1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
|
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "os/queue.h"
#include <sys/eventfd.h>
#include <atomic>
#include <future>
#include <unordered_map>
#include "common/bind.h"
#include "gtest/gtest.h"
#include "os/reactor.h"
namespace bluetooth {
namespace os {
namespace {
constexpr int kQueueSize = 10;
constexpr int kHalfOfQueueSize = kQueueSize / 2;
constexpr int kDoubleOfQueueSize = kQueueSize * 2;
constexpr int kQueueSizeOne = 1;
class QueueTest : public ::testing::Test {
protected:
void SetUp() override {
enqueue_thread_ = new Thread("enqueue_thread", Thread::Priority::NORMAL);
enqueue_handler_ = new Handler(enqueue_thread_);
dequeue_thread_ = new Thread("dequeue_thread", Thread::Priority::NORMAL);
dequeue_handler_ = new Handler(dequeue_thread_);
}
void TearDown() override {
enqueue_handler_->Clear();
delete enqueue_handler_;
delete enqueue_thread_;
dequeue_handler_->Clear();
delete dequeue_handler_;
delete dequeue_thread_;
enqueue_handler_ = nullptr;
enqueue_thread_ = nullptr;
dequeue_handler_ = nullptr;
dequeue_thread_ = nullptr;
}
Thread* enqueue_thread_;
Handler* enqueue_handler_;
Thread* dequeue_thread_;
Handler* dequeue_handler_;
};
class TestEnqueueEnd {
public:
explicit TestEnqueueEnd(Queue<std::string>* queue, Handler* handler)
: count(0), handler_(handler), queue_(queue), delay_(0) {}
~TestEnqueueEnd() {}
void RegisterEnqueue(std::unordered_map<int, std::promise<int>>* promise_map) {
promise_map_ = promise_map;
handler_->Post(common::BindOnce(&TestEnqueueEnd::handle_register_enqueue, common::Unretained(this)));
}
void UnregisterEnqueue() {
std::promise<void> promise;
auto future = promise.get_future();
handler_->Post(
common::BindOnce(&TestEnqueueEnd::handle_unregister_enqueue, common::Unretained(this), std::move(promise)));
future.wait();
}
std::unique_ptr<std::string> EnqueueCallbackForTest() {
if (delay_ != 0) {
std::this_thread::sleep_for(std::chrono::milliseconds(delay_));
}
count++;
std::unique_ptr<std::string> data = std::move(buffer_.front());
buffer_.pop();
std::string copy = *data;
if (buffer_.empty()) {
queue_->UnregisterEnqueue();
}
auto pair = promise_map_->find(buffer_.size());
if (pair != promise_map_->end()) {
pair->second.set_value(pair->first);
promise_map_->erase(pair->first);
}
return data;
}
void setDelay(int value) {
delay_ = value;
}
std::queue<std::unique_ptr<std::string>> buffer_;
int count;
private:
Handler* handler_;
Queue<std::string>* queue_;
std::unordered_map<int, std::promise<int>>* promise_map_;
int delay_;
void handle_register_enqueue() {
queue_->RegisterEnqueue(handler_, common::Bind(&TestEnqueueEnd::EnqueueCallbackForTest, common::Unretained(this)));
}
void handle_unregister_enqueue(std::promise<void> promise) {
queue_->UnregisterEnqueue();
promise.set_value();
}
};
class TestDequeueEnd {
public:
explicit TestDequeueEnd(Queue<std::string>* queue, Handler* handler, int capacity)
: count(0), handler_(handler), queue_(queue), capacity_(capacity), delay_(0) {}
~TestDequeueEnd() {}
void RegisterDequeue(std::unordered_map<int, std::promise<int>>* promise_map) {
promise_map_ = promise_map;
handler_->Post(common::BindOnce(&TestDequeueEnd::handle_register_dequeue, common::Unretained(this)));
}
void UnregisterDequeue() {
std::promise<void> promise;
auto future = promise.get_future();
handler_->Post(
common::BindOnce(&TestDequeueEnd::handle_unregister_dequeue, common::Unretained(this), std::move(promise)));
future.wait();
}
void DequeueCallbackForTest() {
if (delay_ != 0) {
std::this_thread::sleep_for(std::chrono::milliseconds(delay_));
}
count++;
std::unique_ptr<std::string> data = queue_->TryDequeue();
buffer_.push(std::move(data));
if (buffer_.size() == capacity_) {
queue_->UnregisterDequeue();
}
auto pair = promise_map_->find(buffer_.size());
if (pair != promise_map_->end()) {
pair->second.set_value(pair->first);
promise_map_->erase(pair->first);
}
}
void setDelay(int value) {
delay_ = value;
}
std::queue<std::unique_ptr<std::string>> buffer_;
int count;
private:
Handler* handler_;
Queue<std::string>* queue_;
std::unordered_map<int, std::promise<int>>* promise_map_;
