1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
|
/******************************************************************************
*
* Copyright 2022 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#include "sns.h"
#include "tables.h"
/* ----------------------------------------------------------------------------
* DCT-16
* -------------------------------------------------------------------------- */
/**
* Matrix of DCT-16 coefficients
*
* M[n][k] = 2f cos( Pi k (2n + 1) / 2N )
*
* k = [0..N-1], n = [0..N-1], N = 16
* f = sqrt(1/4N) for k=0, sqrt(1/2N) otherwise
*/
static const float dct16_m[16][16] = {
{ 2.50000000e-01, 3.51850934e-01, 3.46759961e-01, 3.38329500e-01,
3.26640741e-01, 3.11806253e-01, 2.93968901e-01, 2.73300467e-01,
2.50000000e-01, 2.24291897e-01, 1.96423740e-01, 1.66663915e-01,
1.35299025e-01, 1.02631132e-01, 6.89748448e-02, 3.46542923e-02 },
{ 2.50000000e-01, 3.38329500e-01, 2.93968901e-01, 2.24291897e-01,
1.35299025e-01, 3.46542923e-02, -6.89748448e-02, -1.66663915e-01,
-2.50000000e-01, -3.11806253e-01, -3.46759961e-01, -3.51850934e-01,
-3.26640741e-01, -2.73300467e-01, -1.96423740e-01, -1.02631132e-01 },
{ 2.50000000e-01, 3.11806253e-01, 1.96423740e-01, 3.46542923e-02,
-1.35299025e-01, -2.73300467e-01, -3.46759961e-01, -3.38329500e-01,
-2.50000000e-01, -1.02631132e-01, 6.89748448e-02, 2.24291897e-01,
3.26640741e-01, 3.51850934e-01, 2.93968901e-01, 1.66663915e-01 },
{ 2.50000000e-01, 2.73300467e-01, 6.89748448e-02, -1.66663915e-01,
-3.26640741e-01, -3.38329500e-01, -1.96423740e-01, 3.46542923e-02,
2.50000000e-01, 3.51850934e-01, 2.93968901e-01, 1.02631132e-01,
-1.35299025e-01, -3.11806253e-01, -3.46759961e-01, -2.24291897e-01 },
{ 2.50000000e-01, 2.24291897e-01, -6.89748448e-02, -3.11806253e-01,
-3.26640741e-01, -1.02631132e-01, 1.96423740e-01, 3.51850934e-01,
2.50000000e-01, -3.46542923e-02, -2.93968901e-01, -3.38329500e-01,
-1.35299025e-01, 1.66663915e-01, 3.46759961e-01, 2.73300467e-01 },
{ 2.50000000e-01, 1.66663915e-01, -1.96423740e-01, -3.51850934e-01,
-1.35299025e-01, 2.24291897e-01, 3.46759961e-01, 1.02631132e-01,
-2.50000000e-01, -3.38329500e-01, -6.89748448e-02, 2.73300467e-01,
3.26640741e-01, 3.46542923e-02, -2.93968901e-01, -3.11806253e-01 },
{ 2.50000000e-01, 1.02631132e-01, -2.93968901e-01, -2.73300467e-01,
1.35299025e-01, 3.51850934e-01, 6.89748448e-02, -3.11806253e-01,
-2.50000000e-01, 1.66663915e-01, 3.46759961e-01, 3.46542923e-02,
-3.26640741e-01, -2.24291897e-01, 1.96423740e-01, 3.38329500e-01 },
{ 2.50000000e-01, 3.46542923e-02, -3.46759961e-01, -1.02631132e-01,
3.26640741e-01, 1.66663915e-01, -2.93968901e-01, -2.24291897e-01,
2.50000000e-01, 2.73300467e-01, -1.96423740e-01, -3.11806253e-01,
1.35299025e-01, 3.38329500e-01, -6.89748448e-02, -3.51850934e-01 },
{ 2.50000000e-01, -3.46542923e-02, -3.46759961e-01, 1.02631132e-01,
3.26640741e-01, -1.66663915e-01, -2.93968901e-01, 2.24291897e-01,
2.50000000e-01, -2.73300467e-01, -1.96423740e-01, 3.11806253e-01,
1.35299025e-01, -3.38329500e-01, -6.89748448e-02, 3.51850934e-01 },
{ 2.50000000e-01, -1.02631132e-01, -2.93968901e-01, 2.73300467e-01,
1.35299025e-01, -3.51850934e-01, 6.89748448e-02, 3.11806253e-01,
-2.50000000e-01, -1.66663915e-01, 3.46759961e-01, -3.46542923e-02,
