1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_SENSORS_HIDL_TEST_BASE_H
#define ANDROID_SENSORS_HIDL_TEST_BASE_H
#include "sensors-vts-utils/SensorEventsChecker.h"
#include "sensors-vts-utils/SensorsTestSharedMemory.h"
#include "sensors-vts-utils/SensorsVtsEnvironmentBase.h"
#include <android/hardware/sensors/1.0/ISensors.h>
#include <android/hardware/sensors/1.0/types.h>
#include <gtest/gtest.h>
#include <hardware/sensors.h>
#include <log/log.h>
#include <cinttypes>
#include <unordered_set>
#include <vector>
using ::android::sp;
using ::android::hardware::hidl_string;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::sp;
using ::android::hardware::hidl_string;
using ::android::hardware::sensors::V1_0::RateLevel;
using ::android::hardware::sensors::V1_0::Result;
using ::android::hardware::sensors::V1_0::SensorFlagBits;
using ::android::hardware::sensors::V1_0::SensorFlagShift;
using ::android::hardware::sensors::V1_0::SensorsEventFormatOffset;
using ::android::hardware::sensors::V1_0::SharedMemInfo;
using ::android::hardware::sensors::V1_0::SharedMemType;
template <class SensorTypeT>
static void assertTypeMatchStringType(SensorTypeT type, const hidl_string& stringType) {
if (type >= SensorTypeT::DEVICE_PRIVATE_BASE) {
return;
}
switch (type) {
#define CHECK_TYPE_STRING_FOR_SENSOR_TYPE(type) \
case SensorTypeT::type: \
ASSERT_STREQ(SENSOR_STRING_TYPE_##type, stringType.c_str()); \
break;
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_UNCALIBRATED);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ADDITIONAL_INFO);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(AMBIENT_TEMPERATURE);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DEVICE_ORIENTATION);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DYNAMIC_SENSOR_META);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GAME_ROTATION_VECTOR);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GEOMAGNETIC_ROTATION_VECTOR);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GLANCE_GESTURE);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GRAVITY);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_UNCALIBRATED);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_BEAT);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_RATE);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LIGHT);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LINEAR_ACCELERATION);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LOW_LATENCY_OFFBODY_DETECT);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD_UNCALIBRATED);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MOTION_DETECT);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ORIENTATION);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PICK_UP_GESTURE);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(POSE_6DOF);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PRESSURE);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PROXIMITY);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(RELATIVE_HUMIDITY);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ROTATION_VECTOR);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(SIGNIFICANT_MOTION);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STATIONARY_DETECT);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_COUNTER);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_DETECTOR);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TEMPERATURE);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TILT_DETECTOR);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WAKE_GESTURE);
CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WRIST_TILT_GESTURE);
default:
FAIL() << "Type " << static_cast<int>(type)
<< " in android defined range is not checked, "
<< "stringType = " << stringType;
#undef CHECK_TYPE_STRING_FOR_SENSOR_TYPE
}
}
template <class SensorTypeT>
static SensorFlagBits expectedReportModeForType(SensorTypeT type) {