int capacity_;
int delay_;
void handle_register_dequeue() {
queue_->RegisterDequeue(handler_, common::Bind(&TestDequeueEnd::DequeueCallbackForTest, common::Unretained(this)));
}
void handle_unregister_dequeue(std::promise<void> promise) {
queue_->UnregisterDequeue();
promise.set_value();
}
};
// Enqueue end level : 0 -> queue is full, 1 - > queue isn't full
// Dequeue end level : 0 -> queue is empty, 1 - > queue isn't empty
// Test 1 : Queue is empty
// Enqueue end level : 1
// Dequeue end level : 0
// Test 1-1 EnqueueCallback should continually be invoked when queue isn't full
TEST_F(QueueTest, register_enqueue_with_empty_queue) {
Queue<std::string> queue(kQueueSize);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
// Push kQueueSize data to enqueue_end buffer
for (int i = 0; i < kQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
EXPECT_EQ(test_enqueue_end.buffer_.size(), (size_t)kQueueSize);
// Register enqueue and expect data move to Queue
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
enqueue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(0), std::forward_as_tuple());
auto enqueue_future = enqueue_promise_map[0].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), 0);
std::this_thread::sleep_for(std::chrono::milliseconds(20));
}
// Enqueue end level : 1
// Dequeue end level : 0
// Test 1-2 DequeueCallback shouldn't be invoked when queue is empty
TEST_F(QueueTest, register_dequeue_with_empty_queue) {
Queue<std::string> queue(kQueueSize);
TestDequeueEnd test_dequeue_end(&queue, dequeue_handler_, kQueueSize);
// Register dequeue, DequeueCallback shouldn't be invoked
std::unordered_map<int, std::promise<int>> dequeue_promise_map;
test_dequeue_end.RegisterDequeue(&dequeue_promise_map);
std::this_thread::sleep_for(std::chrono::milliseconds(20));
EXPECT_EQ(test_dequeue_end.count, 0);
test_dequeue_end.UnregisterDequeue();
}
// Test 2 : Queue is full
// Enqueue end level : 0
// Dequeue end level : 1
// Test 2-1 EnqueueCallback shouldn't be invoked when queue is full
TEST_F(QueueTest, register_enqueue_with_full_queue) {
Queue<std::string> queue(kQueueSize);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
// make Queue full
for (int i = 0; i < kQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
enqueue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(0), std::forward_as_tuple());
auto enqueue_future = enqueue_promise_map[0].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), 0);
// push some data to enqueue_end buffer and register enqueue;
for (int i = 0; i < kHalfOfQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
// EnqueueCallback shouldn't be invoked
std::this_thread::sleep_for(std::chrono::milliseconds(20));
EXPECT_EQ(test_enqueue_end.buffer_.size(), (size_t)kHalfOfQueueSize);
EXPECT_EQ(test_enqueue_end.count, kQueueSize);
test_enqueue_end.UnregisterEnqueue();
}
// Enqueue end level : 0
// Dequeue end level : 1
// Test 2-2 DequeueCallback should continually be invoked when queue isn't empty
TEST_F(QueueTest, register_dequeue_with_full_queue) {
Queue<std::string> queue(kQueueSize);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
TestDequeueEnd test_dequeue_end(&queue, dequeue_handler_, kDoubleOfQueueSize);
// make Queue full
for (int i = 0; i < kQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
enqueue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(0), std::forward_as_tuple());
auto enqueue_future = enqueue_promise_map[0].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), 0);
// Register dequeue and expect data move to dequeue end buffer
std::unordered_map<int, std::promise<int>> dequeue_promise_map;
dequeue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(kQueueSize), std::forward_as_tuple());
auto dequeue_future = dequeue_promise_map[kQueueSize].get_future();
test_dequeue_end.RegisterDequeue(&dequeue_promise_map);
dequeue_future.wait();
EXPECT_EQ(dequeue_future.get(), kQueueSize);
test_dequeue_end.UnregisterDequeue();
}
// Test 3 : Queue is non-empty and non-full
// Enqueue end level : 1
// Dequeue end level : 1