-3.26640741e-01, 2.24291897e-01, 1.96423740e-01, -3.38329500e-01 },
{ 2.50000000e-01, -1.66663915e-01, -1.96423740e-01, 3.51850934e-01,
-1.35299025e-01, -2.24291897e-01, 3.46759961e-01, -1.02631132e-01,
-2.50000000e-01, 3.38329500e-01, -6.89748448e-02, -2.73300467e-01,
3.26640741e-01, -3.46542923e-02, -2.93968901e-01, 3.11806253e-01 },
{ 2.50000000e-01, -2.24291897e-01, -6.89748448e-02, 3.11806253e-01,
-3.26640741e-01, 1.02631132e-01, 1.96423740e-01, -3.51850934e-01,
2.50000000e-01, 3.46542923e-02, -2.93968901e-01, 3.38329500e-01,
-1.35299025e-01, -1.66663915e-01, 3.46759961e-01, -2.73300467e-01 },
{ 2.50000000e-01, -2.73300467e-01, 6.89748448e-02, 1.66663915e-01,
-3.26640741e-01, 3.38329500e-01, -1.96423740e-01, -3.46542923e-02,
2.50000000e-01, -3.51850934e-01, 2.93968901e-01, -1.02631132e-01,
-1.35299025e-01, 3.11806253e-01, -3.46759961e-01, 2.24291897e-01 },
{ 2.50000000e-01, -3.11806253e-01, 1.96423740e-01, -3.46542923e-02,
-1.35299025e-01, 2.73300467e-01, -3.46759961e-01, 3.38329500e-01,
-2.50000000e-01, 1.02631132e-01, 6.89748448e-02, -2.24291897e-01,
3.26640741e-01, -3.51850934e-01, 2.93968901e-01, -1.66663915e-01 },
{ 2.50000000e-01, -3.38329500e-01, 2.93968901e-01, -2.24291897e-01,
1.35299025e-01, -3.46542923e-02, -6.89748448e-02, 1.66663915e-01,
-2.50000000e-01, 3.11806253e-01, -3.46759961e-01, 3.51850934e-01,
-3.26640741e-01, 2.73300467e-01, -1.96423740e-01, 1.02631132e-01 },
{ 2.50000000e-01, -3.51850934e-01, 3.46759961e-01, -3.38329500e-01,
3.26640741e-01, -3.11806253e-01, 2.93968901e-01, -2.73300467e-01,
2.50000000e-01, -2.24291897e-01, 1.96423740e-01, -1.66663915e-01,
1.35299025e-01, -1.02631132e-01, 6.89748448e-02, -3.46542923e-02 },
};
/**
* Forward DCT-16 transformation
* x, y Input and output 16 values
*/
LC3_HOT static void dct16_forward(const float *x, float *y)
{
for (int i = 0, j; i < 16; i++)
for (y[i] = 0, j = 0; j < 16; j++)
y[i] += x[j] * dct16_m[j][i];
}
/**
* Inverse DCT-16 transformation
* x, y Input and output 16 values
*/
LC3_HOT static void dct16_inverse(const float *x, float *y)
{
for (int i = 0, j; i < 16; i++)
for (y[i] = 0, j = 0; j < 16; j++)
y[i] += x[j] * dct16_m[i][j];
}
/* ----------------------------------------------------------------------------
* Scale factors
* -------------------------------------------------------------------------- */
/**
* Scale factors
* dt, sr Duration and samplerate of the frame
* eb Energy estimation per bands
* att 1: Attack detected 0: Otherwise
* scf Output 16 scale factors
*/
LC3_HOT static void compute_scale_factors(
enum lc3_dt dt, enum lc3_srate sr,
const float *eb, bool att, float *scf)
{
/* Pre-emphasis gain table :
* Ge[b] = 10 ^ (b * g_tilt) / 630 , b = [0..63] */
static const float ge_table[LC3_NUM_SRATE][LC3_NUM_BANDS] = {
[LC3_SRATE_8K] = { /* g_tilt = 14 */
1.00000000e+00, 1.05250029e+00, 1.10775685e+00, 1.16591440e+00,
1.22712524e+00, 1.29154967e+00, 1.35935639e+00, 1.43072299e+00,
1.50583635e+00, 1.58489319e+00, 1.66810054e+00, 1.75567629e+00,
1.84784980e+00, 1.94486244e+00, 2.04696827e+00, 2.15443469e+00,
2.26754313e+00, 2.38658979e+00, 2.51188643e+00, 2.64376119e+00,
2.78255940e+00, 2.92864456e+00, 3.08239924e+00, 3.24422608e+00,
