , m_gather_mem_stats (gather_mem_stats) +#endif +{ + h.check_complete_insertion (); + + size_t size = h.m_size; + + if (m_gather_mem_stats) + hash_table_usage ().register_descriptor (this, origin, ggc + FINAL_PASS_MEM_STAT); + + if (Lazy && h.m_entries == NULL) + m_entries = NULL; + else + { + value_type *nentries = alloc_entries (size PASS_MEM_STAT); + for (size_t i = 0; i < size; ++i) + { + value_type &entry = h.m_entries[i]; + if (is_empty (entry)) + continue; + else if (is_deleted (entry)) + mark_deleted (nentries[i]); + else + new ((void*) (nentries + i)) value_type (entry); + } + m_entries = nentries; + } + m_size = size; + m_size_prime_index = h.m_size_prime_index; +} + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +hash_table<Descriptor, Lazy, Allocator>::~hash_table () +{ + check_complete_insertion (); + + if (!Lazy || m_entries) + { + for (size_t i = m_size - 1; i < m_size; i--) + if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i])) + Descriptor::remove (m_entries[i]); + + if (!m_ggc) + Allocator <value_type> ::data_free (m_entries); + else + ggc_free (m_entries); + if (m_gather_mem_stats) + hash_table_usage ().release_instance_overhead (this, + sizeof (value_type) + * m_size, true); + } + else if (m_gather_mem_stats) + hash_table_usage ().unregister_descriptor (this); +} + +/* This function returns an array of empty hash table elements. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +inline typename hash_table<Descriptor, Lazy, Allocator>::value_type * +hash_table<Descriptor, Lazy, + Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const +{ + value_type *nentries; + + if (m_gather_mem_stats) + hash_table_usage ().register_instance_overhead (sizeof (value_type) * n, this); + + if (!m_ggc) + nentries = Allocator <value_type> ::data_alloc (n); + else + nentries = ::ggc_cleared_vec_alloc<value_type> (n PASS_MEM_STAT); + + gcc_assert (nentries != NULL); + if (!Descriptor::empty_zero_p) + for (size_t i = 0; i < n; i++) + mark_empty (nentries[i]); + + return nentries; +} + +/* Similar to find_slot, but without several unwanted side effects: + - Does not call equal when it finds an existing entry. + - Does not change the count of elements/searches/collisions in the + hash table. + This function also assumes there are no deleted entries in the table. + HASH is the hash value for the element to be inserted. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +typename hash_table<Descriptor, Lazy, Allocator>::value_type * +hash_table<Descriptor, Lazy, + Allocator>::find_empty_slot_for_expand (hashval_t hash) +{ + hashval_t index = hash_table_mod1 (hash, m_size_prime_index); + size_t size = m_size; + value_type *slot = m_entries + index; + hashval_t hash2; + + if (is_empty (*slot)) + return slot; + gcc_checking_assert (!is_deleted (*slot)); + + hash2 = hash_table_mod2 (hash, m_size_prime_index); + for (;;) + { + index += hash2; + if (index >= size) + index -= size; + + slot = m_entries + index; + if (is_empty (*slot)) + return slot; + gcc_checking_assert (!is_deleted (*slot)); + } +} + +/* Return true if the current table is excessively big for ELTS elements. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +inline bool +hash_table<Descriptor, Lazy, Allocator>::too_empty_p (unsigned int elts) +{ + return elts * 8 < m_size && m_size > 32; +} + +/* The following function changes size of memory allocated for the + entries and repeatedly inserts the table elements. The occupancy + of the table after the call will be about 50%. Naturally the hash + table must already exist. Remember also that the place of the + table entries is changed. If memory allocation fails, this function + will abort. