summaryrefslogtreecommitdiff
path: root/sensors/common/vts/2_X/VtsHalSensorsV2_XTargetTest.h
blob: 7e22b1902fa76993df3011063a6e6611a4c26c1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
/*
 * Copyright (C) 2018 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "SensorsHidlEnvironmentV2_X.h"
#include "convertV2_1.h"
#include "sensors-vts-utils/SensorsHidlTestBase.h"
#include "sensors-vts-utils/SensorsTestSharedMemory.h"

#include <android/hardware/sensors/2.1/ISensors.h>
#include <android/hardware/sensors/2.1/types.h>

#include <hidl/GtestPrinter.h>
#include <hidl/ServiceManagement.h>
#include <log/log.h>
#include <utils/SystemClock.h>

#include <algorithm>
#include <cinttypes>
#include <condition_variable>
#include <cstring>
#include <map>
#include <unordered_map>
#include <vector>

/**
 * This file contains the core tests and test logic for both sensors HAL 2.0
 * and 2.1. To make it easier to share the code between both VTS test suites,
 * this is defined as a header so they can both include and use all pieces of
 * code.
 */

using ::android::sp;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::sensors::V1_0::MetaDataEventType;
using ::android::hardware::sensors::V1_0::OperationMode;
using ::android::hardware::sensors::V1_0::SensorsEventFormatOffset;
using ::android::hardware::sensors::V1_0::SensorStatus;
using ::android::hardware::sensors::V1_0::SharedMemType;
using ::android::hardware::sensors::V1_0::Vec3;
using ::android::hardware::sensors::V2_1::implementation::convertToOldSensorInfos;
using std::chrono::duration_cast;
using std::chrono::microseconds;
using std::chrono::milliseconds;
using std::chrono::nanoseconds;

using EventV1_0 = ::android::hardware::sensors::V1_0::Event;
using ISensorsType = ::android::hardware::sensors::V2_1::ISensors;
using SensorTypeVersion = ::android::hardware::sensors::V2_1::SensorType;
using EventType = ::android::hardware::sensors::V2_1::Event;
using SensorInfoType = ::android::hardware::sensors::V2_1::SensorInfo;
using SensorsHidlTestBaseV2_X = SensorsHidlTestBase<SensorTypeVersion, EventType, SensorInfoType>;

constexpr size_t kEventSize = static_cast<size_t>(SensorsEventFormatOffset::TOTAL_LENGTH);

class EventCallback : public IEventCallback<EventType> {
  public:
    void reset() {
        mFlushMap.clear();
        mEventMap.clear();
    }

    void onEvent(const EventType& event) override {
        if (event.sensorType == SensorTypeVersion::META_DATA &&
            event.u.meta.what == MetaDataEventType::META_DATA_FLUSH_COMPLETE) {
            std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
            mFlushMap[event.sensorHandle]++;
            mFlushCV.notify_all();
        } else if (event.sensorType != SensorTypeVersion::ADDITIONAL_INFO) {
            std::unique_lock<std::recursive_mutex> lock(mEventMutex);
            mEventMap[event.sensorHandle].push_back(event);
            mEventCV.notify_all();
        }
    }

    int32_t getFlushCount(int32_t sensorHandle) {
        std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
        return mFlushMap[sensorHandle];
    }

    void waitForFlushEvents(const std::vector<SensorInfoType>& sensorsToWaitFor,
                            int32_t numCallsToFlush, milliseconds timeout) {
        std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
        mFlushCV.wait_for(lock, timeout,
                          [&] { return flushesReceived(sensorsToWaitFor, numCallsToFlush); });
    }

    const std::vector<EventType> getEvents(int32_t sensorHandle) {
        std::unique_lock<std::recursive_mutex> lock(mEventMutex);
        return mEventMap[sensorHandle];
    }

    void waitForEvents(const std::vector<SensorInfoType>& sensorsToWaitFor, milliseconds timeout) {
        std::unique_lock<std::recursive_mutex> lock(mEventMutex);
        mEventCV.wait_for(lock, timeout, [&] { return eventsReceived(sensorsToWaitFor); });
    }

  protected:
    bool flushesReceived(const std::vector<SensorInfoType>& sensorsToWaitFor,
                         int32_t numCallsToFlush) {
        for (const SensorInfoType& sensor : sensorsToWaitFor) {
            if (getFlushCount(sensor.sensorHandle) < numCallsToFlush) {
                return false;
            }
        }
        return true;
    }

    bool eventsReceived(const std::vector<SensorInfoType>& sensorsToWaitFor) {
        for (const SensorInfoType& sensor : sensorsToWaitFor) {
            if (getEvents(sensor.sensorHandle).size() == 0) {
                return false;
            }
        }
        return true;
    }

    std::map<int32_t, int32_t> mFlushMap;
    std::recursive_mutex mFlushMutex;
    std::condition_variable_any mFlushCV;

    std::map<int32_t, std::vector<EventType>> mEventMap;
    std::recursive_mutex mEventMutex;
    std::condition_variable_any mEventCV;
};