// Test 3-1 Register enqueue with half empty queue, EnqueueCallback should continually be invoked
TEST_F(QueueTest, register_enqueue_with_half_empty_queue) {
Queue<std::string> queue(kQueueSize);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
// make Queue half empty
for (int i = 0; i < kHalfOfQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
enqueue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(0), std::forward_as_tuple());
auto enqueue_future = enqueue_promise_map[0].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), 0);
// push some data to enqueue_end buffer and register enqueue;
for (int i = 0; i < kHalfOfQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
// Register enqueue and expect data move to Queue
enqueue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(0), std::forward_as_tuple());
enqueue_future = enqueue_promise_map[0].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), 0);
}
// Enqueue end level : 1
// Dequeue end level : 1
// Test 3-2 Register dequeue with half empty queue, DequeueCallback should continually be invoked
TEST_F(QueueTest, register_dequeue_with_half_empty_queue) {
Queue<std::string> queue(kQueueSize);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
TestDequeueEnd test_dequeue_end(&queue, dequeue_handler_, kQueueSize);
// make Queue half empty
for (int i = 0; i < kHalfOfQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
enqueue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(0), std::forward_as_tuple());
auto enqueue_future = enqueue_promise_map[0].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), 0);
// Register dequeue and expect data move to dequeue end buffer
std::unordered_map<int, std::promise<int>> dequeue_promise_map;
dequeue_promise_map.emplace(
std::piecewise_construct, std::forward_as_tuple(kHalfOfQueueSize), std::forward_as_tuple());
auto dequeue_future = dequeue_promise_map[kHalfOfQueueSize].get_future();
test_dequeue_end.RegisterDequeue(&dequeue_promise_map);
dequeue_future.wait();
EXPECT_EQ(dequeue_future.get(), kHalfOfQueueSize);
test_dequeue_end.UnregisterDequeue();
}
// Dynamic level test
// Test 4 : Queue becomes full during test, EnqueueCallback should stop to be invoked
// Enqueue end level : 1 -> 0
// Dequeue end level : 1
// Test 4-1 Queue becomes full due to only register EnqueueCallback
TEST_F(QueueTest, queue_becomes_full_enqueue_callback_only) {
Queue<std::string> queue(kQueueSize);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
// push double of kQueueSize to enqueue end buffer
for (int i = 0; i < kDoubleOfQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
// Register enqueue and expect kQueueSize data move to Queue
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
enqueue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(kQueueSize), std::forward_as_tuple());
auto enqueue_future = enqueue_promise_map[kQueueSize].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), kQueueSize);
// EnqueueCallback shouldn't be invoked and buffer size stay in kQueueSize
std::this_thread::sleep_for(std::chrono::milliseconds(20));
EXPECT_EQ(test_enqueue_end.buffer_.size(), (size_t)kQueueSize);
EXPECT_EQ(test_enqueue_end.count, kQueueSize);
test_enqueue_end.UnregisterEnqueue();
}
// Enqueue end level : 1 -> 0
// Dequeue end level : 1
// Test 4-2 Queue becomes full due to DequeueCallback unregister during test
TEST_F(QueueTest, queue_becomes_full_dequeue_callback_unregister) {
Queue<std::string> queue(kQueueSize);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
TestDequeueEnd test_dequeue_end(&queue, dequeue_handler_, kHalfOfQueueSize);
// push double of kQueueSize to enqueue end buffer
for (int i = 0; i < kDoubleOfQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
// Register dequeue
std::unordered_map<int, std::promise<int>> dequeue_promise_map;
dequeue_promise_map.emplace(
std::piecewise_construct, std::forward_as_tuple(kHalfOfQueueSize), std::forward_as_tuple());
auto dequeue_future = dequeue_promise_map[kHalfOfQueueSize].get_future();
test_dequeue_end.RegisterDequeue(&dequeue_promise_map);
// Register enqueue
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