3.41454887e+00, 3.59381366e+00, 3.78248991e+00, 3.98107171e+00,
4.19007911e+00, 4.41005945e+00, 4.64158883e+00, 4.88527357e+00,
5.14175183e+00, 5.41169527e+00, 5.69581081e+00, 5.99484250e+00,
6.30957344e+00, 6.64082785e+00, 6.98947321e+00, 7.35642254e+00,
7.74263683e+00, 8.14912747e+00, 8.57695899e+00, 9.02725178e+00,
9.50118507e+00, 1.00000000e+01, 1.05250029e+01, 1.10775685e+01,
1.16591440e+01, 1.22712524e+01, 1.29154967e+01, 1.35935639e+01,
1.43072299e+01, 1.50583635e+01, 1.58489319e+01, 1.66810054e+01,
1.75567629e+01, 1.84784980e+01, 1.94486244e+01, 2.04696827e+01,
2.15443469e+01, 2.26754313e+01, 2.38658979e+01, 2.51188643e+01 },
[LC3_SRATE_16K] = { /* g_tilt = 18 */
1.00000000e+00, 1.06800043e+00, 1.14062492e+00, 1.21818791e+00,
1.30102522e+00, 1.38949549e+00, 1.48398179e+00, 1.58489319e+00,
1.69266662e+00, 1.80776868e+00, 1.93069773e+00, 2.06198601e+00,
2.20220195e+00, 2.35195264e+00, 2.51188643e+00, 2.68269580e+00,
2.86512027e+00, 3.05994969e+00, 3.26802759e+00, 3.49025488e+00,
3.72759372e+00, 3.98107171e+00, 4.25178630e+00, 4.54090961e+00,
4.84969343e+00, 5.17947468e+00, 5.53168120e+00, 5.90783791e+00,
6.30957344e+00, 6.73862717e+00, 7.19685673e+00, 7.68624610e+00,
8.20891416e+00, 8.76712387e+00, 9.36329209e+00, 1.00000000e+01,
1.06800043e+01, 1.14062492e+01, 1.21818791e+01, 1.30102522e+01,
1.38949549e+01, 1.48398179e+01, 1.58489319e+01, 1.69266662e+01,
1.80776868e+01, 1.93069773e+01, 2.06198601e+01, 2.20220195e+01,
2.35195264e+01, 2.51188643e+01, 2.68269580e+01, 2.86512027e+01,
3.05994969e+01, 3.26802759e+01, 3.49025488e+01, 3.72759372e+01,
3.98107171e+01, 4.25178630e+01, 4.54090961e+01, 4.84969343e+01,
5.17947468e+01, 5.53168120e+01, 5.90783791e+01, 6.30957344e+01 },
[LC3_SRATE_24K] = { /* g_tilt = 22 */
1.00000000e+00, 1.08372885e+00, 1.17446822e+00, 1.27280509e+00,
1.37937560e+00, 1.49486913e+00, 1.62003281e+00, 1.75567629e+00,
1.90267705e+00, 2.06198601e+00, 2.23463373e+00, 2.42173704e+00,
2.62450630e+00, 2.84425319e+00, 3.08239924e+00, 3.34048498e+00,
3.62017995e+00, 3.92329345e+00, 4.25178630e+00, 4.60778348e+00,
4.99358789e+00, 5.41169527e+00, 5.86481029e+00, 6.35586411e+00,
6.88803330e+00, 7.46476041e+00, 8.08977621e+00, 8.76712387e+00,
9.50118507e+00, 1.02967084e+01, 1.11588399e+01, 1.20931568e+01,
1.31057029e+01, 1.42030283e+01, 1.53922315e+01, 1.66810054e+01,
1.80776868e+01, 1.95913107e+01, 2.12316686e+01, 2.30093718e+01,
2.49359200e+01, 2.70237760e+01, 2.92864456e+01, 3.17385661e+01,
3.43959997e+01, 3.72759372e+01, 4.03970086e+01, 4.37794036e+01,
4.74450028e+01, 5.14175183e+01, 5.57226480e+01, 6.03882412e+01,
6.54444792e+01, 7.09240702e+01, 7.68624610e+01, 8.32980665e+01,
9.02725178e+01, 9.78309319e+01, 1.06022203e+02, 1.14899320e+02,
1.24519708e+02, 1.34945600e+02, 1.46244440e+02, 1.58489319e+02 },
[LC3_SRATE_32K] = { /* g_tilt = 26 */
1.00000000e+00, 1.09968890e+00, 1.20931568e+00, 1.32987103e+00,
1.46244440e+00, 1.60823388e+00, 1.76855694e+00, 1.94486244e+00,
2.13874364e+00, 2.35195264e+00, 2.58641621e+00, 2.84425319e+00,
3.12779366e+00, 3.43959997e+00, 3.78248991e+00, 4.15956216e+00,
4.57422434e+00, 5.03022373e+00, 5.53168120e+00, 6.08312841e+00,
6.68954879e+00, 7.35642254e+00, 8.08977621e+00, 8.89623710e+00,
