1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
|
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CommonUtils.h"
#include "HandleError.h"
#include <android-base/logging.h>
#include <android-base/unique_fd.h>
#include <android/hardware_buffer.h>
#include <hidl/HidlSupport.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <vndk/hardware_buffer.h>
#include <algorithm>
#include <any>
#include <functional>
#include <optional>
#include <variant>
#include <vector>
namespace android::hardware::neuralnetworks::utils {
namespace {
bool hasNoPointerData(const nn::Operand& operand);
bool hasNoPointerData(const nn::Model::Subgraph& subgraph);
bool hasNoPointerData(const nn::Request::Argument& argument);
template <typename Type>
bool hasNoPointerData(const std::vector<Type>& objects) {
return std::all_of(objects.begin(), objects.end(),
[](const auto& object) { return hasNoPointerData(object); });
}
bool hasNoPointerData(const nn::DataLocation& location) {
return std::visit([](auto ptr) { return ptr == nullptr; }, location.pointer);
}
bool hasNoPointerData(const nn::Operand& operand) {
return hasNoPointerData(operand.location);
}
bool hasNoPointerData(const nn::Model::Subgraph& subgraph) {
return hasNoPointerData(subgraph.operands);
}
bool hasNoPointerData(const nn::Request::Argument& argument) {
return hasNoPointerData(argument.location);
}
void copyPointersToSharedMemory(nn::Operand* operand, nn::ConstantMemoryBuilder* memoryBuilder) {
CHECK(operand != nullptr);
CHECK(memoryBuilder != nullptr);
if (operand->lifetime != nn::Operand::LifeTime::POINTER) {
return;
}
const void* data = std::visit([](auto ptr) { return static_cast<const void*>(ptr); },
operand->location.pointer);
CHECK(data != nullptr);
operand->lifetime = nn::Operand::LifeTime::CONSTANT_REFERENCE;
operand->location = memoryBuilder->append(data, operand->location.length);
}
void copyPointersToSharedMemory(nn::Model::Subgraph* subgraph,
nn::ConstantMemoryBuilder* memoryBuilder) {
CHECK(subgraph != nullptr);
std::for_each(subgraph->operands.begin(), subgraph->operands.end(),
[memoryBuilder](auto& operand) {
copyPointersToSharedMemory(&operand, memoryBuilder);
});
}
} // anonymous namespace
nn::Capabilities::OperandPerformanceTable makeQuantized8PerformanceConsistentWithP(
const nn::Capabilities::PerformanceInfo& float32Performance,
const nn::Capabilities::PerformanceInfo& quantized8Performance) {
// In Android P, most data types are treated as having the same performance as
// TENSOR_QUANT8_ASYMM. This collection must be in sorted order.
std::vector<nn::Capabilities::OperandPerformance> operandPerformances = {
{.type = nn::OperandType::FLOAT32, .info = float32Performance},
{.type = nn::OperandType::INT32, .info = quantized8Performance},
{.type = nn::OperandType::UINT32, .info = quantized8Performance},
{.type = nn::OperandType::TENSOR_FLOAT32, .info = float32Performance},
{.type = nn::OperandType::TENSOR_INT32, .info = quantized8Performance},
{.type = nn::OperandType::TENSOR_QUANT8_ASYMM, .info = quantized8Performance},
{.type = nn::OperandType::OEM, .info = quantized8Performance},
{.type = nn::OperandType::TENSOR_OEM_BYTE, .info = quantized8Performance},
};
return nn::Capabilities::OperandPerformanceTable::create(std::move(operandPerformances))
.value();
}
bool hasNoPointerData(const nn::Model& model) {
return hasNoPointerData(model.main) && hasNoPointerData(model.referenced);
}
bool hasNoPointerData(const nn::Request& request) {
return hasNoPointerData(request.inputs) && hasNoPointerData(request.outputs);
}
nn::GeneralResult<std::reference_wrapper<const nn::Model>> flushDataFromPointerToShared(
const nn::Model* model, std::optional<nn::Model>* maybeModelInSharedOut) {
CHECK(model != nullptr);
CHECK(maybeModelInSharedOut != nullptr);
if (hasNoPointerData(*model)) {
return *model;
}
// Make a copy of the model in order to make modifications. The modified model is returned to
// the caller through `maybeModelInSharedOut` if the function succeeds.
nn::Model modelInShared = *model;
nn::ConstantMemoryBuilder memoryBuilder(modelInShared.pools.size());
copyPointersToSharedMemory(&modelInShared.main, &memoryBuilder);
std::for_each(modelInShared.referenced.begin(), modelInShared.referenced.end(),
[&memoryBuilder](auto& subgraph) {
copyPointersToSharedMemory(&subgraph, &memoryBuilder);
});
if (!memoryBuilder.empty()) {
auto memory = NN_TRY(memoryBuilder.finish());
modelInShared.pools.push_back(std::move(memory));
}
*maybeModelInSharedOut = modelInShared;
return **maybeModelInSharedOut;
}
nn::GeneralResult<std::reference_wrapper<const nn::Request>> flushDataFromPointerToShared(
const nn::Request* request, std::optional<nn::Request>* maybeRequestInSharedOut) {
CHECK(request != nullptr);
CHECK(maybeRequestInSharedOut != nullptr);
if (hasNoPointerData(*request)) {
return *request;
}
// Make a copy of the request in order to make modifications. The modified request is returned
// to the caller through `maybeRequestInSharedOut` if the function succeeds.