/**
 * Define the template specific versions of the static helper methods in
 * SensorsHidlTestBase used to test that hinge angle is exposed properly.
 */
template <>
SensorFlagBits expectedReportModeForType(::android::hardware::sensors::V2_1::SensorType type) {
    switch (type) {
        case ::android::hardware::sensors::V2_1::SensorType::HINGE_ANGLE:
            return SensorFlagBits::ON_CHANGE_MODE;
        default:
            return expectedReportModeForType(
                    static_cast<::android::hardware::sensors::V1_0::SensorType>(type));
    }
}

template <>
void assertTypeMatchStringType(::android::hardware::sensors::V2_1::SensorType type,
                               const hidl_string& stringType) {
    switch (type) {
        case (::android::hardware::sensors::V2_1::SensorType::HINGE_ANGLE):
            ASSERT_STREQ(SENSOR_STRING_TYPE_HINGE_ANGLE, stringType.c_str());
            break;
        default:
            assertTypeMatchStringType(
                    static_cast<::android::hardware::sensors::V1_0::SensorType>(type), stringType);
            break;
    }
}

// The main test class for SENSORS HIDL HAL.
class SensorsHidlTest : public SensorsHidlTestBaseV2_X {
  public:
    virtual void SetUp() override {
        mEnvironment = new SensorsHidlEnvironmentV2_X(GetParam());
        mEnvironment->SetUp();
        // Ensure that we have a valid environment before performing tests
        ASSERT_NE(getSensors(), nullptr);
    }

    virtual void TearDown() override { mEnvironment->TearDown(); }

  protected:
    SensorInfoType defaultSensorByType(SensorTypeVersion type) override;
    std::vector<SensorInfoType> getSensorsList();
    // implementation wrapper

    Return<void> getSensorsList(ISensorsType::getSensorsList_cb _hidl_cb) override {
        return getSensors()->getSensorsList(
                [&](const auto& list) { _hidl_cb(convertToOldSensorInfos(list)); });
    }

    Return<Result> activate(int32_t sensorHandle, bool enabled) override;

    Return<Result> batch(int32_t sensorHandle, int64_t samplingPeriodNs,
                         int64_t maxReportLatencyNs) override {
        return getSensors()->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs);
    }

    Return<Result> flush(int32_t sensorHandle) override {
        return getSensors()->flush(sensorHandle);
    }

    Return<Result> injectSensorData(const EventType& event) override {
        return getSensors()->injectSensorData(event);
    }

    Return<void> registerDirectChannel(const SharedMemInfo& mem,
                                       ISensorsType::registerDirectChannel_cb _hidl_cb) override;

    Return<Result> unregisterDirectChannel(int32_t channelHandle) override {
        return getSensors()->unregisterDirectChannel(channelHandle);
    }

    Return<void> configDirectReport(int32_t sensorHandle, int32_t channelHandle, RateLevel rate,
                                    ISensorsType::configDirectReport_cb _hidl_cb) override {
        return getSensors()->configDirectReport(sensorHandle, channelHandle, rate, _hidl_cb);
    }

    inline sp<ISensorsWrapperBase>& getSensors() { return mEnvironment->mSensors; }

    SensorsVtsEnvironmentBase<EventType>* getEnvironment() override { return mEnvironment; }

    // Test helpers
    void runSingleFlushTest(const std::vector<SensorInfoType>& sensors, bool activateSensor,
                            int32_t expectedFlushCount, Result expectedResponse);
    void runFlushTest(const std::vector<SensorInfoType>& sensors, bool activateSensor,
                      int32_t flushCalls, int32_t expectedFlushCount, Result expectedResponse);

    // Helper functions
    void activateAllSensors(bool enable);
    std::vector<SensorInfoType> getNonOneShotSensors();
    std::vector<SensorInfoType> getNonOneShotAndNonSpecialSensors();
    std::vector<SensorInfoType> getNonOneShotAndNonOnChangeAndNonSpecialSensors();
    std::vector<SensorInfoType> getOneShotSensors();
    std::vector<SensorInfoType> getInjectEventSensors();
    int32_t getInvalidSensorHandle();
    bool getDirectChannelSensor(SensorInfoType* sensor, SharedMemType* memType, RateLevel* rate);
    void verifyDirectChannel(SharedMemType memType);
    void verifyRegisterDirectChannel(
            std::shared_ptr<SensorsTestSharedMemory<SensorTypeVersion, EventType>> mem,
            int32_t* directChannelHandle, bool supportsSharedMemType,
            bool supportsAnyDirectChannel);
    void verifyConfigure(const SensorInfoType& sensor, SharedMemType memType,
                         int32_t directChannelHandle, bool directChannelSupported);
    void verifyUnregisterDirectChannel(int32_t directChannelHandle, bool directChannelSupported);
    void checkRateLevel(const SensorInfoType& sensor, int32_t directChannelHandle,
                        RateLevel rateLevel);
    void queryDirectChannelSupport(SharedMemType memType, bool* supportsSharedMemType,
                                   bool* supportsAnyDirectChannel);

  private:
    // Test environment for sensors HAL.
    SensorsHidlEnvironmentV2_X* mEnvironment;
};