9.78309319e+00, 1.07583590e+01, 1.18308480e+01, 1.30102522e+01,
1.43072299e+01, 1.57335019e+01, 1.73019574e+01, 1.90267705e+01,
2.09235283e+01, 2.30093718e+01, 2.53031508e+01, 2.78255940e+01,
3.05994969e+01, 3.36499270e+01, 3.70044512e+01, 4.06933843e+01,
4.47500630e+01, 4.92111475e+01, 5.41169527e+01, 5.95118121e+01,
6.54444792e+01, 7.19685673e+01, 7.91430346e+01, 8.70327166e+01,
9.57089124e+01, 1.05250029e+02, 1.15742288e+02, 1.27280509e+02,
1.39968963e+02, 1.53922315e+02, 1.69266662e+02, 1.86140669e+02,
2.04696827e+02, 2.25102829e+02, 2.47543082e+02, 2.72220379e+02,
2.99357729e+02, 3.29200372e+02, 3.62017995e+02, 3.98107171e+02 },
[LC3_SRATE_48K] = { /* g_tilt = 30 */
1.00000000e+00, 1.11588399e+00, 1.24519708e+00, 1.38949549e+00,
1.55051578e+00, 1.73019574e+00, 1.93069773e+00, 2.15443469e+00,
2.40409918e+00, 2.68269580e+00, 2.99357729e+00, 3.34048498e+00,
3.72759372e+00, 4.15956216e+00, 4.64158883e+00, 5.17947468e+00,
5.77969288e+00, 6.44946677e+00, 7.19685673e+00, 8.03085722e+00,
8.96150502e+00, 1.00000000e+01, 1.11588399e+01, 1.24519708e+01,
1.38949549e+01, 1.55051578e+01, 1.73019574e+01, 1.93069773e+01,
2.15443469e+01, 2.40409918e+01, 2.68269580e+01, 2.99357729e+01,
3.34048498e+01, 3.72759372e+01, 4.15956216e+01, 4.64158883e+01,
5.17947468e+01, 5.77969288e+01, 6.44946677e+01, 7.19685673e+01,
8.03085722e+01, 8.96150502e+01, 1.00000000e+02, 1.11588399e+02,
1.24519708e+02, 1.38949549e+02, 1.55051578e+02, 1.73019574e+02,
1.93069773e+02, 2.15443469e+02, 2.40409918e+02, 2.68269580e+02,
2.99357729e+02, 3.34048498e+02, 3.72759372e+02, 4.15956216e+02,
4.64158883e+02, 5.17947468e+02, 5.77969288e+02, 6.44946677e+02,
7.19685673e+02, 8.03085722e+02, 8.96150502e+02, 1.00000000e+03 },
};
float e[LC3_NUM_BANDS];
/* --- Copy and padding --- */
int nb = LC3_MIN(lc3_band_lim[dt][sr][LC3_NUM_BANDS], LC3_NUM_BANDS);
int n2 = LC3_NUM_BANDS - nb;
for (int i2 = 0; i2 < n2; i2++)
e[2*i2 + 0] = e[2*i2 + 1] = eb[i2];
memcpy(e + 2*n2, eb + n2, (nb - n2) * sizeof(float));
/* --- Smoothing, pre-emphasis and logarithm --- */
const float *ge = ge_table[sr];
float e0 = e[0], e1 = e[0], e2;
float e_sum = 0;
for (int i = 0; i < LC3_NUM_BANDS-1; ) {
e[i] = (e0 * 0.25f + e1 * 0.5f + (e2 = e[i+1]) * 0.25f) * ge[i];
e_sum += e[i++];
e[i] = (e1 * 0.25f + e2 * 0.5f + (e0 = e[i+1]) * 0.25f) * ge[i];
e_sum += e[i++];
e[i] = (e2 * 0.25f + e0 * 0.5f + (e1 = e[i+1]) * 0.25f) * ge[i];
e_sum += e[i++];
}
e[LC3_NUM_BANDS-1] = (e0 * 0.25f + e1 * 0.75f) * ge[LC3_NUM_BANDS-1];
e_sum += e[LC3_NUM_BANDS-1];
float noise_floor = fmaxf(e_sum * (1e-4f / 64), 0x1p-32f);
for (int i = 0; i < LC3_NUM_BANDS; i++)
e[i] = fast_log2f(fmaxf(e[i], noise_floor)) * 0.5f;
/* --- Grouping & scaling --- */
float scf_sum;
scf[0] = (e[0] + e[4]) * 1.f/12 +
(e[0] + e[3]) * 2.f/12 +
(e[1] + e[2]) * 3.f/12 ;
scf_sum = scf[0];
for (int i = 1; i < 15; i++) {
scf[i] = (e[4*i-1] + e[4*i+4]) * 1.f/12 +
(e[4*i ] + e[4*i+3]) * 2.f/12 +
(e[4*i+1] + e[4*i+2]) * 3.f/12 ;
scf_sum += scf[i];
}
scf[15] = (e[59] + e[63]) * 1.f/12 +
(e[60] + e[63]) * 2.f/12 +
(e[61] + e[62]) * 3.f/12 ;
scf_sum += scf[15];
for (int i = 0; i < 16; i++)
scf[i] = 0.85f * (scf[i] - scf_sum * 1.f/16);
/* --- Attack handling --- */
if (!att)
