summaryrefslogtreecommitdiff
path: root/lib/gcc/aarch64-none-linux-gnu/13.2.1/plugin/include/tree-data-ref.h
diff options
context:
space:
mode:
authoralk3pInjection <webmaster@raspii.tech>2024-02-04 16:16:35 +0800
committeralk3pInjection <webmaster@raspii.tech>2024-02-04 16:16:35 +0800
commit6ce4ebed87858ecdd79a1091367c6e961055daa9 (patch)
tree1c2a6a60531acf791531bbd9c8ac14c23ef8a66c /lib/gcc/aarch64-none-linux-gnu/13.2.1/plugin/include/tree-data-ref.h
Import stripped Arm GNU Toolchain 13.2.Rel1HEADumineko
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads Change-Id: I7303388733328cd98ab9aa3c30236db67f2e9e9c
Diffstat (limited to 'lib/gcc/aarch64-none-linux-gnu/13.2.1/plugin/include/tree-data-ref.h')
-rw-r--r--lib/gcc/aarch64-none-linux-gnu/13.2.1/plugin/include/tree-data-ref.h792
1 files changed, 792 insertions, 0 deletions
diff --git a/lib/gcc/aarch64-none-linux-gnu/13.2.1/plugin/include/tree-data-ref.h b/lib/gcc/aarch64-none-linux-gnu/13.2.1/plugin/include/tree-data-ref.h
new file mode 100644
index 0000000..4d1a5c4
--- /dev/null
+++ b/lib/gcc/aarch64-none-linux-gnu/13.2.1/plugin/include/tree-data-ref.h
@@ -0,0 +1,792 @@
+/* Data references and dependences detectors.
+ Copyright (C) 2003-2023 Free Software Foundation, Inc.
+ Contributed by Sebastian Pop <pop@cri.ensmp.fr>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#ifndef GCC_TREE_DATA_REF_H
+#define GCC_TREE_DATA_REF_H
+
+#include "graphds.h"
+#include "tree-chrec.h"
+#include "opt-problem.h"
+
+/*
+ innermost_loop_behavior describes the evolution of the address of the memory
+ reference in the innermost enclosing loop. The address is expressed as
+ BASE + STEP * # of iteration, and base is further decomposed as the base
+ pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
+ constant offset (INIT). Examples, in loop nest
+
+ for (i = 0; i < 100; i++)
+ for (j = 3; j < 100; j++)
+
+ Example 1 Example 2
+ data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
+
+
+ innermost_loop_behavior
+ base_address &a p
+ offset i * D_i x
+ init 3 * D_j + offsetof (b) 28
+ step D_j 4
+
+ */
+struct innermost_loop_behavior
+{
+ tree base_address;
+ tree offset;
+ tree init;
+ tree step;
+
+ /* BASE_ADDRESS is known to be misaligned by BASE_MISALIGNMENT bytes
+ from an alignment boundary of BASE_ALIGNMENT bytes. For example,
+ if we had:
+
+ struct S __attribute__((aligned(16))) { ... };
+
+ char *ptr;
+ ... *(struct S *) (ptr - 4) ...;
+
+ the information would be:
+
+ base_address: ptr
+ base_aligment: 16
+ base_misalignment: 4
+ init: -4
+
+ where init cancels the base misalignment. If instead we had a
+ reference to a particular field:
+
+ struct S __attribute__((aligned(16))) { ... int f; ... };
+
+ char *ptr;
+ ... ((struct S *) (ptr - 4))->f ...;
+
+ the information would be:
+
+ base_address: ptr
+ base_aligment: 16
+ base_misalignment: 4
+ init: -4 + offsetof (S, f)
+
+ where base_address + init might also be misaligned, and by a different
+ amount from base_address. */
+ unsigned int base_alignment;
+ unsigned int base_misalignment;
+
+ /* The largest power of two that divides OFFSET, capped to a suitably
+ high value if the offset is zero. This is a byte rather than a bit
+ quantity. */
+ unsigned int offset_alignment;
+
+ /* Likewise for STEP. */
+ unsigned int step_alignment;
+};
+
+/* Describes the evolutions of indices of the memory reference. The indices
+ are indices of the ARRAY_REFs, indexes in artificial dimensions
+ added for member selection of records and the operands of MEM_REFs.