switch (type) {
case SensorTypeT::ACCELEROMETER:
case SensorTypeT::ACCELEROMETER_UNCALIBRATED:
case SensorTypeT::GYROSCOPE:
case SensorTypeT::MAGNETIC_FIELD:
case SensorTypeT::ORIENTATION:
case SensorTypeT::PRESSURE:
case SensorTypeT::GRAVITY:
case SensorTypeT::LINEAR_ACCELERATION:
case SensorTypeT::ROTATION_VECTOR:
case SensorTypeT::MAGNETIC_FIELD_UNCALIBRATED:
case SensorTypeT::GAME_ROTATION_VECTOR:
case SensorTypeT::GYROSCOPE_UNCALIBRATED:
case SensorTypeT::GEOMAGNETIC_ROTATION_VECTOR:
case SensorTypeT::POSE_6DOF:
case SensorTypeT::HEART_BEAT:
return SensorFlagBits::CONTINUOUS_MODE;
case SensorTypeT::LIGHT:
case SensorTypeT::PROXIMITY:
case SensorTypeT::RELATIVE_HUMIDITY:
case SensorTypeT::AMBIENT_TEMPERATURE:
case SensorTypeT::HEART_RATE:
case SensorTypeT::DEVICE_ORIENTATION:
case SensorTypeT::STEP_COUNTER:
case SensorTypeT::LOW_LATENCY_OFFBODY_DETECT:
return SensorFlagBits::ON_CHANGE_MODE;
case SensorTypeT::SIGNIFICANT_MOTION:
case SensorTypeT::WAKE_GESTURE:
case SensorTypeT::GLANCE_GESTURE:
case SensorTypeT::PICK_UP_GESTURE:
case SensorTypeT::MOTION_DETECT:
case SensorTypeT::STATIONARY_DETECT:
return SensorFlagBits::ONE_SHOT_MODE;
case SensorTypeT::STEP_DETECTOR:
case SensorTypeT::TILT_DETECTOR:
case SensorTypeT::WRIST_TILT_GESTURE:
case SensorTypeT::DYNAMIC_SENSOR_META:
return SensorFlagBits::SPECIAL_REPORTING_MODE;
case SensorTypeT::TEMPERATURE:
ALOGW("Device temperature sensor is deprecated, ignoring for test");
return (SensorFlagBits)-1;
default:
ALOGW("Type %d is not implemented in expectedReportModeForType", (int)type);
return (SensorFlagBits)-1;
}
}
template <class SensorTypeVersion, class EventType, class SensorInfoType>
class SensorsHidlTestBase : public testing::TestWithParam<std::string> {
public:
using ISensors = ::android::hardware::sensors::V1_0::ISensors;
SensorsHidlTestBase()
: mAccelNormChecker(Vec3NormChecker<EventType>::byNominal(GRAVITY_EARTH, 1.0f /*m/s^2*/)),
mGyroNormChecker(Vec3NormChecker<EventType>::byNominal(0.f, 0.1f /*rad/s*/)) {}
virtual SensorsVtsEnvironmentBase<EventType>* getEnvironment() = 0;
virtual void SetUp() override {}
virtual void TearDown() override {
// stop all sensors
for (auto s : mSensorHandles) {
activate(s, false);
}
mSensorHandles.clear();
// stop all direct report and channels
for (auto c : mDirectChannelHandles) {
// disable all reports
configDirectReport(-1, c, RateLevel::STOP, [](auto, auto) {});
unregisterDirectChannel(c);
}
mDirectChannelHandles.clear();
}
// implementation wrapper
virtual SensorInfoType defaultSensorByType(SensorTypeVersion type) = 0;
virtual Return<void> getSensorsList(ISensors::getSensorsList_cb _hidl_cb) = 0;
virtual Return<Result> injectSensorData(const EventType& event) = 0;
virtual Return<Result> activate(int32_t sensorHandle, bool enabled) = 0;
virtual Return<Result> batch(int32_t sensorHandle, int64_t samplingPeriodNs,
int64_t maxReportLatencyNs) = 0;
virtual Return<Result> flush(int32_t sensorHandle) = 0;
virtual Return<void> registerDirectChannel(const SharedMemInfo& mem,
ISensors::registerDirectChannel_cb _hidl_cb) = 0;
virtual Return<Result> unregisterDirectChannel(int32_t channelHandle) = 0;
virtual Return<void> configDirectReport(int32_t sensorHandle, int32_t channelHandle,
RateLevel rate,
ISensors::configDirectReport_cb _hidl_cb) = 0;
void testStreamingOperation(SensorTypeVersion type, std::chrono::nanoseconds samplingPeriod,
std::chrono::seconds duration,
const SensorEventsChecker<EventType>& checker) {
std::vector<EventType> events;
std::vector<EventType> sensorEvents;
const int64_t samplingPeriodInNs = samplingPeriod.count();
const int64_t batchingPeriodInNs = 0; // no batching
const useconds_t minTimeUs = std::chrono::microseconds(duration).count();
const size_t minNEvent = duration / samplingPeriod;
SensorInfoType sensor = defaultSensorByType(type);
if (!isValidType(sensor.type)) {