return;
float s0, s1 = scf[0], s2 = scf[1], s3 = scf[2], s4 = scf[3];
float sn = s1 + s2;
scf[0] = (sn += s3) * 1.f/3;
scf[1] = (sn += s4) * 1.f/4;
scf_sum = scf[0] + scf[1];
for (int i = 2; i < 14; i++, sn -= s0) {
s0 = s1, s1 = s2, s2 = s3, s3 = s4, s4 = scf[i+2];
scf[i] = (sn += s4) * 1.f/5;
scf_sum += scf[i];
}
scf[14] = (sn ) * 1.f/4;
scf[15] = (sn -= s1) * 1.f/3;
scf_sum += scf[14] + scf[15];
for (int i = 0; i < 16; i++)
scf[i] = (dt == LC3_DT_7M5 ? 0.3f : 0.5f) *
(scf[i] - scf_sum * 1.f/16);
}
/**
* Codebooks
* scf Input 16 scale factors
* lf/hfcb_idx Output the low and high frequency codebooks index
*/
LC3_HOT static void resolve_codebooks(
const float *scf, int *lfcb_idx, int *hfcb_idx)
{
float dlfcb_max = 0, dhfcb_max = 0;
*lfcb_idx = *hfcb_idx = 0;
for (int icb = 0; icb < 32; icb++) {
const float *lfcb = lc3_sns_lfcb[icb];
const float *hfcb = lc3_sns_hfcb[icb];
float dlfcb = 0, dhfcb = 0;
for (int i = 0; i < 8; i++) {
dlfcb += (scf[ i] - lfcb[i]) * (scf[ i] - lfcb[i]);
dhfcb += (scf[8+i] - hfcb[i]) * (scf[8+i] - hfcb[i]);
}
if (icb == 0 || dlfcb < dlfcb_max)
*lfcb_idx = icb, dlfcb_max = dlfcb;
if (icb == 0 || dhfcb < dhfcb_max)
*hfcb_idx = icb, dhfcb_max = dhfcb;
}
}
/**
* Unit energy normalize pulse configuration
* c Pulse configuration
* cn Normalized pulse configuration
*/
LC3_HOT static void normalize(const int *c, float *cn)
{
int c2_sum = 0;
for (int i = 0; i < 16; i++)
c2_sum += c[i] * c[i];
float c_norm = 1.f / sqrtf(c2_sum);
for (int i = 0; i < 16; i++)
cn[i] = c[i] * c_norm;
}
/**
* Sub-procedure of `quantize()`, add unit pulse
* x, y, n Transformed residual, and vector of pulses with length
* start, end Current number of pulses, limit to reach
* corr, energy Correlation (x,y) and y energy, updated at output
*/
LC3_HOT static void add_pulse(const float *x, int *y, int n,
int start, int end, float *corr, float *energy)
{
for (int k = start; k < end; k++) {
float best_c2 = (*corr + x[0]) * (*corr + x[0]);
float best_e = *energy + 2*y[0] + 1;
int nbest = 0;
for (int i = 1; i < n; i++) {
float c2 = (*corr + x[i]) * (*corr + x[i]);
float e = *energy + 2*y[i] + 1;
if (c2 * best_e > e * best_c2)
best_c2 = c2, best_e = e, nbest = i;
}
*corr += x[nbest];
*energy += 2*y[nbest] + 1;
y[nbest]++;
}
}
/**
* Quantization of codebooks residual
* scf Input 16 scale factors, output quantized version
* lf/hfcb_idx Codebooks index
* c, cn Output 4 pulse configurations candidates, normalized
* shape/gain_idx Output selected shape/gain indexes
*/
LC3_HOT static void quantize(const float *scf, int lfcb_idx, int hfcb_idx,
int (*c)[16], float (*cn)[16], int *shape_idx, int *gain_idx)
{
/* --- Residual --- */
const float *lfcb = lc3_sns_lfcb[lfcb_idx];
const float *hfcb = lc3_sns_hfcb[hfcb_idx];
float r[16], x[16];
for (int i = 0; i < 8; i++) {
r[ i] = scf[ i] - lfcb[i];
r[8+i] = scf[8+i] - hfcb[i];
}
dct16_forward(r, x);
/* --- Shape 3 candidate ---
* Project to or below pyramid N = 16, K = 6,
* then add unit pulses until you reach K = 6, over N = 16 */
float xm[16];
float xm_sum = 0;
for (int i = 0; i < 16; i++) {
xm[i] = fabsf(x[i]);
xm_sum += xm[i];
}
float proj_factor = (6 - 1) / fmaxf(xm_sum, 1e-31f);
float corr = 0, energy = 0;