enqueue_promise_map.emplace(
std::piecewise_construct, std::forward_as_tuple(kHalfOfQueueSize), std::forward_as_tuple());
auto enqueue_future = enqueue_promise_map[kHalfOfQueueSize].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
// Dequeue end will unregister when buffer size is kHalfOfQueueSize
dequeue_future.wait();
EXPECT_EQ(dequeue_future.get(), kHalfOfQueueSize);
// EnqueueCallback shouldn't be invoked and buffer size stay in kHalfOfQueueSize
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), kHalfOfQueueSize);
std::this_thread::sleep_for(std::chrono::milliseconds(20));
EXPECT_EQ(test_enqueue_end.buffer_.size(), (size_t)kHalfOfQueueSize);
EXPECT_EQ(test_enqueue_end.count, kQueueSize + kHalfOfQueueSize);
test_enqueue_end.UnregisterEnqueue();
}
// Enqueue end level : 1 -> 0
// Dequeue end level : 1
// Test 4-3 Queue becomes full due to DequeueCallback is slower
TEST_F(QueueTest, queue_becomes_full_dequeue_callback_slower) {
Queue<std::string> queue(kQueueSize);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
TestDequeueEnd test_dequeue_end(&queue, dequeue_handler_, kDoubleOfQueueSize);
// push double of kDoubleOfQueueSize to enqueue end buffer
for (int i = 0; i < kDoubleOfQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
// Set 20 ms delay for callback and register dequeue
std::unordered_map<int, std::promise<int>> dequeue_promise_map;
test_dequeue_end.setDelay(20);
auto dequeue_future = dequeue_promise_map[kHalfOfQueueSize].get_future();
test_dequeue_end.RegisterDequeue(&dequeue_promise_map);
// Register enqueue
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
enqueue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(0), std::forward_as_tuple());
auto enqueue_future = enqueue_promise_map[0].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
// Wait for enqueue buffer empty and expect queue is full
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), 0);
EXPECT_GE(test_dequeue_end.buffer_.size(), kQueueSize - 1);
test_dequeue_end.UnregisterDequeue();
}
// Enqueue end level : 0 -> 1
// Dequeue end level : 1 -> 0
// Test 5 Queue becomes full and non empty at same time.
TEST_F(QueueTest, queue_becomes_full_and_non_empty_at_same_time) {
Queue<std::string> queue(kQueueSizeOne);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
TestDequeueEnd test_dequeue_end(&queue, dequeue_handler_, kDoubleOfQueueSize);
// push double of kQueueSize to enqueue end buffer
for (int i = 0; i < kQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
// Register dequeue
std::unordered_map<int, std::promise<int>> dequeue_promise_map;
dequeue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(kQueueSize), std::forward_as_tuple());
auto dequeue_future = dequeue_promise_map[kQueueSize].get_future();
test_dequeue_end.RegisterDequeue(&dequeue_promise_map);
// Register enqueue
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
auto enqueue_future = enqueue_promise_map[0].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
// Wait for all data move from enqueue end buffer to dequeue end buffer
dequeue_future.wait();
EXPECT_EQ(dequeue_future.get(), kQueueSize);
test_dequeue_end.UnregisterDequeue();
}
// Enqueue end level : 1 -> 0
// Dequeue end level : 1
// Test 6 Queue becomes not full during test, EnqueueCallback should start to be invoked
TEST_F(QueueTest, queue_becomes_non_full_during_test) {
Queue<std::string> queue(kQueueSize);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
TestDequeueEnd test_dequeue_end(&queue, dequeue_handler_, kQueueSize * 3);
// make Queue full
for (int i = 0; i < kDoubleOfQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
enqueue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(kQueueSize), std::forward_as_tuple());
enqueue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(0), std::forward_as_tuple());
auto enqueue_future = enqueue_promise_map[kQueueSize].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), kQueueSize);
// Expect kQueueSize data block in enqueue end buffer
std::this_thread::sleep_for(std::chrono::milliseconds(20));
EXPECT_EQ(test_enqueue_end.buffer_.size(), kQueueSize);