+ BASE_OBJECT is the part of the reference that is loop-invariant
+ (note that this reference does not have to cover the whole object
+ being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
+ not recommended to use BASE_OBJECT in any code generation).
+ For the examples above,
+
+ base_object: a *(p + x + 4B * j_0)
+ indices: {j_0, +, 1}_2 {16, +, 4}_2
+ 4
+ {i_0, +, 1}_1
+ {j_0, +, 1}_2
+*/
+
+struct indices
+{
+ /* The object. */
+ tree base_object;
+
+ /* A list of chrecs. Access functions of the indices. */
+ vec<tree> access_fns;
+
+ /* Whether BASE_OBJECT is an access representing the whole object
+ or whether the access could not be constrained. */
+ bool unconstrained_base;
+};
+
+struct dr_alias
+{
+ /* The alias information that should be used for new pointers to this
+ location. */
+ struct ptr_info_def *ptr_info;
+};
+
+/* An integer vector. A vector formally consists of an element of a vector
+ space. A vector space is a set that is closed under vector addition
+ and scalar multiplication. In this vector space, an element is a list of
+ integers. */
+typedef HOST_WIDE_INT lambda_int;
+typedef lambda_int *lambda_vector;
+
+/* An integer matrix. A matrix consists of m vectors of length n (IE
+ all vectors are the same length). */
+typedef lambda_vector *lambda_matrix;
+
+
+
+struct data_reference
+{
+ /* A pointer to the statement that contains this DR. */
+ gimple *stmt;
+
+ /* A pointer to the memory reference. */
+ tree ref;
+
+ /* Auxiliary info specific to a pass. */
+ void *aux;
+
+ /* True when the data reference is in RHS of a stmt. */
+ bool is_read;
+
+ /* True when the data reference is conditional within STMT,
+ i.e. if it might not occur even when the statement is executed
+ and runs to completion. */
+ bool is_conditional_in_stmt;
+
+ /* Alias information for the data reference. */
+ struct dr_alias alias;
+
+ /* Behavior of the memory reference in the innermost loop. */
+ struct innermost_loop_behavior innermost;
+
+ /* Subscripts of this data reference. */
+ struct indices indices;
+
+ /* Alternate subscripts initialized lazily and used by data-dependence
+ analysis only when the main indices of two DRs are not comparable.
+ Keep last to keep vec_info_shared::check_datarefs happy. */
+ struct indices alt_indices;
+};
+
+#define DR_STMT(DR) (DR)->stmt
+#define DR_REF(DR) (DR)->ref
+#define DR_BASE_OBJECT(DR) (DR)->indices.base_object
+#define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
+#define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
+#define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
+#define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
+#define DR_IS_READ(DR) (DR)->is_read
+#define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
+#define DR_IS_CONDITIONAL_IN_STMT(DR) (DR)->is_conditional_in_stmt
+#define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
+#define DR_OFFSET(DR) (DR)->innermost.offset
+#define DR_INIT(DR) (DR)->innermost.init
+#define DR_STEP(DR) (DR)->innermost.step
+#define DR_PTR_INFO(DR) (DR)->alias.ptr_info
+#define DR_BASE_ALIGNMENT(DR) (DR)->innermost.base_alignment
+#define DR_BASE_MISALIGNMENT(DR) (DR)->innermost.base_misalignment
+#define DR_OFFSET_ALIGNMENT(DR) (DR)->innermost.offset_alignment
+#define DR_STEP_ALIGNMENT(DR) (DR)->innermost.step_alignment
+#define DR_INNERMOST(DR) (DR)->innermost
+
+typedef struct data_reference *data_reference_p;
+
+/* This struct is used to store the information of a data reference,
+ including the data ref itself and the segment length for aliasing
+ checks. This is used to merge alias checks. */
+
+class dr_with_seg_len
+{
+public:
+ dr_with_seg_len (data_reference_p d, tree len, unsigned HOST_WIDE_INT size,
+ unsigned int a)
+ : dr (d), seg_len (len), access_size (size), align (a) {}
+
+ data_reference_p dr;
+ /* The offset of the last access that needs to be checked minus
+ the offset of the first. */
+ tree seg_len;
+ /* A value that, when added to abs (SEG_LEN), gives the total number of
+ bytes in the segment. */
+ poly_uint64 access_size;
+ /* The minimum common alignment of DR's start address, SEG_LEN and
+ ACCESS_SIZE. */
+ unsigned int align;
+};
+
+/* Flags that describe a potential alias between two dr_with_seg_lens.