int npulses = 0;
for (int i = 0; i < 16; i++) {
c[3][i] = floorf(xm[i] * proj_factor);
npulses += c[3][i];
corr += c[3][i] * xm[i];
energy += c[3][i] * c[3][i];
}
add_pulse(xm, c[3], 16, npulses, 6, &corr, &energy);
npulses = 6;
/* --- Shape 2 candidate ---
* Add unit pulses until you reach K = 8 on shape 3 */
memcpy(c[2], c[3], sizeof(c[2]));
add_pulse(xm, c[2], 16, npulses, 8, &corr, &energy);
npulses = 8;
/* --- Shape 1 candidate ---
* Remove any unit pulses from shape 2 that are not part of 0 to 9
* Update energy and correlation terms accordingly
* Add unit pulses until you reach K = 10, over N = 10 */
memcpy(c[1], c[2], sizeof(c[1]));
for (int i = 10; i < 16; i++) {
c[1][i] = 0;
npulses -= c[2][i];
corr -= c[2][i] * xm[i];
energy -= c[2][i] * c[2][i];
}
add_pulse(xm, c[1], 10, npulses, 10, &corr, &energy);
npulses = 10;
/* --- Shape 0 candidate ---
* Add unit pulses until you reach K = 1, on shape 1 */
memcpy(c[0], c[1], sizeof(c[0]));
add_pulse(xm + 10, c[0] + 10, 6, 0, 1, &corr, &energy);
/* --- Add sign and unit energy normalize --- */
for (int j = 0; j < 16; j++)
for (int i = 0; i < 4; i++)
c[i][j] = x[j] < 0 ? -c[i][j] : c[i][j];
for (int i = 0; i < 4; i++)
normalize(c[i], cn[i]);
/* --- Determe shape & gain index ---
* Search the Mean Square Error, within (shape, gain) combinations */
float mse_min = INFINITY;
*shape_idx = *gain_idx = 0;
for (int ic = 0; ic < 4; ic++) {
const struct lc3_sns_vq_gains *cgains = lc3_sns_vq_gains + ic;
float cmse_min = INFINITY;
int cgain_idx = 0;
for (int ig = 0; ig < cgains->count; ig++) {
float g = cgains->v[ig];
float mse = 0;
for (int i = 0; i < 16; i++)
mse += (x[i] - g * cn[ic][i]) * (x[i] - g * cn[ic][i]);
if (mse < cmse_min) {
cgain_idx = ig,
cmse_min = mse;
}
}
if (cmse_min < mse_min) {
*shape_idx = ic, *gain_idx = cgain_idx;
mse_min = cmse_min;
}
}
}
/**
* Unquantization of codebooks residual
* lf/hfcb_idx Low and high frequency codebooks index
* c Table of normalized pulse configuration
* shape/gain Selected shape/gain indexes
* scf Return unquantized scale factors
*/
LC3_HOT static void unquantize(int lfcb_idx, int hfcb_idx,
const float *c, int shape, int gain, float *scf)
{
const float *lfcb = lc3_sns_lfcb[lfcb_idx];
const float *hfcb = lc3_sns_hfcb[hfcb_idx];
float g = lc3_sns_vq_gains[shape].v[gain];
dct16_inverse(c, scf);
for (int i = 0; i < 8; i++)
scf[i] = lfcb[i] + g * scf[i];
for (int i = 8; i < 16; i++)
scf[i] = hfcb[i-8] + g * scf[i];
}
/**
* Sub-procedure of `sns_enumerate()`, enumeration of a vector
* c, n Table of pulse configuration, and length
* idx, ls Return enumeration set
*/
static void enum_mvpq(const int *c, int n, int *idx, bool *ls)
{
int ci, i, j;
/* --- Scan for 1st significant coeff --- */
for (i = 0, c += n; (ci = *(--c)) == 0 ; i++);
*idx = 0;
*ls = ci < 0;
/* --- Scan remaining coefficients --- */
for (i++, j = LC3_ABS(ci); i < n; i++, j += LC3_ABS(ci)) {
if ((ci = *(--c)) != 0) {
*idx = (*idx << 1) | *ls;
*ls = ci < 0;
}
*idx += lc3_sns_mpvq_offsets[i][j];
}
}
/**
* Sub-procedure of `sns_deenumerate()`, deenumeration of a vector
* idx, ls Enumeration set
* npulses Number of pulses in the set
* c, n Table of pulses configuration, and length
*/
