summaryrefslogtreecommitdiff
path: root/rebootescrow/aidl/default/HadamardUtils.cpp
blob: adb2010ae62163389638918ab2a713edc59665ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
 * Copyright (C) 2019 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <HadamardUtils.h>

#include <android-base/logging.h>

namespace aidl {
namespace android {
namespace hardware {
namespace rebootescrow {
namespace hadamard {

static inline uint8_t read_bit(const std::vector<uint8_t>& input, size_t bit) {
    return (input[bit >> 3] >> (bit & 7)) & 1u;
}

// Use a simple LCG which is easy to run in reverse.
// https://www.johndcook.com/blog/2017/07/05/simple-random-number-generator/
constexpr uint64_t RNG_MODULUS = 0x7fffffff;
constexpr uint64_t RNG_MUL = 742938285;
constexpr uint64_t RNG_SEED = 20170705;
constexpr uint64_t RNG_INV_MUL = 1413043504;   // (mul * inv_mul) % modulus == 1
constexpr uint64_t RNG_INV_SEED = 1173538311;  // (seed * mul**65534) % modulus

// Apply an error correcting encoding.
//
// The error correcting code used is an augmented Hadamard code with
// k=15, so it takes a 16-bit input and produces a 2^15-bit output.
// We break the 32-byte key into 16 16-bit codewords and encode
// each codeword to a 2^15-bit output.
//
// To better defend against clustered errors, we stripe together the encoded
// codewords. Thus if a single 512-byte DRAM line is lost, instead of losing
// 2^11 bits from the encoding of a single code word, we lose 2^7 bits
// from the encoding of each of the 16 codewords.
// In addition we apply a Fisher-Yates shuffle to the bytes of the encoding;
// Hadamard encoding recovers much better from random errors than systematic
// ones, and this ensures that errors will be random.
std::vector<uint8_t> EncodeKey(const std::vector<uint8_t>& input) {
    CHECK_EQ(input.size(), KEY_SIZE_IN_BYTES);
    std::vector<uint8_t> result(OUTPUT_SIZE_BYTES, 0);
    static_assert(OUTPUT_SIZE_BYTES == 64 * 1024);
    // Transpose the key so that each row contains one bit from each codeword
    uint16_t wordmatrix[CODEWORD_BITS];
    for (size_t i = 0; i < CODEWORD_BITS; i++) {
        uint16_t word = 0;
        for (size_t j = 0; j < KEY_CODEWORDS; j++) {
            word |= read_bit(input, i + j * CODEWORD_BITS) << j;
        }
        wordmatrix[i] = word;
    }
    // Fill in the encodings in Gray code order for speed.
    uint16_t val = wordmatrix[CODEWORD_BITS - 1];
    size_t ix = 0;
    for (size_t i = 0; i < ENCODE_LENGTH; i++) {
        for (size_t b = 0; b < CODEWORD_BITS; b++) {
            if (i & (1 << b)) {
                ix ^= (1 << b);
                val ^= wordmatrix[b];
                break;
            }
        }
        result[ix * KEY_CODEWORD_BYTES] = val & 0xffu;
        result[ix * KEY_CODEWORD_BYTES + 1] = val >> 8u;
    }
    // Apply the inverse shuffle here; we apply the forward shuffle in decoding.
    uint64_t rng_state = RNG_INV_SEED;
    for (size_t i = OUTPUT_SIZE_BYTES - 1; i > 0; i--) {
        auto j = rng_state % (i + 1);
        auto t = result[i];
        result[i] = result[j];
        result[j] = t;
        rng_state *= RNG_INV_MUL;
        rng_state %= RNG_MODULUS;
    }
    return result;
}