Return<Result> SensorsHidlTest::activate(int32_t sensorHandle, bool enabled) {
    // If activating a sensor, add the handle in a set so that when test fails it can be turned off.
    // The handle is not removed when it is deactivating on purpose so that it is not necessary to
    // check the return value of deactivation. Deactivating a sensor more than once does not have
    // negative effect.
    if (enabled) {
        mSensorHandles.insert(sensorHandle);
    }
    return getSensors()->activate(sensorHandle, enabled);
}

Return<void> SensorsHidlTest::registerDirectChannel(const SharedMemInfo& mem,
                                                    ISensors::registerDirectChannel_cb cb) {
    // If registeration of a channel succeeds, add the handle of channel to a set so that it can be
    // unregistered when test fails. Unregister a channel does not remove the handle on purpose.
    // Unregistering a channel more than once should not have negative effect.
    getSensors()->registerDirectChannel(mem, [&](auto result, auto channelHandle) {
        if (result == Result::OK) {
            mDirectChannelHandles.insert(channelHandle);
        }
        cb(result, channelHandle);
    });
    return Void();
}

SensorInfoType SensorsHidlTest::defaultSensorByType(SensorTypeVersion type) {
    SensorInfoType ret;

    ret.type = (SensorTypeVersion)-1;
    getSensors()->getSensorsList([&](const auto& list) {
        const size_t count = list.size();
        for (size_t i = 0; i < count; ++i) {
            if (list[i].type == type) {
                ret = list[i];
                return;
            }
        }
    });

    return ret;
}

std::vector<SensorInfoType> SensorsHidlTest::getSensorsList() {
    std::vector<SensorInfoType> ret;

    getSensors()->getSensorsList([&](const auto& list) {
        const size_t count = list.size();
        ret.reserve(list.size());
        for (size_t i = 0; i < count; ++i) {
            ret.push_back(list[i]);
        }
    });

    return ret;
}

std::vector<SensorInfoType> SensorsHidlTest::getNonOneShotSensors() {
    std::vector<SensorInfoType> sensors;
    for (const SensorInfoType& info : getSensorsList()) {
        if (extractReportMode(info.flags) != SensorFlagBits::ONE_SHOT_MODE) {
            sensors.push_back(info);
        }
    }
    return sensors;
}

std::vector<SensorInfoType> SensorsHidlTest::getNonOneShotAndNonSpecialSensors() {
    std::vector<SensorInfoType> sensors;
    for (const SensorInfoType& info : getSensorsList()) {
        SensorFlagBits reportMode = extractReportMode(info.flags);
        if (reportMode != SensorFlagBits::ONE_SHOT_MODE &&
            reportMode != SensorFlagBits::SPECIAL_REPORTING_MODE) {
            sensors.push_back(info);
        }
    }
    return sensors;
}

std::vector<SensorInfoType> SensorsHidlTest::getNonOneShotAndNonOnChangeAndNonSpecialSensors() {
    std::vector<SensorInfoType> sensors;
    for (const SensorInfoType& info : getSensorsList()) {
        SensorFlagBits reportMode = extractReportMode(info.flags);
        if (reportMode != SensorFlagBits::ONE_SHOT_MODE &&
            reportMode != SensorFlagBits::ON_CHANGE_MODE &&
            reportMode != SensorFlagBits::SPECIAL_REPORTING_MODE) {
            sensors.push_back(info);
        }
    }
    return sensors;
}

std::vector<SensorInfoType> SensorsHidlTest::getOneShotSensors() {
    std::vector<SensorInfoType> sensors;
    for (const SensorInfoType& info : getSensorsList()) {
        if (extractReportMode(info.flags) == SensorFlagBits::ONE_SHOT_MODE) {
            sensors.push_back(info);
        }
    }
    return sensors;
}

std::vector<SensorInfoType> SensorsHidlTest::getInjectEventSensors() {
    std::vector<SensorInfoType> sensors;
    for (const SensorInfoType& info : getSensorsList()) {
        if (info.flags & static_cast<uint32_t>(SensorFlagBits::DATA_INJECTION)) {
            sensors.push_back(info);
        }
    }
    return sensors;
}

int32_t SensorsHidlTest::getInvalidSensorHandle() {
    // Find a sensor handle that does not exist in the sensor list
    int32_t maxHandle = 0;
    for (const SensorInfoType& sensor : getSensorsList()) {
        maxHandle = std::max(maxHandle, sensor.sensorHandle);
    }
    return maxHandle + 42;
}