+ In general, each pair of dr_with_seg_lens represents a composite of
+ multiple access pairs P, so testing flags like DR_IS_READ on the DRs
+ does not give meaningful information.
+
+ DR_ALIAS_RAW:
+ There is a pair in P for which the second reference is a read
+ and the first is a write.
+
+ DR_ALIAS_WAR:
+ There is a pair in P for which the second reference is a write
+ and the first is a read.
+
+ DR_ALIAS_WAW:
+ There is a pair in P for which both references are writes.
+
+ DR_ALIAS_ARBITRARY:
+ Either
+ (a) it isn't possible to classify one pair in P as RAW, WAW or WAR; or
+ (b) there is a pair in P that breaks the ordering assumption below.
+
+ This flag overrides the RAW, WAR and WAW flags above.
+
+ DR_ALIAS_UNSWAPPED:
+ DR_ALIAS_SWAPPED:
+ Temporary flags that indicate whether there is a pair P whose
+ DRs have or haven't been swapped around.
+
+ DR_ALIAS_MIXED_STEPS:
+ The DR_STEP for one of the data references in the pair does not
+ accurately describe that reference for all members of P. (Note
+ that the flag does not say anything about whether the DR_STEPs
+ of the two references in the pair are the same.)
+
+ The ordering assumption mentioned above is that for every pair
+ (DR_A, DR_B) in P:
+
+ (1) The original code accesses n elements for DR_A and n elements for DR_B,
+ interleaved as follows:
+
+ one access of size DR_A.access_size at DR_A.dr
+ one access of size DR_B.access_size at DR_B.dr
+ one access of size DR_A.access_size at DR_A.dr + STEP_A
+ one access of size DR_B.access_size at DR_B.dr + STEP_B
+ one access of size DR_A.access_size at DR_A.dr + STEP_A * 2
+ one access of size DR_B.access_size at DR_B.dr + STEP_B * 2
+ ...
+
+ (2) The new code accesses the same data in exactly two chunks:
+
+ one group of accesses spanning |DR_A.seg_len| + DR_A.access_size
+ one group of accesses spanning |DR_B.seg_len| + DR_B.access_size
+
+ A pair might break this assumption if the DR_A and DR_B accesses
+ in the original or the new code are mingled in some way. For example,
+ if DR_A.access_size represents the effect of two individual writes
+ to nearby locations, the pair breaks the assumption if those writes
+ occur either side of the access for DR_B.