// Register dequeue
std::unordered_map<int, std::promise<int>> dequeue_promise_map;
test_dequeue_end.RegisterDequeue(&dequeue_promise_map);
// Expect enqueue end will empty
enqueue_future = enqueue_promise_map[0].get_future();
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), 0);
test_dequeue_end.UnregisterDequeue();
}
// Enqueue end level : 0 -> 1
// Dequeue end level : 1 -> 0
// Test 7 Queue becomes non full and empty at same time. (Exactly same as Test 5)
TEST_F(QueueTest, queue_becomes_non_full_and_empty_at_same_time) {
Queue<std::string> queue(kQueueSizeOne);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
TestDequeueEnd test_dequeue_end(&queue, dequeue_handler_, kDoubleOfQueueSize);
// push double of kQueueSize to enqueue end buffer
for (int i = 0; i < kQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
// Register dequeue
std::unordered_map<int, std::promise<int>> dequeue_promise_map;
dequeue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(kQueueSize), std::forward_as_tuple());
auto dequeue_future = dequeue_promise_map[kQueueSize].get_future();
test_dequeue_end.RegisterDequeue(&dequeue_promise_map);
// Register enqueue
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
auto enqueue_future = enqueue_promise_map[0].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
// Wait for all data move from enqueue end buffer to dequeue end buffer
dequeue_future.wait();
EXPECT_EQ(dequeue_future.get(), kQueueSize);
test_dequeue_end.UnregisterDequeue();
}
// Test 8 : Queue becomes empty during test, DequeueCallback should stop to be invoked
// Enqueue end level : 1
// Dequeue end level : 1 -> 0
// Test 8-1 Queue becomes empty due to only register DequeueCallback
TEST_F(QueueTest, queue_becomes_empty_dequeue_callback_only) {
Queue<std::string> queue(kQueueSize);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
TestDequeueEnd test_dequeue_end(&queue, dequeue_handler_, kHalfOfQueueSize);
// make Queue half empty
for (int i = 0; i < kHalfOfQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
enqueue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(0), std::forward_as_tuple());
auto enqueue_future = enqueue_promise_map[0].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), 0);
// Register dequeue, expect kHalfOfQueueSize data move to dequeue end buffer
std::unordered_map<int, std::promise<int>> dequeue_promise_map;
dequeue_promise_map.emplace(
std::piecewise_construct, std::forward_as_tuple(kHalfOfQueueSize), std::forward_as_tuple());
auto dequeue_future = dequeue_promise_map[kHalfOfQueueSize].get_future();
test_dequeue_end.RegisterDequeue(&dequeue_promise_map);
dequeue_future.wait();
EXPECT_EQ(dequeue_future.get(), kHalfOfQueueSize);
// Expect DequeueCallback should stop to be invoked
std::this_thread::sleep_for(std::chrono::milliseconds(20));
EXPECT_EQ(test_dequeue_end.count, kHalfOfQueueSize);
}
// Enqueue end level : 1
// Dequeue end level : 1 -> 0
// Test 8-2 Queue becomes empty due to EnqueueCallback unregister during test
TEST_F(QueueTest, queue_becomes_empty_enqueue_callback_unregister) {
Queue<std::string> queue(kQueueSize);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
TestDequeueEnd test_dequeue_end(&queue, dequeue_handler_, kQueueSize);
// make Queue half empty
for (int i = 0; i < kHalfOfQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
enqueue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(0), std::forward_as_tuple());
auto enqueue_future = enqueue_promise_map[0].get_future();
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
enqueue_future.wait();
EXPECT_EQ(enqueue_future.get(), 0);
// push kHalfOfQueueSize to enqueue end buffer and register enqueue.
for (int i = 0; i < kHalfOfQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
// Register dequeue, expect kQueueSize move to dequeue end buffer
std::unordered_map<int, std::promise<int>> dequeue_promise_map;
dequeue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(kQueueSize), std::forward_as_tuple());
auto dequeue_future = dequeue_promise_map[kQueueSize].get_future();
test_dequeue_end.RegisterDequeue(&dequeue_promise_map);