// Test if sensor list returned is valid
TEST_P(SensorsHidlTest, SensorListValid) {
    getSensors()->getSensorsList([&](const auto& list) {
        const size_t count = list.size();
        std::unordered_map<int32_t, std::vector<std::string>> sensorTypeNameMap;
        for (size_t i = 0; i < count; ++i) {
            const auto& s = list[i];
            SCOPED_TRACE(::testing::Message()
                         << i << "/" << count << ": "
                         << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
                         << s.sensorHandle << std::dec << " type=" << static_cast<int>(s.type)
                         << " name=" << s.name);

            // Test type string non-empty only for private sensor types.
            if (s.type >= SensorTypeVersion::DEVICE_PRIVATE_BASE) {
                EXPECT_FALSE(s.typeAsString.empty());
            } else if (!s.typeAsString.empty()) {
                // Test type string matches framework string if specified for non-private types.
                EXPECT_NO_FATAL_FAILURE(assertTypeMatchStringType(s.type, s.typeAsString));
            }

            // Test if all sensor has name and vendor
            EXPECT_FALSE(s.name.empty());
            EXPECT_FALSE(s.vendor.empty());

            // Make sure that sensors of the same type have a unique name.
            std::vector<std::string>& v = sensorTypeNameMap[static_cast<int32_t>(s.type)];
            bool isUniqueName = std::find(v.begin(), v.end(), s.name) == v.end();
            EXPECT_TRUE(isUniqueName) << "Duplicate sensor Name: " << s.name;
            if (isUniqueName) {
                v.push_back(s.name);
            }

            // Test power > 0, maxRange > 0
            EXPECT_LE(0, s.power);
            EXPECT_LT(0, s.maxRange);

            // Info type, should have no sensor
            EXPECT_FALSE(s.type == SensorTypeVersion::ADDITIONAL_INFO ||
                         s.type == SensorTypeVersion::META_DATA);

            // Test fifoMax >= fifoReserved
            EXPECT_GE(s.fifoMaxEventCount, s.fifoReservedEventCount)
                    << "max=" << s.fifoMaxEventCount << " reserved=" << s.fifoReservedEventCount;

            // Test Reporting mode valid
            EXPECT_NO_FATAL_FAILURE(assertTypeMatchReportMode(s.type, extractReportMode(s.flags)));

            // Test min max are in the right order
            EXPECT_LE(s.minDelay, s.maxDelay);
            // Test min/max delay matches reporting mode
            EXPECT_NO_FATAL_FAILURE(
                    assertDelayMatchReportMode(s.minDelay, s.maxDelay, extractReportMode(s.flags)));
        }
    });
}

// Test that SetOperationMode returns the expected value
TEST_P(SensorsHidlTest, SetOperationMode) {
    std::vector<SensorInfoType> sensors = getInjectEventSensors();
    if (getInjectEventSensors().size() > 0) {
        ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::NORMAL));
        ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::DATA_INJECTION));
        ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::NORMAL));
    } else {
        ASSERT_EQ(Result::BAD_VALUE, getSensors()->setOperationMode(OperationMode::DATA_INJECTION));
    }
}

// Test that an injected event is written back to the Event FMQ
TEST_P(SensorsHidlTest, InjectSensorEventData) {
    std::vector<SensorInfoType> sensors = getInjectEventSensors();
    if (sensors.size() == 0) {
        return;
    }

    ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::DATA_INJECTION));

    EventCallback callback;
    getEnvironment()->registerCallback(&callback);

    // AdditionalInfo event should not be sent to Event FMQ
    EventType additionalInfoEvent;
    additionalInfoEvent.sensorType = SensorTypeVersion::ADDITIONAL_INFO;
    additionalInfoEvent.timestamp = android::elapsedRealtimeNano();

    EventType injectedEvent;
    injectedEvent.timestamp = android::elapsedRealtimeNano();
    Vec3 data = {1, 2, 3, SensorStatus::ACCURACY_HIGH};
    injectedEvent.u.vec3 = data;

    for (const auto& s : sensors) {
        additionalInfoEvent.sensorHandle = s.sensorHandle;
        EXPECT_EQ(Result::OK, getSensors()->injectSensorData(additionalInfoEvent));

        injectedEvent.sensorType = s.type;
        injectedEvent.sensorHandle = s.sensorHandle;
        EXPECT_EQ(Result::OK, getSensors()->injectSensorData(injectedEvent));
    }

    // Wait for events to be written back to the Event FMQ
    callback.waitForEvents(sensors, milliseconds(1000) /* timeout */);
    getEnvironment()->unregisterCallback();

    for (const auto& s : sensors) {
        auto events = callback.getEvents(s.sensorHandle);
        auto lastEvent = events.back();
        SCOPED_TRACE(::testing::Message()
                     << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
                     << s.sensorHandle << std::dec << " type=" << static_cast<int>(s.type)
                     << " name=" << s.name);

        // Verify that only a single event has been received
        ASSERT_EQ(events.size(), 1);