+
+ Note that DR_ALIAS_ARBITRARY describes whether the ordering assumption
+ fails to hold for any individual pair in P. If the assumption *does*
+ hold for every pair in P, it doesn't matter whether it holds for the
+ composite pair or not. In other words, P should represent the complete
+ set of pairs that the composite pair is testing, so only the ordering
+ of two accesses in the same member of P matters. */
+const unsigned int DR_ALIAS_RAW = 1U << 0;
+const unsigned int DR_ALIAS_WAR = 1U << 1;
+const unsigned int DR_ALIAS_WAW = 1U << 2;
+const unsigned int DR_ALIAS_ARBITRARY = 1U << 3;
+const unsigned int DR_ALIAS_SWAPPED = 1U << 4;
+const unsigned int DR_ALIAS_UNSWAPPED = 1U << 5;
+const unsigned int DR_ALIAS_MIXED_STEPS = 1U << 6;
+
+/* This struct contains two dr_with_seg_len objects with aliasing data
+ refs. Two comparisons are generated from them. */
+
+class dr_with_seg_len_pair_t
+{
+public:
+ /* WELL_ORDERED indicates that the ordering assumption described above
+ DR_ALIAS_ARBITRARY holds. REORDERED indicates that it doesn't. */
+ enum sequencing { WELL_ORDERED, REORDERED };
+
+ dr_with_seg_len_pair_t (const dr_with_seg_len &,
+ const dr_with_seg_len &, sequencing);
+
+ dr_with_seg_len first;
+ dr_with_seg_len second;
+ unsigned int flags;
+};
+
+inline dr_with_seg_len_pair_t::
+dr_with_seg_len_pair_t (const dr_with_seg_len &d1, const dr_with_seg_len &d2,
+ sequencing seq)
+ : first (d1), second (d2), flags (0)
+{
+ if (DR_IS_READ (d1.dr) && DR_IS_WRITE (d2.dr))
+ flags |= DR_ALIAS_WAR;
+ else if (DR_IS_WRITE (d1.dr) && DR_IS_READ (d2.dr))
+ flags |= DR_ALIAS_RAW;
+ else if (DR_IS_WRITE (d1.dr) && DR_IS_WRITE (d2.dr))
+ flags |= DR_ALIAS_WAW;
+ else
+ gcc_unreachable ();
+ if (seq == REORDERED)
+ flags |= DR_ALIAS_ARBITRARY;
+}
+
+enum data_dependence_direction {
+ dir_positive,
+ dir_negative,
+ dir_equal,
+ dir_positive_or_negative,
+ dir_positive_or_equal,
+ dir_negative_or_equal,
+ dir_star,
+ dir_independent
+};
+
+/* The description of the grid of iterations that overlap. At most
+ two loops are considered at the same time just now, hence at most
+ two functions are needed. For each of the functions, we store
+ the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
+ where x, y, ... are variables. */
+
+#define MAX_DIM 2
+
+/* Special values of N. */
+#define NO_DEPENDENCE 0
+#define NOT_KNOWN (MAX_DIM + 1)
+#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
+#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
+#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
+
+typedef vec<tree> affine_fn;
+
+struct conflict_function
+{
+ unsigned n;
+ affine_fn fns[MAX_DIM];
+};
+
+/* What is a subscript? Given two array accesses a subscript is the
+ tuple composed of the access functions for a given dimension.
+ Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
+ subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
+ are stored in the data_dependence_relation structure under the form
+ of an array of subscripts. */
+
+struct subscript
+{
+ /* The access functions of the two references. */
+ tree access_fn[2];
+
+ /* A description of the iterations for which the elements are
+ accessed twice. */
+ conflict_function *conflicting_iterations_in_a;
+ conflict_function *conflicting_iterations_in_b;
+
+ /* This field stores the information about the iteration domain
+ validity of the dependence relation. */
+ tree last_conflict;
+
+ /* Distance from the iteration that access a conflicting element in
+ A to the iteration that access this same conflicting element in
+ B. The distance is a tree scalar expression, i.e. a constant or a
+ symbolic expression, but certainly not a chrec function. */
+ tree distance;
+};
+
+typedef struct subscript *subscript_p;
+
+#define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
+#define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
+#define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
+#define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
+#define SUB_DISTANCE(SUB) (SUB)->distance
+