dequeue_future.wait();
EXPECT_EQ(dequeue_future.get(), kQueueSize);
// Expect DequeueCallback should stop to be invoked
std::this_thread::sleep_for(std::chrono::milliseconds(20));
EXPECT_EQ(test_dequeue_end.count, kQueueSize);
}
// Enqueue end level : 1
// Dequeue end level : 0 -> 1
// Test 9 Queue becomes not empty during test, DequeueCallback should start to be invoked
TEST_F(QueueTest, queue_becomes_non_empty_during_test) {
Queue<std::string> queue(kQueueSize);
TestEnqueueEnd test_enqueue_end(&queue, enqueue_handler_);
TestDequeueEnd test_dequeue_end(&queue, dequeue_handler_, kQueueSize);
// Register dequeue
std::unordered_map<int, std::promise<int>> dequeue_promise_map;
dequeue_promise_map.emplace(std::piecewise_construct, std::forward_as_tuple(kQueueSize), std::forward_as_tuple());
test_dequeue_end.RegisterDequeue(&dequeue_promise_map);
// push kQueueSize data to enqueue end buffer and register enqueue
for (int i = 0; i < kQueueSize; i++) {
std::unique_ptr<std::string> data = std::make_unique<std::string>(std::to_string(i));
test_enqueue_end.buffer_.push(std::move(data));
}
std::unordered_map<int, std::promise<int>> enqueue_promise_map;
test_enqueue_end.RegisterEnqueue(&enqueue_promise_map);
// Expect kQueueSize data move to dequeue end buffer
auto dequeue_future = dequeue_promise_map[kQueueSize].get_future();
dequeue_future.wait();
EXPECT_EQ(dequeue_future.get(), kQueueSize);
}
TEST_F(QueueTest, pass_smart_pointer_and_unregister) {
Queue<std::string>* queue = new Queue<std::string>(kQueueSize);
// Enqueue a string
std::string valid = "Valid String";
std::shared_ptr<std::string> shared = std::make_shared<std::string>(valid);
queue->RegisterEnqueue(
enqueue_handler_,
common::Bind(
[](Queue<std::string>* queue, std::shared_ptr<std::string> shared) {
queue->UnregisterEnqueue();
return std::make_unique<std::string>(*shared);
},
common::Unretained(queue),
shared));
// Dequeue the string
queue->RegisterDequeue(
dequeue_handler_,
common::Bind(
[](Queue<std::string>* queue, std::string valid) {
queue->UnregisterDequeue();
auto answer = *queue->TryDequeue();
ASSERT_EQ(answer, valid);
},
common::Unretained(queue),
valid));
// Wait for both handlers to finish and delete the Queue
std::promise<void> promise;
auto future = promise.get_future();
enqueue_handler_->Post(common::BindOnce(
[](os::Handler* dequeue_handler, Queue<std::string>* queue, std::promise<void>* promise) {
dequeue_handler->Post(common::BindOnce(
[](Queue<std::string>* queue, std::promise<void>* promise) {
delete queue;
promise->set_value();
},
common::Unretained(queue),
common::Unretained(promise)));
},
common::Unretained(dequeue_handler_),
common::Unretained(queue),
common::Unretained(&promise)));
future.wait();
}
std::unique_ptr<std::string> sleep_and_enqueue_callback(int* to_increase) {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
(*to_increase)++;
return std::make_unique<std::string>("Hello");
}
TEST_F(QueueTest, unregister_enqueue_and_wait) {
Queue<std::string> queue(10);
int* indicator = new int(100);
queue.RegisterEnqueue(enqueue_handler_, common::Bind(&sleep_and_enqueue_callback, common::Unretained(indicator)));
std::this_thread::sleep_for(std::chrono::milliseconds(50));
queue.UnregisterEnqueue();
EXPECT_EQ(*indicator, 101);
delete indicator;
}
std::unique_ptr<std::string> sleep_and_enqueue_callback_and_unregister(
int* to_increase, Queue<std::string>* queue, std::atomic_bool* is_registered) {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
(*to_increase)++;
if (is_registered->exchange(false)) {
queue->UnregisterEnqueue();
}
return std::make_unique<std::string>("Hello");
}
TEST_F(QueueTest, unregister_enqueue_and_wait_maybe_unregistered) {
Queue<std::string> queue(10);
int* indicator = new int(100);
std::atomic_bool is_registered = true;
queue.RegisterEnqueue(
enqueue_handler_,
common::Bind(
&sleep_and_enqueue_callback_and_unregister,
common::Unretained(indicator),
common::Unretained(&queue),
common::Unretained(&is_registered)));
std::this_thread::sleep_for(std::chrono::milliseconds(50));
if (is_registered.exchange(false)) {
queue.UnregisterEnqueue();
}
EXPECT_EQ(*indicator, 101);