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +void +hash_table<Descriptor, Lazy, Allocator>::expand () +{ + check_complete_insertion (); + + value_type *oentries = m_entries; + unsigned int oindex = m_size_prime_index; + size_t osize = size (); + value_type *olimit = oentries + osize; + size_t elts = elements (); + + /* Resize only when table after removal of unused elements is either + too full or too empty. */ + unsigned int nindex; + size_t nsize; + if (elts * 2 > osize || too_empty_p (elts)) + { + nindex = hash_table_higher_prime_index (elts * 2); + nsize = prime_tab[nindex].prime; + } + else + { + nindex = oindex; + nsize = osize; + } + + value_type *nentries = alloc_entries (nsize); + + if (m_gather_mem_stats) + hash_table_usage ().release_instance_overhead (this, sizeof (value_type) + * osize); + + size_t n_deleted = m_n_deleted; + + m_entries = nentries; + m_size = nsize; + m_size_prime_index = nindex; + m_n_elements -= m_n_deleted; + m_n_deleted = 0; + + size_t n_elements = m_n_elements; + + value_type *p = oentries; + do + { + value_type &x = *p; + + if (is_empty (x)) + ; + else if (is_deleted (x)) + n_deleted--; + else + { + n_elements--; + value_type *q = find_empty_slot_for_expand (Descriptor::hash (x)); + new ((void*) q) value_type (std::move (x)); + /* After the resources of 'x' have been moved to a new object at 'q', + we now have to destroy the 'x' object, to end its lifetime. */ + x.~value_type (); + } + + p++; + } + while (p < olimit); + + gcc_checking_assert (!n_elements && !n_deleted); + + if (!m_ggc) + Allocator <value_type> ::data_free (oentries); + else + ggc_free (oentries); +} + +/* Implements empty() in cases where it isn't a no-op. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +void +hash_table<Descriptor, Lazy, Allocator>::empty_slow () +{ + check_complete_insertion (); + + size_t size = m_size; + size_t nsize = size; + value_type *entries = m_entries; + + for (size_t i = size - 1; i < size; i--) + if (!is_empty (entries[i]) && !is_deleted (entries[i])) + Descriptor::remove (entries[i]); + + /* Instead of clearing megabyte, downsize the table. */ + if (size > 1024*1024 / sizeof (value_type)) + nsize = 1024 / sizeof (value_type); + else if (too_empty_p (m_n_elements)) + nsize = m_n_elements * 2; + + if (nsize != size) + { + unsigned int nindex = hash_table_higher_prime_index (nsize); + + nsize = prime_tab[nindex].prime; + + if (!m_ggc) + Allocator <value_type> ::data_free (m_entries); + else + ggc_free (m_entries); + + m_entries = alloc_entries (nsize); + m_size = nsize; + m_size_prime_index = nindex; + } + else if (Descriptor::empty_zero_p) + memset ((void *) entries, 0, size * sizeof (value_type)); + else + for (size_t i = 0; i < size; i++) + mark_empty (entries[i]); + + m_n_deleted = 0; + m_n_elements = 0; +} + +/* This function clears a specified SLOT in a hash table. It is + useful when you've already done the lookup and don't want to do it + again. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +void +hash_table<Descriptor, Lazy, Allocator>::clear_slot (value_type *slot) +{ + check_complete_insertion (); + + gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size () + || is_empty (*slot) || is_deleted (*slot))); + + Descriptor::remove (*slot); + + mark_deleted (*slot); + m_n_deleted++; +} + +/* This function searches for a hash table entry equal to the given + COMPARABLE element starting with the given HASH value. It cannot + be used to insert or delete an element. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +typename hash_table<Descriptor, Lazy, Allocator>::value_type & +hash_table<Descriptor, Lazy, Allocator> +::find_with_hash (const compare_type &comparable, hashval_t hash) +{ + m_searches++; + size_t size = m_size; + hashval_t index = hash_table_mod1 (hash, m_size_prime_index); + + if (Lazy && m_entries == NULL) + m_entries = alloc_entries (size); + + check_complete_insertion (); + +#if CHECKING_P + if (m_sanitize_eq_and_hash) + verify (comparable, hash); +#endif + + value_type *entry = &m_entries[index]; + if (is_empty (*entry) + || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable))) + return *entry; + + hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index); + for (;;) + { + m_collisions++; + index += hash2; + if (index >= size) + index -= size; + + entry = &m_entries[index]; + if (is_empty (*entry) + || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable))) + return *entry; + } +} + +/* This function searches for a hash table slot containing an entry + equal to the given COMPARABLE element and starting with the given + HASH. To delete an entry, call this with insert=NO_INSERT, then + call clear_slot on the slot returned (possibly after doing some + checks). To insert an entry, call this with insert=INSERT, then + write the value you want into the returned slot. When inserting an + entry, NULL may be returned if memory allocation fails. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +typename hash_table<Descriptor, Lazy, Allocator>::value_type * +hash_table<Descriptor, Lazy, Allocator> +::find_slot_with_hash (const compare_type &comparable, hashval_t hash, + enum insert_option insert) +{ + if (Lazy && m_entries == NULL) + { + if (insert == INSERT) + m_entries = alloc_entries (m_size); + else + return NULL; + } + if (insert == INSERT && m_size * 3 <= m_n_elements * 4) + expand (); + else + check_complete_insertion (); + +#if CHECKING_P + if (m_sanitize_eq_and_hash) + verify (comparable, hash); +#endif + + m_searches++; + value_type *first_deleted_slot = NULL; + hashval_t index = hash_table_mod1 (hash, m_size_prime_index); + hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index); + value_type *entry = &m_entries[index]; + size_t size = m_size; + if (is_empty (*entry)) + goto empty_entry; + else if (is_deleted (*entry)) + first_deleted_slot = &m_entries[index]; + else if (Descriptor::equal (*entry, comparable)) + return &m_entries[index]; + + for (;;) + { + m_collisions++; + index += hash2; + if (index >= size) + index -= size; + + entry = &m_entries[index]; + if (is_empty (*entry)) + goto empty_entry; + else if (is_deleted (*entry)) + { + if (!first_deleted_slot) + first_deleted_slot = &m_entries[index]; + } + else if (Descriptor::equal (*entry, comparable)) + return &m_entries[index]; + } + + empty_entry: + if (insert == NO_INSERT) + return NULL; + + if (first_deleted_slot) + { + m_n_deleted--; + mark_empty (*first_deleted_slot); + return check_insert_slot (first_deleted_slot); + } + + m_n_elements++; + return check_insert_slot (&m_entries[index]); +} + +/* Verify that all existing elements in the hash table which are + equal to COMPARABLE have an equal HASH value provided as argument. + Also check that the hash table element counts are correct. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +void +hash_table<Descriptor, Lazy, Allocator> +::verify (const compare_type &comparable, hashval_t hash) +{ + size_t n_elements = m_n_elements; + size_t n_deleted = m_n_deleted; + for (size_t i = 0; i < MIN (hash_table_sanitize_eq_limit, m_size); i++) + { + value_type *entry = &m_entries[i]; + if (!is_empty (*entry)) + { + n_elements--; + if (is_deleted (*entry)) + n_deleted--; + else if (hash != Descriptor::hash (*entry) + && Descriptor::equal (*entry, comparable)) + hashtab_chk_error (); + } + } + if (hash_table_sanitize_eq_limit >= m_size) + gcc_checking_assert (!n_elements && !n_deleted); +} + +/* This function deletes an element with the given COMPARABLE value + from hash table starting with the given HASH. If there is no + matching element in the hash table, this function does nothing. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +void +hash_table<Descriptor, Lazy, Allocator> +::remove_elt_with_hash (const compare_type &comparable, hashval_t hash) +{ + check_complete_insertion (); + + value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT); + if (slot == NULL) + return; + + Descriptor::remove (*slot); + + mark_deleted (*slot); + m_n_deleted++; +} + +/* This function scans over the entire hash table calling CALLBACK for + each live entry. If CALLBACK returns false, the iteration stops. + ARGUMENT is passed as CALLBACK's second argument. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +template<typename Argument, + int (*Callback) + (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot, + Argument argument)> +void +hash_table<Descriptor, Lazy, Allocator>::traverse_noresize (Argument argument) +{ + if (Lazy && m_entries == NULL) + return; + + check_complete_insertion (); + + value_type *slot = m_entries; + value_type *limit = slot + size (); + + do + { + value_type &x = *slot; + + if (!is_empty (x) && !is_deleted (x)) + if (! Callback (slot, argument)) + break; + } + while (++slot < limit); +} + +/* Like traverse_noresize, but does resize the table when it is too empty + to improve effectivity of subsequent calls. */ + +template <typename Descriptor, bool Lazy, + template <typename Type> class Allocator> +template <typename Argument, + int (*Callback) + (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot, + Argument argument)> +void +hash_table<Descriptor, Lazy, Allocator>::traverse (Argument argument) +{ + if (too_empty_p (elements ()) && (!Lazy || m_entries)) + expand (); + + traverse_noresize <Argument, Callback> (argument); +} + +/* Slide down the iterator slots until an active entry is found. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +void +hash_table<Descriptor, Lazy, Allocator>::iterator::slide () +{ + for ( ; m_slot < m_limit; ++m_slot ) + { + value_type &x = *m_slot; + if (!is_empty (x) && !is_deleted (x)) + return; + } + m_slot = NULL; + m_limit = NULL; +} + +/* Bump the iterator. */ + +template<typename Descriptor, bool Lazy, + template<typename Type> class Allocator> +inline typename hash_table<Descriptor, Lazy, Allocator>::iterator & +hash_table<Descriptor, Lazy, Allocator>::iterator::operator ++ () +{ + ++m_slot; + slide (); + return *this; +} + + +/* Iterate through the elements of hash_table HTAB, + using hash_table <....>::iterator ITER, + storing each element in RESULT, which is of type TYPE. */ + +#define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \ + for ((ITER) = (HTAB).begin (); \ + (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \ + ++(ITER)) + +/* ggc walking routines. */ + +template<typename E> +inline void +gt_ggc_mx (hash_table<E> *h) +{ + typedef hash_table<E> table; + + if (!ggc_test_and_set_mark (h->m_entries)) + return; + + for (size_t i = 0; i < h->m_size; i++) + { + if (table::is_empty (h->m_entries[i]) + || table::is_deleted (h->m_entries[i])) + continue; + + /* Use ggc_maxbe_mx so we don't mark right away for cache tables; we'll + mark in gt_cleare_cache if appropriate. */ + E::ggc_maybe_mx (h->m_entries[i]); + } +} + +template<typename D> +inline void +hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op, + void *cookie) +{ + hash_table<D> *map = static_cast<hash_table<D> *> (h); + gcc_checking_assert (map->m_entries == obj); + for (size_t i = 0; i < map->m_size; i++) + { + typedef hash_table<D> table; + if (table::is_empty (map->m_entries[i]) + || table::is_deleted (map->m_entries[i])) + continue; + + D::pch_nx (map->m_entries[i], op, cookie); + } +} + +template<typename D> +void +gt_pch_nx (hash_table<D> *h) +{ + h->check_complete_insertion (); + bool success + = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>); + gcc_checking_assert (success); + for (size_t i = 0; i < h->m_size; i++) + { + if (hash_table<D>::is_empty (h->m_entries[i]) + || hash_table<D>::is_deleted (h->m_entries[i])) + continue; + + D::pch_nx (h->m_entries[i]); + } +} + +template<typename D> +inline void +gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie) +{ + op (&h->m_entries, NULL, cookie); +} + +template<typename H> +inline void +gt_cleare_cache (hash_table<H> *h) +{ + typedef hash_table<H> table; + if (!h) + return; + + for (typename table::iterator iter = h->begin (); iter != h->end (); ++iter) + if (!table::is_empty (*iter) && !table::is_deleted (*iter)) + { + int res = H::keep_cache_entry (*iter); + if (res == 0) + h->clear_slot (&*iter); + else if (res != -1) + H::ggc_mx (*iter); + } +} + +#endif /* TYPED_HASHTAB_H */ |