+/* A data_dependence_relation represents a relation between two
+ data_references A and B. */
+
+struct data_dependence_relation
+{
+
+ struct data_reference *a;
+ struct data_reference *b;
+
+ /* A "yes/no/maybe" field for the dependence relation:
+
+ - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
+ relation between A and B, and the description of this relation
+ is given in the SUBSCRIPTS array,
+
+ - when "ARE_DEPENDENT == chrec_known", there is no dependence and
+ SUBSCRIPTS is empty,
+
+ - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
+ but the analyzer cannot be more specific. */
+ tree are_dependent;
+
+ /* If nonnull, COULD_BE_INDEPENDENT_P is true and the accesses are
+ independent when the runtime addresses of OBJECT_A and OBJECT_B
+ are different. The addresses of both objects are invariant in the
+ loop nest. */
+ tree object_a;
+ tree object_b;
+
+ /* For each subscript in the dependence test, there is an element in
+ this array. This is the attribute that labels the edge A->B of
+ the data_dependence_relation. */
+ vec<subscript_p> subscripts;
+
+ /* The analyzed loop nest. */
+ vec<loop_p> loop_nest;
+
+ /* The classic direction vector. */
+ vec<lambda_vector> dir_vects;
+
+ /* The classic distance vector. */
+ vec<lambda_vector> dist_vects;
+
+ /* Is the dependence reversed with respect to the lexicographic order? */
+ bool reversed_p;
+
+ /* When the dependence relation is affine, it can be represented by
+ a distance vector. */
+ bool affine_p;
+
+ /* Set to true when the dependence relation is on the same data
+ access. */
+ bool self_reference_p;
+
+ /* True if the dependence described is conservatively correct rather
+ than exact, and if it is still possible for the accesses to be
+ conditionally independent. For example, the a and b references in:
+
+ struct s *a, *b;
+ for (int i = 0; i < n; ++i)
+ a->f[i] += b->f[i];
+
+ conservatively have a distance vector of (0), for the case in which
+ a == b, but the accesses are independent if a != b. Similarly,
+ the a and b references in:
+
+ struct s *a, *b;
+ for (int i = 0; i < n; ++i)
+ a[0].f[i] += b[i].f[i];
+
+ conservatively have a distance vector of (0), but they are indepenent
+ when a != b + i. In contrast, the references in:
+
+ struct s *a;
+ for (int i = 0; i < n; ++i)
+ a->f[i] += a->f[i];
+
+ have the same distance vector of (0), but the accesses can never be
+ independent. */
+ bool could_be_independent_p;
+};
+
+typedef struct data_dependence_relation *ddr_p;
+
+#define DDR_A(DDR) (DDR)->a
+#define DDR_B(DDR) (DDR)->b
+#define DDR_AFFINE_P(DDR) (DDR)->affine_p
+#define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent
+#define DDR_OBJECT_A(DDR) (DDR)->object_a
+#define DDR_OBJECT_B(DDR) (DDR)->object_b
+#define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts
+#define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
+#define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
+
+#define DDR_LOOP_NEST(DDR) (DDR)->loop_nest
+/* The size of the direction/distance vectors: the number of loops in
+ the loop nest. */
+#define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
+#define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p
+
+#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
+#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
+#define DDR_NUM_DIST_VECTS(DDR) \
+ (DDR_DIST_VECTS (DDR).length ())
+#define DDR_NUM_DIR_VECTS(DDR) \
+ (DDR_DIR_VECTS (DDR).length ())
+#define DDR_DIR_VECT(DDR, I) \
+ DDR_DIR_VECTS (DDR)[I]
+#define DDR_DIST_VECT(DDR, I) \
+ DDR_DIST_VECTS (DDR)[I]
+#define DDR_REVERSED_P(DDR) (DDR)->reversed_p
+#define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
+
+
+opt_result dr_analyze_innermost (innermost_loop_behavior *, tree,
+ class loop *, const gimple *);
+extern bool compute_data_dependences_for_loop (class loop *, bool,
+ vec<loop_p> *,
+ vec<data_reference_p> *,
+ vec<ddr_p> *);
+extern void debug_ddrs (vec<ddr_p> );
+extern void dump_data_reference (FILE *, struct data_reference *);
+extern void debug (data_reference &ref);