delete indicator;
}
void sleep_and_dequeue_callback(int* to_increase) {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
(*to_increase)++;
}
TEST_F(QueueTest, unregister_dequeue_and_wait) {
int* indicator = new int(100);
Queue<std::string> queue(10);
queue.RegisterEnqueue(
enqueue_handler_,
common::Bind(
[](Queue<std::string>* queue) {
queue->UnregisterEnqueue();
return std::make_unique<std::string>("Hello");
},
common::Unretained(&queue)));
queue.RegisterDequeue(enqueue_handler_, common::Bind(&sleep_and_dequeue_callback, common::Unretained(indicator)));
std::this_thread::sleep_for(std::chrono::milliseconds(50));
queue.UnregisterDequeue();
EXPECT_EQ(*indicator, 101);
delete indicator;
}
// Create all threads for death tests in the function that dies
class QueueDeathTest : public ::testing::Test {
public:
void RegisterEnqueueAndDelete() {
Thread* enqueue_thread = new Thread("enqueue_thread", Thread::Priority::NORMAL);
Handler* enqueue_handler = new Handler(enqueue_thread);
Queue<std::string>* queue = new Queue<std::string>(kQueueSizeOne);
queue->RegisterEnqueue(
enqueue_handler, common::Bind([]() { return std::make_unique<std::string>("A string to fill the queue"); }));
delete queue;
}
void RegisterDequeueAndDelete() {
Thread* dequeue_thread = new Thread("dequeue_thread", Thread::Priority::NORMAL);
Handler* dequeue_handler = new Handler(dequeue_thread);
Queue<std::string>* queue = new Queue<std::string>(kQueueSizeOne);
queue->RegisterDequeue(
dequeue_handler,
common::Bind([](Queue<std::string>* queue) { queue->TryDequeue(); }, common::Unretained(queue)));
delete queue;
}
};
TEST_F(QueueDeathTest, die_if_enqueue_not_unregistered) {
EXPECT_DEATH(RegisterEnqueueAndDelete(), "nqueue");
}
TEST_F(QueueDeathTest, die_if_dequeue_not_unregistered) {
EXPECT_DEATH(RegisterDequeueAndDelete(), "equeue");
}
class MockIQueueEnqueue : public IQueueEnqueue<int> {
public:
void RegisterEnqueue(Handler* handler, EnqueueCallback callback) override {
EXPECT_FALSE(registered_);
registered_ = true;
handler->Post(common::BindOnce(&MockIQueueEnqueue::handle_register_enqueue, common::Unretained(this), callback));
}
void handle_register_enqueue(EnqueueCallback callback) {
if (dont_handle_register_enqueue_) {
return;
}
while (registered_) {
std::unique_ptr<int> front = callback.Run();
queue_.push(*front);
}
}
void UnregisterEnqueue() override {
EXPECT_TRUE(registered_);
registered_ = false;
}
bool dont_handle_register_enqueue_ = false;
bool registered_ = false;
std::queue<int> queue_;
};
class EnqueueBufferTest : public ::testing::Test {
protected:
void SetUp() override {
thread_ = new Thread("test_thread", Thread::Priority::NORMAL);
handler_ = new Handler(thread_);
}
void TearDown() override {
handler_->Clear();
delete handler_;
delete thread_;
}
void SynchronizeHandler() {
std::promise<void> promise;
auto future = promise.get_future();
handler_->Post(common::BindOnce([](std::promise<void> promise) { promise.set_value(); }, std::move(promise)));
future.wait();
}
MockIQueueEnqueue enqueue_;
EnqueueBuffer<int> enqueue_buffer_{&enqueue_};
Thread* thread_;
Handler* handler_;
};
TEST_F(EnqueueBufferTest, enqueue) {
int num_items = 10;
for (int i = 0; i < num_items; i++) {
enqueue_buffer_.Enqueue(std::make_unique<int>(i), handler_);
}
SynchronizeHandler();
for (int i = 0; i < num_items; i++) {
ASSERT_EQ(enqueue_.queue_.front(), i);
enqueue_.queue_.pop();
}
ASSERT_FALSE(enqueue_.registered_);
}
TEST_F(EnqueueBufferTest, clear) {
enqueue_.dont_handle_register_enqueue_ = true;
int num_items = 10;
for (int i = 0; i < num_items; i++) {
enqueue_buffer_.Enqueue(std::make_unique<int>(i), handler_);
}
ASSERT_TRUE(enqueue_.registered_);
enqueue_buffer_.Clear();
ASSERT_FALSE(enqueue_.registered_);
}
TEST_F(EnqueueBufferTest, delete_when_in_callback) {
Queue<int>* queue = new Queue<int>(kQueueSize);
EnqueueBuffer<int>* enqueue_buffer = new EnqueueBuffer<int>(queue);
int num_items = 10;
for (int i = 0; i < num_items; i++) {
enqueue_buffer->Enqueue(std::make_unique<int>(i), handler_);
}
delete enqueue_buffer;
delete queue;
}
} // namespace
} // namespace os
} // namespace bluetooth
|