// no default sensor of this type
return;
}
if (std::chrono::microseconds(sensor.minDelay) > samplingPeriod) {
// rate not supported
return;
}
int32_t handle = sensor.sensorHandle;
ASSERT_EQ(batch(handle, samplingPeriodInNs, batchingPeriodInNs), Result::OK);
ASSERT_EQ(activate(handle, 1), Result::OK);
events = getEnvironment()->collectEvents(minTimeUs, minNEvent, true /*clearBeforeStart*/);
ASSERT_EQ(activate(handle, 0), Result::OK);
ALOGI("Collected %zu samples", events.size());
ASSERT_GT(events.size(), 0u);
bool handleMismatchReported = false;
bool metaSensorTypeErrorReported = false;
for (auto& e : events) {
if (e.sensorType == type) {
// avoid generating hundreds of error
if (!handleMismatchReported) {
EXPECT_EQ(e.sensorHandle, handle)
<< (handleMismatchReported = true,
"Event of the same type must come from the sensor registered");
}
sensorEvents.push_back(e);
} else {
// avoid generating hundreds of error
if (!metaSensorTypeErrorReported) {
EXPECT_TRUE(isMetaSensorType(e.sensorType))
<< (metaSensorTypeErrorReported = true,
"Only meta types are allowed besides the type registered");
}
}
}
std::string s;
EXPECT_TRUE(checker.check(sensorEvents, &s)) << s;
EXPECT_GE(sensorEvents.size(),
minNEvent / 2); // make sure returned events are not all meta
}
void testSamplingRateHotSwitchOperation(SensorTypeVersion type, bool fastToSlow = true) {
std::vector<EventType> events1, events2;
constexpr int64_t batchingPeriodInNs = 0; // no batching
constexpr int64_t collectionTimeoutUs = 60000000; // 60s
constexpr size_t minNEvent = 50;
SensorInfoType sensor = defaultSensorByType(type);
if (!isValidType(sensor.type)) {
// no default sensor of this type
return;
}
int32_t handle = sensor.sensorHandle;
int64_t minSamplingPeriodInNs = sensor.minDelay * 1000ll;
int64_t maxSamplingPeriodInNs = sensor.maxDelay * 1000ll;
if (minSamplingPeriodInNs == maxSamplingPeriodInNs) {
// only support single rate
return;
}
int64_t firstCollectionPeriod = fastToSlow ? minSamplingPeriodInNs : maxSamplingPeriodInNs;
int64_t secondCollectionPeriod =
!fastToSlow ? minSamplingPeriodInNs : maxSamplingPeriodInNs;
// first collection
ASSERT_EQ(batch(handle, firstCollectionPeriod, batchingPeriodInNs), Result::OK);
ASSERT_EQ(activate(handle, 1), Result::OK);
usleep(500000); // sleep 0.5 sec to wait for change rate to happen
events1 = getEnvironment()->collectEvents(collectionTimeoutUs, minNEvent);
// second collection, without stopping the sensor
ASSERT_EQ(batch(handle, secondCollectionPeriod, batchingPeriodInNs), Result::OK);
usleep(500000); // sleep 0.5 sec to wait for change rate to happen
events2 = getEnvironment()->collectEvents(collectionTimeoutUs, minNEvent);
// end of collection, stop sensor
ASSERT_EQ(activate(handle, 0), Result::OK);
ALOGI("Collected %zu fast samples and %zu slow samples", events1.size(), events2.size());
ASSERT_GT(events1.size(), 0u);
ASSERT_GT(events2.size(), 0u);
int64_t minDelayAverageInterval, maxDelayAverageInterval;
std::vector<EventType>& minDelayEvents(fastToSlow ? events1 : events2);
std::vector<EventType>& maxDelayEvents(fastToSlow ? events2 : events1);
size_t nEvent = 0;
int64_t prevTimestamp = -1;
int64_t timestampInterval = 0;
for (auto& e : minDelayEvents) {
if (e.sensorType == type) {
ASSERT_EQ(e.sensorHandle, handle);
if (prevTimestamp > 0) {
timestampInterval += e.timestamp - prevTimestamp;
}
prevTimestamp = e.timestamp;
++nEvent;
}
}
ASSERT_GT(nEvent, 2u);
minDelayAverageInterval = timestampInterval / (nEvent - 1);
nEvent = 0;
prevTimestamp = -1;
timestampInterval = 0;
for (auto& e : maxDelayEvents) {
if (e.sensorType == type) {
ASSERT_EQ(e.sensorHandle, handle);
if (prevTimestamp > 0) {
timestampInterval += e.timestamp - prevTimestamp;
}
prevTimestamp = e.timestamp;
++nEvent;
}
}
ASSERT_GT(nEvent, 2u);
maxDelayAverageInterval = timestampInterval / (nEvent - 1);
// change of rate is significant.