// Constant-time conditional copy, to fix b/146520538
// ctl must be 0 or 1; we do the copy if it's 1.
static void CondCopy(uint32_t ctl, void* dest, const void* src, size_t len) {
    const auto cdest = reinterpret_cast<uint8_t*>(dest);
    const auto csrc = reinterpret_cast<const uint8_t*>(src);
    for (size_t i = 0; i < len; i++) {
        const uint32_t d = cdest[i];
        const uint32_t s = csrc[i];
        cdest[i] = d ^ (-ctl & (s ^ d));
    }
}

struct CodewordWinner {
    uint16_t codeword;
    int32_t score;
};

// Replace dest with src if it has a higher score
static void CopyWinner(CodewordWinner* dest, const CodewordWinner& src) {
    // Scores are between - 2^15 and 2^15, so taking the difference won't
    // overflow; we use the sign bit of the difference here.
    CondCopy(static_cast<uint32_t>(dest->score - src.score) >> 31, dest, &src,
             sizeof(CodewordWinner));
}

// Decode a single codeword. Because of the way codewords are striped together
// this takes the entire input, plus an offset telling it which word to decode.
static uint16_t DecodeWord(size_t word, const std::vector<uint8_t>& encoded) {
    std::vector<int32_t> scores;
    scores.reserve(ENCODE_LENGTH);
    // Convert x -> -1^x in the encoded bits. e.g [1, 0, 0, 1] -> [-1, 1, 1, -1]
    for (uint32_t i = 0; i < ENCODE_LENGTH; i++) {
        scores.push_back(1 - 2 * read_bit(encoded, i * KEY_CODEWORDS + word));
    }

    // Multiply the hadamard matrix by the transformed input.
    // |1  1  1  1|     |-1|     | 0|
    // |1 -1  1 -1|  *  | 1|  =  | 0|
    // |1  1 -1 -1|     | 1|     | 0|
    // |1 -1 -1  1|     |-1|     |-4|
    for (uint32_t i = 0; i < CODE_K; i++) {
        uint16_t step = 1u << i;
        for (uint32_t j = 0; j < ENCODE_LENGTH; j += 2 * step) {
            for (uint32_t k = j; k < j + step; k++) {
                auto a0 = scores[k];
                auto a1 = scores[k + step];
                scores[k] = a0 + a1;
                scores[k + step] = a0 - a1;
            }
        }
    }
    // -ENCODE_LENGTH is least possible score, so start one less than that
    auto best = CodewordWinner{0, -static_cast<int32_t>(ENCODE_LENGTH + 1)};
    // For every possible codeword value, look at its score, and replace best if it's higher,
    // in constant time.
    for (size_t i = 0; i < ENCODE_LENGTH; i++) {
        CopyWinner(&best, CodewordWinner{static_cast<uint16_t>(i), scores[i]});
        CopyWinner(&best, CodewordWinner{static_cast<uint16_t>(i | (1 << CODE_K)), -scores[i]});
    }
    return best.codeword;
}

std::vector<uint8_t> DecodeKey(const std::vector<uint8_t>& shuffled) {
    CHECK_EQ(OUTPUT_SIZE_BYTES, shuffled.size());
    // Apply the forward Fisher-Yates shuffle.
    std::vector<uint8_t> encoded(OUTPUT_SIZE_BYTES, 0);
    encoded[0] = shuffled[0];
    uint64_t rng_state = RNG_SEED;
    for (size_t i = 1; i < OUTPUT_SIZE_BYTES; i++) {
        auto j = rng_state % (i + 1);
        encoded[i] = encoded[j];
        encoded[j] = shuffled[i];
        rng_state *= RNG_MUL;
        rng_state %= RNG_MODULUS;
    }
    std::vector<uint8_t> result(KEY_SIZE_IN_BYTES, 0);
    for (size_t i = 0; i < KEY_CODEWORDS; i++) {
        uint16_t val = DecodeWord(i, encoded);
        result[i * CODEWORD_BYTES] = val & 0xffu;
        result[i * CODEWORD_BYTES + 1] = val >> 8u;
    }
    return result;
}

}  // namespace hadamard
}  // namespace rebootescrow
}  // namespace hardware
}  // namespace android
}  // namespace aidl