1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
#
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import build.lc3 as lc3
import tables as T, appendix_c as C
### ------------------------------------------------------------------------ ###
class AttackDetector:
def __init__(self, dt, sr):
self.dt = dt
self.sr = sr
self.ms = T.DT_MS[dt]
self.xn1 = 0
self.xn2 = 0
self.en1 = 0
self.an1 = 0
self.p_att = 0
def is_enabled(self, nbytes):
c1 = self.dt == T.DT_10M and \
self.sr == T.SRATE_32K and nbytes > 80
c2 = self.dt == T.DT_10M and \
self.sr >= T.SRATE_48K and nbytes >= 100
c3 = self.dt == T.DT_7M5 and \
self.sr == T.SRATE_32K and nbytes >= 61 and nbytes < 150
c4 = self.dt == T.DT_7M5 and \
self.sr >= T.SRATE_48K and nbytes >= 75 and nbytes < 150
return c1 or c2 or c3 or c4
def run(self, nbytes, x):
### 3.3.6.2 Downsampling and filtering input
mf = int(16 * self.ms)
r = len(x) // mf
x_att = np.array([ np.sum(x[i*r:(i+1)*r]) for i in range(mf) ])
x_hp = np.empty(mf)
x_hp[0 ] = 0.375 * x_att[0 ] - 0.5 * self.xn1 + 0.125 * self.xn2
x_hp[1 ] = 0.375 * x_att[1 ] - 0.5 * x_att[0 ] + 0.125 * self.xn1
x_hp[2:] = 0.375 * x_att[2:] - 0.5 * x_att[1:-1] + 0.125 * x_att[0:-2]
self.xn2 = x_att[-2]
self.xn1 = x_att[-1]
### 3.3.6.3 Energy calculation
nb = int(self.ms / 2.5)
e_att = np.array([ np.sum(np.square(x_hp[40*i:40*(i+1)]))
for i in range(nb) ])
a_att = np.empty(nb)
a_att[0] = np.maximum(0.25 * self.an1, self.en1)
for i in range(1,nb):
a_att[i] = np.maximum(0.25 * a_att[i-1], e_att[i-1])
self.en1 = e_att[-1]
self.an1 = a_att[-1]
### 3.3.6.4 Attack Detection
p_att = -1
flags = [ (e_att[i] > 8.5 * a_att[i]) for i in range(nb) ]
for (i, f) in enumerate(flags):
if f: p_att = i
f_att = p_att >= 0 or self.p_att - 1 >= nb // 2
self.p_att = 1 + p_att
return self.is_enabled(nbytes) and f_att
def initial_state():
return { 'en1': 0.0, 'an1': 0.0, 'p_att': 0 }
### ------------------------------------------------------------------------ ###
def check_enabling(rng, dt):
ok = True
for sr in range(T.SRATE_16K, T.NUM_SRATE):
attdet = AttackDetector(dt, sr)
for nbytes in [ 61, 61-1, 75-1, 75, 80, 80+1, 100-1, 100, 150-1, 150 ]:
f_att = lc3.attdet_run(dt, sr, nbytes,
initial_state(), 2 * rng.random(T.NS[dt][sr]+6) - 1)
ok = ok and f_att == attdet.is_enabled(nbytes)
return ok
def check_unit(rng, dt, sr):
ns = T.NS[dt][sr]
ok = True
attdet = AttackDetector(dt, sr)
state_c = initial_state()
x_c = np.zeros(ns+6)
for run in range(100):
### Generate noise, and an attack at random point
x = ((2 * rng.random(ns)) - 1) * (2 ** 8 - 1)
x[(ns * rng.random()).astype(int)] *= 2 ** 7
### Check Implementation
f_att = attdet.run(100, x)
x_c = np.append(x_c[-6:], x)
f_att_c = lc3.attdet_run(dt, sr, 100, state_c, x_c)
ok = ok and f_att_c == f_att
ok = ok and np.amax(np.abs(1 - state_c['en1']/attdet.en1)) < 2
ok = ok and np.amax(np.abs(1 - state_c['an1']/attdet.an1)) < 2
ok = ok and state_c['p_att'] == attdet.p_att
return ok
def check_appendix_c(dt):
sr = T.SRATE_48K
state = initial_state()
x = np.append(np.zeros(6), C.X_PCM_ATT[dt][0])
f_att = lc3.attdet_run(dt, sr, C.NBYTES_ATT[dt], state, x)
ok = f_att == C.F_ATT[dt][0]
x = np.append(x[-6:], C.X_PCM_ATT[dt][1])
f_att = lc3.attdet_run(dt, sr, C.NBYTES_ATT[dt], state, x)
ok = f_att == C.F_ATT[dt][1]
return ok
def check():
rng = np.random.default_rng(1234)
ok = True
for dt in range(T.NUM_DT):
ok and check_enabling(rng, dt)
for dt in range(T.NUM_DT):
for sr in range(T.SRATE_32K, T.NUM_SRATE):
ok = ok and check_unit(rng, dt, sr)
for dt in range(T.NUM_DT):
ok = ok and check_appendix_c(dt)
return ok
### ------------------------------------------------------------------------ ###
|