static void deenum_mvpq(int idx, bool ls, int npulses, int *c, int n)
{
int i;
/* --- Scan for coefficients --- */
for (i = n-1; i >= 0 && idx; i--) {
int ci = 0;
for (ci = 0; idx < lc3_sns_mpvq_offsets[i][npulses - ci]; ci++);
idx -= lc3_sns_mpvq_offsets[i][npulses - ci];
*(c++) = ls ? -ci : ci;
npulses -= ci;
if (ci > 0) {
ls = idx & 1;
idx >>= 1;
}
}
/* --- Set last significant --- */
int ci = npulses;
if (i-- >= 0)
*(c++) = ls ? -ci : ci;
while (i-- >= 0)
*(c++) = 0;
}
/**
* SNS Enumeration of PVQ configuration
* shape Selected shape index
* c Selected pulse configuration
* idx_a, ls_a Return enumeration set A
* idx_b, ls_b Return enumeration set B (shape = 0)
*/
static void enumerate(int shape, const int *c,
int *idx_a, bool *ls_a, int *idx_b, bool *ls_b)
{
enum_mvpq(c, shape < 2 ? 10 : 16, idx_a, ls_a);
if (shape == 0)
enum_mvpq(c + 10, 6, idx_b, ls_b);
}
/**
* SNS Deenumeration of PVQ configuration
* shape Selected shape index
* idx_a, ls_a enumeration set A
* idx_b, ls_b enumeration set B (shape = 0)
* c Return pulse configuration
*/
static void deenumerate(int shape,
int idx_a, bool ls_a, int idx_b, bool ls_b, int *c)
{
int npulses_a = (const int []){ 10, 10, 8, 6 }[shape];
deenum_mvpq(idx_a, ls_a, npulses_a, c, shape < 2 ? 10 : 16);
if (shape == 0)
deenum_mvpq(idx_b, ls_b, 1, c + 10, 6);
else if (shape == 1)
memset(c + 10, 0, 6 * sizeof(*c));
}
/* ----------------------------------------------------------------------------
* Filtering
* -------------------------------------------------------------------------- */
/**
* Spectral shaping
* dt, sr Duration and samplerate of the frame
* scf_q Quantized scale factors
* inv True on inverse shaping, False otherwise
* x Spectral coefficients
* y Return shapped coefficients
*
* `x` and `y` can be the same buffer
*/
LC3_HOT static void spectral_shaping(enum lc3_dt dt, enum lc3_srate sr,
const float *scf_q, bool inv, const float *x, float *y)
{
/* --- Interpolate scale factors --- */
float scf[LC3_NUM_BANDS];
float s0, s1 = inv ? -scf_q[0] : scf_q[0];
scf[0] = scf[1] = s1;
for (int i = 0; i < 15; i++) {
s0 = s1, s1 = inv ? -scf_q[i+1] : scf_q[i+1];
scf[4*i+2] = s0 + 0.125f * (s1 - s0);
scf[4*i+3] = s0 + 0.375f * (s1 - s0);
scf[4*i+4] = s0 + 0.625f * (s1 - s0);
scf[4*i+5] = s0 + 0.875f * (s1 - s0);
}
scf[62] = s1 + 0.125f * (s1 - s0);
scf[63] = s1 + 0.375f * (s1 - s0);
int nb = LC3_MIN(lc3_band_lim[dt][sr][LC3_NUM_BANDS], LC3_NUM_BANDS);
int n2 = LC3_NUM_BANDS - nb;
for (int i2 = 0; i2 < n2; i2++)
scf[i2] = 0.5f * (scf[2*i2] + scf[2*i2+1]);
if (n2 > 0)
memmove(scf + n2, scf + 2*n2, (nb - n2) * sizeof(float));
/* --- Spectral shaping --- */
const int *lim = lc3_band_lim[dt][sr];
for (int i = 0, ib = 0; ib < nb; ib++) {
float g_sns = fast_exp2f(-scf[ib]);
for ( ; i < lim[ib+1]; i++)
y[i] = x[i] * g_sns;
}
}
/* ----------------------------------------------------------------------------
* Interface
* -------------------------------------------------------------------------- */
/**
* SNS analysis
*/
void lc3_sns_analyze(enum lc3_dt dt, enum lc3_srate sr,
const float *eb, bool att, struct lc3_sns_data *data,
const float *x, float *y)
{
/* Processing steps :
* - Determine 16 scale factors from bands energy estimation