        // Verify that the event received matches the event injected and is not the additional
        // info event
        ASSERT_EQ(lastEvent.sensorType, s.type);
        ASSERT_EQ(lastEvent.sensorType, s.type);
        ASSERT_EQ(lastEvent.timestamp, injectedEvent.timestamp);
        ASSERT_EQ(lastEvent.u.vec3.x, injectedEvent.u.vec3.x);
        ASSERT_EQ(lastEvent.u.vec3.y, injectedEvent.u.vec3.y);
        ASSERT_EQ(lastEvent.u.vec3.z, injectedEvent.u.vec3.z);
        ASSERT_EQ(lastEvent.u.vec3.status, injectedEvent.u.vec3.status);
    }

    ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::NORMAL));
}

void SensorsHidlTest::activateAllSensors(bool enable) {
    for (const SensorInfoType& sensorInfo : getSensorsList()) {
        if (isValidType(sensorInfo.type)) {
            batch(sensorInfo.sensorHandle, sensorInfo.minDelay, 0 /* maxReportLatencyNs */);
            activate(sensorInfo.sensorHandle, enable);
        }
    }
}

// Test that if initialize is called twice, then the HAL writes events to the FMQs from the second
// call to the function.
TEST_P(SensorsHidlTest, CallInitializeTwice) {
    // Create a helper class so that a second environment is able to be instantiated
    class SensorsHidlEnvironmentTest : public SensorsHidlEnvironmentV2_X {
      public:
        SensorsHidlEnvironmentTest(const std::string& service_name)
            : SensorsHidlEnvironmentV2_X(service_name) {}
    };

    if (getSensorsList().size() == 0) {
        // No sensors
        return;
    }

    constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
    constexpr int32_t kNumEvents = 1;

    // Create a new environment that calls initialize()
    std::unique_ptr<SensorsHidlEnvironmentTest> newEnv =
            std::make_unique<SensorsHidlEnvironmentTest>(GetParam());
    newEnv->SetUp();
    if (HasFatalFailure()) {
        return;  // Exit early if setting up the new environment failed
    }

    activateAllSensors(true);
    // Verify that the old environment does not receive any events
    EXPECT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
    // Verify that the new event queue receives sensor events
    EXPECT_GE(newEnv.get()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
    activateAllSensors(false);

    // Cleanup the test environment
    newEnv->TearDown();

    // Restore the test environment for future tests
    getEnvironment()->TearDown();
    getEnvironment()->SetUp();
    if (HasFatalFailure()) {
        return;  // Exit early if resetting the environment failed
    }

    // Ensure that the original environment is receiving events
    activateAllSensors(true);
    EXPECT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
    activateAllSensors(false);
}

TEST_P(SensorsHidlTest, CleanupConnectionsOnInitialize) {
    activateAllSensors(true);

    // Verify that events are received
    constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
    constexpr int32_t kNumEvents = 1;
    ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);

    // Clear the active sensor handles so they are not disabled during TearDown
    auto handles = mSensorHandles;
    mSensorHandles.clear();
    getEnvironment()->TearDown();
    getEnvironment()->SetUp();
    if (HasFatalFailure()) {
        return;  // Exit early if resetting the environment failed
    }

    // Verify no events are received until sensors are re-activated
    ASSERT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
    activateAllSensors(true);
    ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);

    // Disable sensors
    activateAllSensors(false);

    // Restore active sensors prior to clearing the environment
    mSensorHandles = handles;
}

void SensorsHidlTest::runSingleFlushTest(const std::vector<SensorInfoType>& sensors,
                                         bool activateSensor, int32_t expectedFlushCount,
                                         Result expectedResponse) {
    runFlushTest(sensors, activateSensor, 1 /* flushCalls */, expectedFlushCount, expectedResponse);
}

void SensorsHidlTest::runFlushTest(const std::vector<SensorInfoType>& sensors, bool activateSensor,
                                   int32_t flushCalls, int32_t expectedFlushCount,
                                   Result expectedResponse) {
    EventCallback callback;
    getEnvironment()->registerCallback(&callback);

    for (const SensorInfoType& sensor : sensors) {
        // Configure and activate the sensor
        batch(sensor.sensorHandle, sensor.maxDelay, 0 /* maxReportLatencyNs */);
        activate(sensor.sensorHandle, activateSensor);

        // Flush the sensor
        for (int32_t i = 0; i < flushCalls; i++) {
            SCOPED_TRACE(::testing::Message()
                         << "Flush " << i << "/" << flushCalls << ": "
                         << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
                         << sensor.sensorHandle << std::dec
                         << " type=" << static_cast<int>(sensor.type) << " name=" << sensor.name);

            Result flushResult = flush(sensor.sensorHandle);
            EXPECT_EQ(flushResult, expectedResponse);
        }
    }

    // Wait up to one second for the flush events
    callback.waitForFlushEvents(sensors, flushCalls, milliseconds(1000) /* timeout */);

    // Deactivate all sensors after waiting for flush events so pending flush events are not
    // abandoned by the HAL.
    for (const SensorInfoType& sensor : sensors) {
        activate(sensor.sensorHandle, false);
    }
    getEnvironment()->unregisterCallback();

