1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
/******************************************************************************
*
* Copyright 2022 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/**
* LC3 - Mathematics function approximation
*/
#ifndef __LC3_FASTMATH_H
#define __LC3_FASTMATH_H
#include <stdint.h>
#include <math.h>
/**
* Fast 2^n approximation
* x Operand, range -8 to 8
* return 2^x approximation (max relative error ~ 7e-6)
*/
static inline float fast_exp2f(float x)
{
float y;
/* --- Polynomial approx in range -0.5 to 0.5 --- */
static const float c[] = { 1.27191277e-09, 1.47415221e-07,
1.35510312e-05, 9.38375815e-04, 4.33216946e-02 };
y = ( c[0]) * x;
y = (y + c[1]) * x;
y = (y + c[2]) * x;
y = (y + c[3]) * x;
y = (y + c[4]) * x;
y = (y + 1.f);
/* --- Raise to the power of 16 --- */
y = y*y;
y = y*y;
y = y*y;
y = y*y;
return y;
}
/**
* Fast log2(x) approximation
* x Operand, greater than 0
* return log2(x) approximation (max absolute error ~ 1e-4)
*/
static inline float fast_log2f(float x)
{
float y;
int e;
/* --- Polynomial approx in range 0.5 to 1 --- */
static const float c[] = {
-1.29479677, 5.11769018, -8.42295281, 8.10557963, -3.50567360 };
x = frexpf(x, &e);
y = ( c[0]) * x;
y = (y + c[1]) * x;
y = (y + c[2]) * x;
y = (y + c[3]) * x;
y = (y + c[4]);
/* --- Add log2f(2^e) and return --- */
return e + y;
}
/**
* Fast log10(x) approximation
* x Operand, greater than 0
* return log10(x) approximation (max absolute error ~ 1e-4)
*/
static inline float fast_log10f(float x)
{
return log10f(2) * fast_log2f(x);
}
/**
* Fast `10 * log10(x)` (or dB) approximation in fixed Q16
* x Operand, in range 2^-63 to 2^63 (1e-19 to 1e19)
* return 10 * log10(x) in fixed Q16 (-190 to 192 dB)
*
* - The 0 value is accepted and return the minimum value ~ -191dB
* - This function assumed that float 32 bits is coded IEEE 754
*/
static inline int32_t fast_db_q16(float x)
{
/* --- Table in Q15 --- */
static const uint16_t t[][2] = {
/* [n][0] = 10 * log10(2) * log2(1 + n/32), with n = [0..15] */
/* [n][1] = [n+1][0] - [n][0] (while defining [16][0]) */
{ 0, 4379 }, { 4379, 4248 }, { 8627, 4125 }, { 12753, 4009 },
{ 16762, 3899 }, { 20661, 3795 }, { 24456, 3697 }, { 28153, 3603 },
{ 31755, 3514 }, { 35269, 3429 }, { 38699, 3349 }, { 42047, 3272 },
{ 45319, 3198 }, { 48517, 3128 }, { 51645, 3061 }, { 54705, 2996 },
/* [n][0] = 10 * log10(2) * log2(1 + n/32) - 10 * log10(2) / 2, */
/* with n = [16..31] */
/* [n][1] = [n+1][0] - [n][0] (while defining [32][0]) */
{ 8381, 2934 }, { 11315, 2875 }, { 14190, 2818 }, { 17008, 2763 },
{ 19772, 2711 }, { 22482, 2660 }, { 25142, 2611 }, { 27754, 2564 },
{ 30318, 2519 }, { 32837, 2475 }, { 35312, 2433 }, { 37744, 2392 },
{ 40136, 2352 }, { 42489, 2314 }, { 44803, 2277 }, { 47080, 2241 },
};
/* --- Approximation ---
*
* 10 * log10(x^2) = 10 * log10(2) * log2(x^2)
*
* And log2(x^2) = 2 * log2( (1 + m) * 2^e )
* = 2 * (e + log2(1 + m)) , with m in range [0..1]
*
* Split the float values in :
* e2 Double value of the exponent (2 * e + k)
* hi High 5 bits of mantissa, for precalculated result `t[hi][0]`
* lo Low 16 bits of mantissa, for linear interpolation `t[hi][1]`
*
* Two cases, from the range of the mantissa :
* 0 to 0.5 `k = 0`, use 1st part of the table
* 0.5 to 1 `k = 1`, use 2nd part of the table */
union { float f; uint32_t u; } x2 = { .f = x*x };
int e2 = (int)(x2.u >> 22) - 2*127;
int hi = (x2.u >> 18) & 0x1f;
int lo = (x2.u >> 2) & 0xffff;
return e2 * 49321 + t[hi][0] + ((t[hi][1] * lo) >> 16);
}
#endif /* __LC3_FASTMATH_H */
|