* - Get codebooks indexes that match thoses scale factors
* - Quantize the residual with the selected codebook
* - The pulse configuration `c[]` is enumerated
* - Finally shape the spectrum coefficients accordingly */
float scf[16], cn[4][16];
int c[4][16];
compute_scale_factors(dt, sr, eb, att, scf);
resolve_codebooks(scf, &data->lfcb, &data->hfcb);
quantize(scf, data->lfcb, data->hfcb,
c, cn, &data->shape, &data->gain);
unquantize(data->lfcb, data->hfcb,
cn[data->shape], data->shape, data->gain, scf);
enumerate(data->shape, c[data->shape],
&data->idx_a, &data->ls_a, &data->idx_b, &data->ls_b);
spectral_shaping(dt, sr, scf, false, x, y);
}
/**
* SNS synthesis
*/
void lc3_sns_synthesize(enum lc3_dt dt, enum lc3_srate sr,
const lc3_sns_data_t *data, const float *x, float *y)
{
float scf[16], cn[16];
int c[16];
deenumerate(data->shape,
data->idx_a, data->ls_a, data->idx_b, data->ls_b, c);
normalize(c, cn);
unquantize(data->lfcb, data->hfcb, cn, data->shape, data->gain, scf);
spectral_shaping(dt, sr, scf, true, x, y);
}
/**
* Return number of bits coding the bitstream data
*/
int lc3_sns_get_nbits(void)
{
return 38;
}
/**
* Put bitstream data
*/
void lc3_sns_put_data(lc3_bits_t *bits, const struct lc3_sns_data *data)
{
/* --- Codebooks --- */
lc3_put_bits(bits, data->lfcb, 5);
lc3_put_bits(bits, data->hfcb, 5);
/* --- Shape, gain and vectors --- *
* Write MSB bit of shape index, next LSB bits of shape and gain,
* and MVPQ vectors indexes are muxed */
int shape_msb = data->shape >> 1;
lc3_put_bit(bits, shape_msb);
if (shape_msb == 0) {
const int size_a = 2390004;
int submode = data->shape & 1;
int mux_high = submode == 0 ?
2 * (data->idx_b + 1) + data->ls_b : data->gain & 1;
int mux_code = mux_high * size_a + data->idx_a;
lc3_put_bits(bits, data->gain >> submode, 1);
lc3_put_bits(bits, data->ls_a, 1);
lc3_put_bits(bits, mux_code, 25);
} else {
const int size_a = 15158272;
int submode = data->shape & 1;
int mux_code = submode == 0 ?
data->idx_a : size_a + 2 * data->idx_a + (data->gain & 1);
lc3_put_bits(bits, data->gain >> submode, 2);
lc3_put_bits(bits, data->ls_a, 1);
lc3_put_bits(bits, mux_code, 24);
}
}
/**
* Get bitstream data
*/
int lc3_sns_get_data(lc3_bits_t *bits, struct lc3_sns_data *data)
{
/* --- Codebooks --- */
*data = (struct lc3_sns_data){
.lfcb = lc3_get_bits(bits, 5),
.hfcb = lc3_get_bits(bits, 5)
};
/* --- Shape, gain and vectors --- */
int shape_msb = lc3_get_bit(bits);
data->gain = lc3_get_bits(bits, 1 + shape_msb);
data->ls_a = lc3_get_bit(bits);
int mux_code = lc3_get_bits(bits, 25 - shape_msb);
if (shape_msb == 0) {
const int size_a = 2390004;
if (mux_code >= size_a * 14)
return -1;
data->idx_a = mux_code % size_a;
mux_code = mux_code / size_a;
data->shape = (mux_code < 2);
if (data->shape == 0) {
data->idx_b = (mux_code - 2) / 2;
data->ls_b = (mux_code - 2) % 2;
} else {
data->gain = (data->gain << 1) + (mux_code % 2);
}
} else {
const int size_a = 15158272;
if (mux_code >= size_a + 1549824)
return -1;
data->shape = 2 + (mux_code >= size_a);
if (data->shape == 2) {
data->idx_a = mux_code;
} else {
mux_code -= size_a;
data->idx_a = mux_code / 2;
data->gain = (data->gain << 1) + (mux_code % 2);
}
}
return 0;
}
|