    // Check that the correct number of flushes are present for each sensor
    for (const SensorInfoType& sensor : sensors) {
        SCOPED_TRACE(::testing::Message()
                     << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
                     << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
                     << " name=" << sensor.name);
        ASSERT_EQ(callback.getFlushCount(sensor.sensorHandle), expectedFlushCount);
    }
}

TEST_P(SensorsHidlTest, FlushSensor) {
    // Find a sensor that is not a one-shot sensor
    std::vector<SensorInfoType> sensors = getNonOneShotSensors();
    if (sensors.size() == 0) {
        return;
    }

    constexpr int32_t kFlushes = 5;
    runSingleFlushTest(sensors, true /* activateSensor */, 1 /* expectedFlushCount */, Result::OK);
    runFlushTest(sensors, true /* activateSensor */, kFlushes, kFlushes, Result::OK);
}

TEST_P(SensorsHidlTest, FlushOneShotSensor) {
    // Find a sensor that is a one-shot sensor
    std::vector<SensorInfoType> sensors = getOneShotSensors();
    if (sensors.size() == 0) {
        return;
    }

    runSingleFlushTest(sensors, true /* activateSensor */, 0 /* expectedFlushCount */,
                       Result::BAD_VALUE);
}

TEST_P(SensorsHidlTest, FlushInactiveSensor) {
    // Attempt to find a non-one shot sensor, then a one-shot sensor if necessary
    std::vector<SensorInfoType> sensors = getNonOneShotSensors();
    if (sensors.size() == 0) {
        sensors = getOneShotSensors();
        if (sensors.size() == 0) {
            return;
        }
    }

    runSingleFlushTest(sensors, false /* activateSensor */, 0 /* expectedFlushCount */,
                       Result::BAD_VALUE);
}

TEST_P(SensorsHidlTest, Batch) {
    if (getSensorsList().size() == 0) {
        return;
    }

    activateAllSensors(false /* enable */);
    for (const SensorInfoType& sensor : getSensorsList()) {
        SCOPED_TRACE(::testing::Message()
                     << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
                     << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
                     << " name=" << sensor.name);

        // Call batch on inactive sensor
        // One shot sensors have minDelay set to -1 which is an invalid
        // parameter. Use 0 instead to avoid errors.
        int64_t samplingPeriodNs = extractReportMode(sensor.flags) == SensorFlagBits::ONE_SHOT_MODE
                                           ? 0
                                           : sensor.minDelay;
        ASSERT_EQ(batch(sensor.sensorHandle, samplingPeriodNs, 0 /* maxReportLatencyNs */),
                  Result::OK);

        // Activate the sensor
        activate(sensor.sensorHandle, true /* enabled */);

        // Call batch on an active sensor
        ASSERT_EQ(batch(sensor.sensorHandle, sensor.maxDelay, 0 /* maxReportLatencyNs */),
                  Result::OK);
    }
    activateAllSensors(false /* enable */);

    // Call batch on an invalid sensor
    SensorInfoType sensor = getSensorsList().front();
    sensor.sensorHandle = getInvalidSensorHandle();
    ASSERT_EQ(batch(sensor.sensorHandle, sensor.minDelay, 0 /* maxReportLatencyNs */),
              Result::BAD_VALUE);
}

TEST_P(SensorsHidlTest, Activate) {
    if (getSensorsList().size() == 0) {
        return;
    }

    // Verify that sensor events are generated when activate is called
    for (const SensorInfoType& sensor : getSensorsList()) {
        SCOPED_TRACE(::testing::Message()
                     << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
                     << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
                     << " name=" << sensor.name);

        batch(sensor.sensorHandle, sensor.minDelay, 0 /* maxReportLatencyNs */);
        ASSERT_EQ(activate(sensor.sensorHandle, true), Result::OK);

        // Call activate on a sensor that is already activated
        ASSERT_EQ(activate(sensor.sensorHandle, true), Result::OK);

        // Deactivate the sensor
        ASSERT_EQ(activate(sensor.sensorHandle, false), Result::OK);

        // Call deactivate on a sensor that is already deactivated
        ASSERT_EQ(activate(sensor.sensorHandle, false), Result::OK);
    }

    // Attempt to activate an invalid sensor
    int32_t invalidHandle = getInvalidSensorHandle();
    ASSERT_EQ(activate(invalidHandle, true), Result::BAD_VALUE);
    ASSERT_EQ(activate(invalidHandle, false), Result::BAD_VALUE);
}

TEST_P(SensorsHidlTest, NoStaleEvents) {
    constexpr milliseconds kFiveHundredMs(500);
    constexpr milliseconds kOneSecond(1000);

    // Register the callback to receive sensor events
    EventCallback callback;
    getEnvironment()->registerCallback(&callback);

    // This test is not valid for one-shot, on-change or special-report-mode sensors
    const std::vector<SensorInfoType> sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors();
    milliseconds maxMinDelay(0);
    for (const SensorInfoType& sensor : sensors) {
        milliseconds minDelay = duration_cast<milliseconds>(microseconds(sensor.minDelay));
        maxMinDelay = milliseconds(std::max(maxMinDelay.count(), minDelay.count()));
    }