+extern void debug (data_reference *ptr);
+extern void debug_data_reference (struct data_reference *);
+extern void debug_data_references (vec<data_reference_p> );
+extern void debug (vec<data_reference_p> &ref);
+extern void debug (vec<data_reference_p> *ptr);
+extern void debug_data_dependence_relation (const data_dependence_relation *);
+extern void dump_data_dependence_relations (FILE *, const vec<ddr_p> &);
+extern void debug (vec<ddr_p> &ref);
+extern void debug (vec<ddr_p> *ptr);
+extern void debug_data_dependence_relations (vec<ddr_p> );
+extern void free_dependence_relation (struct data_dependence_relation *);
+extern void free_dependence_relations (vec<ddr_p>& );
+extern void free_data_ref (data_reference_p);
+extern void free_data_refs (vec<data_reference_p>& );
+extern opt_result find_data_references_in_stmt (class loop *, gimple *,
+ vec<data_reference_p> *);
+extern bool graphite_find_data_references_in_stmt (edge, loop_p, gimple *,
+ vec<data_reference_p> *);
+tree find_data_references_in_loop (class loop *, vec<data_reference_p> *);
+bool loop_nest_has_data_refs (loop_p loop);
+struct data_reference *create_data_ref (edge, loop_p, tree, gimple *, bool,
+ bool);
+extern bool find_loop_nest (class loop *, vec<loop_p> *);
+extern struct data_dependence_relation *initialize_data_dependence_relation
+ (struct data_reference *, struct data_reference *, vec<loop_p>);
+extern void compute_affine_dependence (struct data_dependence_relation *,
+ loop_p);
+extern void compute_self_dependence (struct data_dependence_relation *);
+extern bool compute_all_dependences (const vec<data_reference_p> &,
+ vec<ddr_p> *,
+ const vec<loop_p> &, bool);
+extern tree find_data_references_in_bb (class loop *, basic_block,
+ vec<data_reference_p> *);
+extern unsigned int dr_alignment (innermost_loop_behavior *);
+extern tree get_base_for_alignment (tree, unsigned int *);
+
+/* Return the alignment in bytes that DR is guaranteed to have at all
+ times. */
+
+inline unsigned int
+dr_alignment (data_reference *dr)
+{
+ return dr_alignment (&DR_INNERMOST (dr));
+}
+
+extern bool dr_may_alias_p (const struct data_reference *,
+ const struct data_reference *, class loop *);
+extern bool dr_equal_offsets_p (struct data_reference *,
+ struct data_reference *);
+
+extern opt_result runtime_alias_check_p (ddr_p, class loop *, bool);
+extern int data_ref_compare_tree (tree, tree);
+extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *,
+ poly_uint64);
+extern void create_runtime_alias_checks (class loop *,
+ const vec<dr_with_seg_len_pair_t> *,
+ tree*);
+extern tree dr_direction_indicator (struct data_reference *);
+extern tree dr_zero_step_indicator (struct data_reference *);
+extern bool dr_known_forward_stride_p (struct data_reference *);
+
+/* Return true when the base objects of data references A and B are
+ the same memory object. */
+
+inline bool
+same_data_refs_base_objects (data_reference_p a, data_reference_p b)
+{
+ return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
+ && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
+}
+
+/* Return true when the data references A and B are accessing the same
+ memory object with the same access functions. Optionally skip the
+ last OFFSET dimensions in the data reference. */
+
+inline bool
+same_data_refs (data_reference_p a, data_reference_p b, int offset = 0)
+{
+ unsigned int i;
+
+ /* The references are exactly the same. */
+ if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
+ return true;
+
+ if (!same_data_refs_base_objects (a, b))
+ return false;
+
+ for (i = offset; i < DR_NUM_DIMENSIONS (a); i++)
+ if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
+ return false;
+
+ return true;
+}
+
+/* Returns true when all the dependences are computable. */
+
+inline bool
+known_dependences_p (vec<ddr_p> dependence_relations)
+{
+ ddr_p ddr;
+ unsigned int i;
+
+ FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ return false;
+
+ return true;
+}
+
+/* Returns the dependence level for a vector DIST of size LENGTH.
+ LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
+ to the sequence of statements, not carried by any loop. */
+
+inline unsigned
+dependence_level (lambda_vector dist_vect, int length)
+{
+ int i;
+
+ for (i = 0; i < length; i++)
+ if (dist_vect[i] != 0)
+ return i + 1;
+
+ return 0;
+}
+
+/* Return the dependence level for the DDR relation. */
+
+inline unsigned
+ddr_dependence_level (ddr_p ddr)
+{
+ unsigned vector;
+ unsigned level = 0;
+
+ if (DDR_DIST_VECTS (ddr).exists ())
+ level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
+
+ for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
+ level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
+ DDR_NB_LOOPS (ddr)));
+ return level;
+}
+
+/* Return the index of the variable VAR in the LOOP_NEST array. */
+
+inline int
+index_in_loop_nest (int var, const vec<loop_p> &loop_nest)
+{
+ class loop *loopi;
+ int var_index;
+
+ for (var_index = 0; loop_nest.iterate (var_index, &loopi); var_index++)
+ if (loopi->num == var)
+ return var_index;
+
+ gcc_unreachable ();
+}
+
+/* Returns true when the data reference DR the form "A[i] = ..."
+ with a stride equal to its unit type size. */
+
+inline bool
+adjacent_dr_p (struct data_reference *dr)
+{
+ /* If this is a bitfield store bail out. */
+ if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
+ && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
+ return false;
+
+ if (!DR_STEP (dr)
+ || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
+ return false;
+
+ return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
+ DR_STEP (dr)),
+ TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
+}
+
+void split_constant_offset (tree , tree *, tree *);
+
+/* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
+
+inline lambda_int
+lambda_vector_gcd (lambda_vector vector, int size)
+{
+ int i;
+ lambda_int gcd1 = 0;
+
+ if (size > 0)
+ {
+ gcd1 = vector[0];
+ for (i = 1; i < size; i++)
+ gcd1 = gcd (gcd1, vector[i]);
+ }
+ return gcd1;
+}
+
+/* Allocate a new vector of given SIZE. */
+
+inline lambda_vector
+lambda_vector_new (int size)
+{
+ /* ??? We shouldn't abuse the GC allocator here. */
+ return ggc_cleared_vec_alloc<lambda_int> (size);
+}
+
+/* Clear out vector VEC1 of length SIZE. */
+
+inline void
+lambda_vector_clear (lambda_vector vec1, int size)
+{
+ memset (vec1, 0, size * sizeof (*vec1));
+}
+
+/* Returns true when the vector V is lexicographically positive, in
+ other words, when the first nonzero element is positive. */
+
+inline bool
+lambda_vector_lexico_pos (lambda_vector v,
+ unsigned n)
+{
+ unsigned i;
+ for (i = 0; i < n; i++)
+ {
+ if (v[i] == 0)
+ continue;
+ if (v[i] < 0)
+ return false;
+ if (v[i] > 0)
+ return true;
+ }
+ return true;
+}
+
+/* Return true if vector VEC1 of length SIZE is the zero vector. */
+
+inline bool
+lambda_vector_zerop (lambda_vector vec1, int size)
+{
+ int i;
+ for (i = 0; i < size; i++)
+ if (vec1[i] != 0)
+ return false;
+ return true;
+}
+
+/* Allocate a matrix of M rows x N cols. */
+
+inline lambda_matrix
+lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
+{
+ lambda_matrix mat;
+ int i;
+
+ mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
+
+ for (i = 0; i < m; i++)
+ mat[i] = XOBNEWVEC (lambda_obstack, lambda_int, n);
+
+ return mat;
+}
+
+#endif /* GCC_TREE_DATA_REF_H */