ALOGI("min/maxDelayAverageInterval = %" PRId64 " %" PRId64, minDelayAverageInterval,
maxDelayAverageInterval);
EXPECT_GT((maxDelayAverageInterval - minDelayAverageInterval),
minDelayAverageInterval / 10);
// fastest rate sampling time is close to spec
EXPECT_LT(std::abs(minDelayAverageInterval - minSamplingPeriodInNs),
minSamplingPeriodInNs / 10);
// slowest rate sampling time is close to spec
EXPECT_LT(std::abs(maxDelayAverageInterval - maxSamplingPeriodInNs),
maxSamplingPeriodInNs / 10);
}
void testBatchingOperation(SensorTypeVersion type) {
std::vector<EventType> events;
constexpr int64_t maxBatchingTestTimeNs = 30ull * 1000 * 1000 * 1000;
constexpr int64_t oneSecondInNs = 1ull * 1000 * 1000 * 1000;
SensorInfoType sensor = defaultSensorByType(type);
if (!isValidType(sensor.type)) {
// no default sensor of this type
return;
}
int32_t handle = sensor.sensorHandle;
int64_t minSamplingPeriodInNs = sensor.minDelay * 1000ll;
uint32_t minFifoCount = sensor.fifoReservedEventCount;
int64_t batchingPeriodInNs = minFifoCount * minSamplingPeriodInNs;
if (batchingPeriodInNs < oneSecondInNs) {
// batching size too small to test reliably
return;
}
if (batchingPeriodInNs > maxBatchingTestTimeNs) {
batchingPeriodInNs = maxBatchingTestTimeNs;
minFifoCount = (uint32_t)(batchingPeriodInNs / minSamplingPeriodInNs);
}
ALOGI("Test batching for %d ms", (int)(batchingPeriodInNs / 1000 / 1000));
int64_t allowedBatchDeliverTimeNs = std::max(oneSecondInNs, batchingPeriodInNs / 10);
ASSERT_EQ(batch(handle, minSamplingPeriodInNs, INT64_MAX), Result::OK);
ASSERT_EQ(activate(handle, 1), Result::OK);
usleep(500000); // sleep 0.5 sec to wait for initialization
ASSERT_EQ(flush(handle), Result::OK);
// wait for 80% of the reserved batching period
// there should not be any significant amount of events
// since collection is not enabled all events will go down the drain
usleep(batchingPeriodInNs / 1000 * 8 / 10);
getEnvironment()->setCollection(true);
// clean existing collections
getEnvironment()->collectEvents(0 /*timeLimitUs*/, 0 /*nEventLimit*/,
true /*clearBeforeStart*/, false /*change collection*/);
// 0.8 + 0.2 times the batching period
usleep(batchingPeriodInNs / 1000 * 2 / 10);
ASSERT_EQ(flush(handle), Result::OK);
// plus some time for the event to deliver
events = getEnvironment()->collectEvents(allowedBatchDeliverTimeNs / 1000, minFifoCount,
false /*clearBeforeStart*/,
false /*change collection*/);
getEnvironment()->setCollection(false);
ASSERT_EQ(activate(handle, 0), Result::OK);
size_t nEvent = 0;
for (auto& e : events) {
if (e.sensorType == type && e.sensorHandle == handle) {
++nEvent;
}
}
// at least reach 90% of advertised capacity
ASSERT_GT(nEvent, (size_t)(minFifoCount * 9 / 10));
}
void testDirectReportOperation(SensorTypeVersion type, SharedMemType memType, RateLevel rate,