    // Activate the sensors so that they start generating events
    activateAllSensors(true);

    // According to the CDD, the first sample must be generated within 400ms + 2 * sample_time
    // and the maximum reporting latency is 100ms + 2 * sample_time. Wait a sufficient amount
    // of time to guarantee that a sample has arrived.
    callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
    activateAllSensors(false);

    // Save the last received event for each sensor
    std::map<int32_t, int64_t> lastEventTimestampMap;
    for (const SensorInfoType& sensor : sensors) {
        SCOPED_TRACE(::testing::Message()
                     << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
                     << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
                     << " name=" << sensor.name);

        if (callback.getEvents(sensor.sensorHandle).size() >= 1) {
            lastEventTimestampMap[sensor.sensorHandle] =
                    callback.getEvents(sensor.sensorHandle).back().timestamp;
        }
    }

    // Allow some time to pass, reset the callback, then reactivate the sensors
    usleep(duration_cast<microseconds>(kOneSecond + (5 * maxMinDelay)).count());
    callback.reset();
    activateAllSensors(true);
    callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
    activateAllSensors(false);

    getEnvironment()->unregisterCallback();

    for (const SensorInfoType& sensor : sensors) {
        SCOPED_TRACE(::testing::Message()
                     << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
                     << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
                     << " name=" << sensor.name);

        // Skip sensors that did not previously report an event
        if (lastEventTimestampMap.find(sensor.sensorHandle) == lastEventTimestampMap.end()) {
            continue;
        }

        // Ensure that the first event received is not stale by ensuring that its timestamp is
        // sufficiently different from the previous event
        const EventType newEvent = callback.getEvents(sensor.sensorHandle).front();
        milliseconds delta = duration_cast<milliseconds>(
                nanoseconds(newEvent.timestamp - lastEventTimestampMap[sensor.sensorHandle]));
        milliseconds sensorMinDelay = duration_cast<milliseconds>(microseconds(sensor.minDelay));
        ASSERT_GE(delta, kFiveHundredMs + (3 * sensorMinDelay));
    }
}

void SensorsHidlTest::checkRateLevel(const SensorInfoType& sensor, int32_t directChannelHandle,
                                     RateLevel rateLevel) {
    configDirectReport(sensor.sensorHandle, directChannelHandle, rateLevel,
                       [&](Result result, int32_t reportToken) {
                           SCOPED_TRACE(::testing::Message()
                                        << " handle=0x" << std::hex << std::setw(8)
                                        << std::setfill('0') << sensor.sensorHandle << std::dec
                                        << " type=" << static_cast<int>(sensor.type)
                                        << " name=" << sensor.name);

                           if (isDirectReportRateSupported(sensor, rateLevel)) {
                               ASSERT_EQ(result, Result::OK);
                               if (rateLevel != RateLevel::STOP) {
                                   ASSERT_GT(reportToken, 0);
                               }
                           } else {
                               ASSERT_EQ(result, Result::BAD_VALUE);
                           }
                       });
}

void SensorsHidlTest::queryDirectChannelSupport(SharedMemType memType, bool* supportsSharedMemType,
                                                bool* supportsAnyDirectChannel) {
    *supportsSharedMemType = false;
    *supportsAnyDirectChannel = false;
    for (const SensorInfoType& curSensor : getSensorsList()) {
        if (isDirectChannelTypeSupported(curSensor, memType)) {
            *supportsSharedMemType = true;
        }
        if (isDirectChannelTypeSupported(curSensor, SharedMemType::ASHMEM) ||
            isDirectChannelTypeSupported(curSensor, SharedMemType::GRALLOC)) {
            *supportsAnyDirectChannel = true;
        }

        if (*supportsSharedMemType && *supportsAnyDirectChannel) {
            break;
        }
    }
}

void SensorsHidlTest::verifyRegisterDirectChannel(
        std::shared_ptr<SensorsTestSharedMemory<SensorTypeVersion, EventType>> mem,
        int32_t* directChannelHandle, bool supportsSharedMemType, bool supportsAnyDirectChannel) {
    char* buffer = mem->getBuffer();
    size_t size = mem->getSize();

    if (supportsSharedMemType) {
        memset(buffer, 0xff, size);
    }

    registerDirectChannel(mem->getSharedMemInfo(), [&](Result result, int32_t channelHandle) {
        if (supportsSharedMemType) {
            ASSERT_EQ(result, Result::OK);
            ASSERT_GT(channelHandle, 0);