const SensorEventsChecker<EventType>& checker) {
constexpr size_t kEventSize = static_cast<size_t>(SensorsEventFormatOffset::TOTAL_LENGTH);
constexpr size_t kNEvent = 4096;
constexpr size_t kMemSize = kEventSize * kNEvent;
constexpr float kNormalNominal = 50;
constexpr float kFastNominal = 200;
constexpr float kVeryFastNominal = 800;
constexpr float kNominalTestTimeSec = 1.f;
constexpr float kMaxTestTimeSec =
kNominalTestTimeSec + 0.5f; // 0.5 second for initialization
SensorInfoType sensor = defaultSensorByType(type);
if (!isValidType(sensor.type)) {
// no default sensor of this type
return;
}
if (!isDirectReportRateSupported(sensor, rate)) {
return;
}
if (!isDirectChannelTypeSupported(sensor, memType)) {
return;
}
std::unique_ptr<SensorsTestSharedMemory<SensorTypeVersion, EventType>> mem(
SensorsTestSharedMemory<SensorTypeVersion, EventType>::create(memType, kMemSize));
ASSERT_NE(mem, nullptr);
char* buffer = mem->getBuffer();
// fill memory with data
for (size_t i = 0; i < kMemSize; ++i) {
buffer[i] = '\xcc';
}
int32_t channelHandle;
registerDirectChannel(mem->getSharedMemInfo(),
[&channelHandle](auto result, auto channelHandle_) {
ASSERT_EQ(result, Result::OK);
channelHandle = channelHandle_;
});
// check memory is zeroed
for (size_t i = 0; i < kMemSize; ++i) {
ASSERT_EQ(buffer[i], '\0');
}
int32_t eventToken;
configDirectReport(sensor.sensorHandle, channelHandle, rate,
[&eventToken](auto result, auto token) {
ASSERT_EQ(result, Result::OK);
eventToken = token;
});
usleep(static_cast<useconds_t>(kMaxTestTimeSec * 1e6f));
auto events = mem->parseEvents();
// find norminal rate
float nominalFreq = 0.f;
switch (rate) {
case RateLevel::NORMAL:
nominalFreq = kNormalNominal;
break;
case RateLevel::FAST:
nominalFreq = kFastNominal;
break;
case RateLevel::VERY_FAST:
nominalFreq = kVeryFastNominal;
break;
case RateLevel::STOP:
FAIL();
}
// allowed to be between 55% and 220% of nominal freq
ASSERT_GT(events.size(), static_cast<size_t>(nominalFreq * 0.55f * kNominalTestTimeSec));
ASSERT_LT(events.size(), static_cast<size_t>(nominalFreq * 2.2f * kMaxTestTimeSec));
int64_t lastTimestamp = 0;
bool typeErrorReported = false;
bool tokenErrorReported = false;
bool timestampErrorReported = false;
std::vector<EventType> sensorEvents;
for (auto& e : events) {
if (!tokenErrorReported) {
EXPECT_EQ(eventToken, e.sensorHandle)
<< (tokenErrorReported = true,
"Event token does not match that retured from configDirectReport");
}
if (isMetaSensorType(e.sensorType)) {
continue;
}
sensorEvents.push_back(e);
if (!typeErrorReported) {
EXPECT_EQ(type, e.sensorType)
<< (typeErrorReported = true,
"Type in event does not match type of sensor registered.");
}
if (!timestampErrorReported) {
EXPECT_GT(e.timestamp, lastTimestamp) << (timestampErrorReported = true,
"Timestamp not monotonically increasing");