            // Verify that the memory has been zeroed
            for (size_t i = 0; i < mem->getSize(); i++) {
                ASSERT_EQ(buffer[i], 0x00);
            }
        } else {
            Result expectedResult =
                    supportsAnyDirectChannel ? Result::BAD_VALUE : Result::INVALID_OPERATION;
            ASSERT_EQ(result, expectedResult);
            ASSERT_EQ(channelHandle, -1);
        }
        *directChannelHandle = channelHandle;
    });
}

void SensorsHidlTest::verifyConfigure(const SensorInfoType& sensor, SharedMemType memType,
                                      int32_t directChannelHandle, bool supportsAnyDirectChannel) {
    SCOPED_TRACE(::testing::Message()
                 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
                 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
                 << " name=" << sensor.name);

    if (isDirectChannelTypeSupported(sensor, memType)) {
        // Verify that each rate level is properly supported
        checkRateLevel(sensor, directChannelHandle, RateLevel::NORMAL);
        checkRateLevel(sensor, directChannelHandle, RateLevel::FAST);
        checkRateLevel(sensor, directChannelHandle, RateLevel::VERY_FAST);
        checkRateLevel(sensor, directChannelHandle, RateLevel::STOP);

        // Verify that a sensor handle of -1 is only acceptable when using RateLevel::STOP
        configDirectReport(-1 /* sensorHandle */, directChannelHandle, RateLevel::NORMAL,
                           [](Result result, int32_t /* reportToken */) {
                               ASSERT_EQ(result, Result::BAD_VALUE);
                           });
        configDirectReport(
                -1 /* sensorHandle */, directChannelHandle, RateLevel::STOP,
                [](Result result, int32_t /* reportToken */) { ASSERT_EQ(result, Result::OK); });
    } else {
        // directChannelHandle will be -1 here, HAL should either reject it as a bad value if there
        // is some level of direct channel report, otherwise return INVALID_OPERATION if direct
        // channel is not supported at all
        Result expectedResult =
                supportsAnyDirectChannel ? Result::BAD_VALUE : Result::INVALID_OPERATION;
        configDirectReport(sensor.sensorHandle, directChannelHandle, RateLevel::NORMAL,
                           [expectedResult](Result result, int32_t /* reportToken */) {
                               ASSERT_EQ(result, expectedResult);
                           });
    }
}

void SensorsHidlTest::verifyUnregisterDirectChannel(int32_t directChannelHandle,
                                                    bool supportsAnyDirectChannel) {
    Result expectedResult = supportsAnyDirectChannel ? Result::OK : Result::INVALID_OPERATION;
    ASSERT_EQ(unregisterDirectChannel(directChannelHandle), expectedResult);
}

void SensorsHidlTest::verifyDirectChannel(SharedMemType memType) {
    constexpr size_t kNumEvents = 1;
    constexpr size_t kMemSize = kNumEvents * kEventSize;

    std::shared_ptr<SensorsTestSharedMemory<SensorTypeVersion, EventType>> mem(
            SensorsTestSharedMemory<SensorTypeVersion, EventType>::create(memType, kMemSize));
    ASSERT_NE(mem, nullptr);

    bool supportsSharedMemType;
    bool supportsAnyDirectChannel;
    queryDirectChannelSupport(memType, &supportsSharedMemType, &supportsAnyDirectChannel);

    for (const SensorInfoType& sensor : getSensorsList()) {
        int32_t directChannelHandle = 0;
        verifyRegisterDirectChannel(mem, &directChannelHandle, supportsSharedMemType,
                                    supportsAnyDirectChannel);
        verifyConfigure(sensor, memType, directChannelHandle, supportsAnyDirectChannel);
        verifyUnregisterDirectChannel(directChannelHandle, supportsAnyDirectChannel);
    }
}

TEST_P(SensorsHidlTest, DirectChannelAshmem) {
    verifyDirectChannel(SharedMemType::ASHMEM);
}

TEST_P(SensorsHidlTest, DirectChannelGralloc) {
    verifyDirectChannel(SharedMemType::GRALLOC);
}

bool SensorsHidlTest::getDirectChannelSensor(SensorInfoType* sensor, SharedMemType* memType,
                                             RateLevel* rate) {
    bool found = false;
    for (const SensorInfoType& curSensor : getSensorsList()) {
        if (isDirectChannelTypeSupported(curSensor, SharedMemType::ASHMEM)) {
            *memType = SharedMemType::ASHMEM;
            *sensor = curSensor;
            found = true;
            break;
        } else if (isDirectChannelTypeSupported(curSensor, SharedMemType::GRALLOC)) {
            *memType = SharedMemType::GRALLOC;
            *sensor = curSensor;
            found = true;
            break;
        }
    }

    if (found) {
        // Find a supported rate level
        constexpr int kNumRateLevels = 3;
        RateLevel rates[kNumRateLevels] = {RateLevel::NORMAL, RateLevel::FAST,
                                           RateLevel::VERY_FAST};
        *rate = RateLevel::STOP;
        for (int i = 0; i < kNumRateLevels; i++) {
            if (isDirectReportRateSupported(*sensor, rates[i])) {
                *rate = rates[i];
            }
        }

        // At least one rate level must be supported
        EXPECT_NE(*rate, RateLevel::STOP);
    }
    return found;
}