}
lastTimestamp = e.timestamp;
}
std::string s;
EXPECT_TRUE(checker.check(sensorEvents, &s)) << s;
// stop sensor and unregister channel
configDirectReport(sensor.sensorHandle, channelHandle, RateLevel::STOP,
[](auto result, auto) { EXPECT_EQ(result, Result::OK); });
EXPECT_EQ(unregisterDirectChannel(channelHandle), Result::OK);
}
inline static SensorFlagBits extractReportMode(uint64_t flag) {
return (SensorFlagBits)(flag & ((uint64_t)SensorFlagBits::CONTINUOUS_MODE |
(uint64_t)SensorFlagBits::ON_CHANGE_MODE |
(uint64_t)SensorFlagBits::ONE_SHOT_MODE |
(uint64_t)SensorFlagBits::SPECIAL_REPORTING_MODE));
}
inline static bool isMetaSensorType(SensorTypeVersion type) {
return (type == SensorTypeVersion::META_DATA ||
type == SensorTypeVersion::DYNAMIC_SENSOR_META ||
type == SensorTypeVersion::ADDITIONAL_INFO);
}
inline static bool isValidType(SensorTypeVersion type) { return (int32_t)type > 0; }
static void assertDelayMatchReportMode(int32_t minDelay, int32_t maxDelay,
SensorFlagBits reportMode) {
switch (reportMode) {
case SensorFlagBits::CONTINUOUS_MODE:
ASSERT_LT(0, minDelay);
ASSERT_LE(0, maxDelay);
break;
case SensorFlagBits::ON_CHANGE_MODE:
ASSERT_LE(0, minDelay);
ASSERT_LE(0, maxDelay);
break;
case SensorFlagBits::ONE_SHOT_MODE:
ASSERT_EQ(-1, minDelay);
ASSERT_EQ(0, maxDelay);
break;
case SensorFlagBits::SPECIAL_REPORTING_MODE:
// do not enforce anything for special reporting mode
break;
default:
FAIL() << "Report mode " << static_cast<int>(reportMode) << " not checked";
}
}
protected:
static void assertTypeMatchReportMode(SensorTypeVersion type, SensorFlagBits reportMode) {
if (type >= SensorTypeVersion::DEVICE_PRIVATE_BASE) {
return;
}
SensorFlagBits expected = expectedReportModeForType(type);
ASSERT_TRUE(expected == (SensorFlagBits)-1 || expected == reportMode)
<< "reportMode=" << static_cast<int>(reportMode)
<< "expected=" << static_cast<int>(expected);
}
static bool isDirectReportRateSupported(SensorInfoType sensor, RateLevel rate) {
unsigned int r =
static_cast<unsigned int>(sensor.flags & SensorFlagBits::MASK_DIRECT_REPORT) >>
static_cast<unsigned int>(SensorFlagShift::DIRECT_REPORT);
return r >= static_cast<unsigned int>(rate);
}
static bool isDirectChannelTypeSupported(SensorInfoType sensor, SharedMemType type) {
switch (type) {
case SharedMemType::ASHMEM:
return (sensor.flags & SensorFlagBits::DIRECT_CHANNEL_ASHMEM) != 0;
case SharedMemType::GRALLOC:
return (sensor.flags & SensorFlagBits::DIRECT_CHANNEL_GRALLOC) != 0;
default:
return false;
}
}
// Checkers
Vec3NormChecker<EventType> mAccelNormChecker;
Vec3NormChecker<EventType> mGyroNormChecker;
// all sensors and direct channnels used
std::unordered_set<int32_t> mSensorHandles;
std::unordered_set<int32_t> mDirectChannelHandles;
};
#endif // ANDROID_SENSORS_HIDL_TEST_BASE_H
|