nn::Request requestInShared = *request;
// Change input pointers to shared memory.
nn::ConstantMemoryBuilder inputBuilder(requestInShared.pools.size());
for (auto& input : requestInShared.inputs) {
const auto& location = input.location;
if (input.lifetime != nn::Request::Argument::LifeTime::POINTER) {
continue;
}
input.lifetime = nn::Request::Argument::LifeTime::POOL;
const void* data = std::visit([](auto ptr) { return static_cast<const void*>(ptr); },
location.pointer);
CHECK(data != nullptr);
input.location = inputBuilder.append(data, location.length);
}
// Allocate input memory.
if (!inputBuilder.empty()) {
auto memory = NN_TRY(inputBuilder.finish());
requestInShared.pools.push_back(std::move(memory));
}
// Change output pointers to shared memory.
nn::MutableMemoryBuilder outputBuilder(requestInShared.pools.size());
for (auto& output : requestInShared.outputs) {
const auto& location = output.location;
if (output.lifetime != nn::Request::Argument::LifeTime::POINTER) {
continue;
}
output.lifetime = nn::Request::Argument::LifeTime::POOL;
output.location = outputBuilder.append(location.length);
}
// Allocate output memory.
if (!outputBuilder.empty()) {
auto memory = NN_TRY(outputBuilder.finish());
requestInShared.pools.push_back(std::move(memory));
}
*maybeRequestInSharedOut = requestInShared;
return **maybeRequestInSharedOut;
}
nn::GeneralResult<void> unflushDataFromSharedToPointer(
const nn::Request& request, const std::optional<nn::Request>& maybeRequestInShared) {
if (!maybeRequestInShared.has_value() || maybeRequestInShared->pools.empty() ||
!std::holds_alternative<nn::SharedMemory>(maybeRequestInShared->pools.back())) {
return {};
}
const auto& requestInShared = *maybeRequestInShared;
// Map the memory.
const auto& outputMemory = std::get<nn::SharedMemory>(requestInShared.pools.back());
const auto [pointer, size, context] = NN_TRY(map(outputMemory));
const uint8_t* constantPointer =
std::visit([](const auto& o) { return static_cast<const uint8_t*>(o); }, pointer);
// Flush each output pointer.
CHECK_EQ(request.outputs.size(), requestInShared.outputs.size());
for (size_t i = 0; i < request.outputs.size(); ++i) {
const auto& location = request.outputs[i].location;
const auto& locationInShared = requestInShared.outputs[i].location;
if (!std::holds_alternative<void*>(location.pointer)) {
continue;
}
// Get output pointer and size.
void* data = std::get<void*>(location.pointer);
CHECK(data != nullptr);
const size_t length = location.length;
// Get output pool location.
CHECK(requestInShared.outputs[i].lifetime == nn::Request::Argument::LifeTime::POOL);
const size_t index = locationInShared.poolIndex;
const size_t offset = locationInShared.offset;
const size_t outputPoolIndex = requestInShared.pools.size() - 1;
CHECK(locationInShared.length == length);
CHECK(index == outputPoolIndex);
// Flush memory.
std::memcpy(data, constantPointer + offset, length);
}
return {};
}
std::vector<uint32_t> countNumberOfConsumers(size_t numberOfOperands,
const std::vector<nn::Operation>& operations) {
return nn::countNumberOfConsumers(numberOfOperands, operations);
}
nn::GeneralResult<hidl_memory> createHidlMemoryFromSharedMemory(const nn::SharedMemory& memory) {
if (memory == nullptr) {
return NN_ERROR() << "Memory must be non-empty";
}
if (const auto* handle = std::get_if<nn::Handle>(&memory->handle)) {
return hidl_memory(memory->name, NN_TRY(hidlHandleFromSharedHandle(*handle)), memory->size);
}
const auto* ahwb = std::get<nn::HardwareBufferHandle>(memory->handle).get();
AHardwareBuffer_Desc bufferDesc;
AHardwareBuffer_describe(ahwb, &bufferDesc);
if (bufferDesc.format == AHARDWAREBUFFER_FORMAT_BLOB) {
CHECK_EQ(memory->size, bufferDesc.width);
CHECK_EQ(memory->name, "hardware_buffer_blob");
} else {
CHECK_EQ(memory->size, 0u);
CHECK_EQ(memory->name, "hardware_buffer");
}
const native_handle_t* nativeHandle = AHardwareBuffer_getNativeHandle(ahwb);
const hidl_handle hidlHandle(nativeHandle);
hidl_handle handle(hidlHandle);
return hidl_memory(memory->name, std::move(handle), memory->size);
}
static uint32_t roundUpToMultiple(uint32_t value, uint32_t multiple) {
return (value + multiple - 1) / multiple * multiple;
}
nn::GeneralResult<nn::SharedMemory> createSharedMemoryFromHidlMemory(const hidl_memory& memory) {
CHECK_LE(memory.size(), std::numeric_limits<uint32_t>::max());
if (memory.name() != "hardware_buffer_blob") {
return std::make_shared<const nn::Memory>(nn::Memory{
.handle = NN_TRY(sharedHandleFromNativeHandle(memory.handle())),
.size = static_cast<uint32_t>(memory.size()),
.name = memory.name(),
});
}
const auto size = memory.size();
const auto format = AHARDWAREBUFFER_FORMAT_BLOB;
const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
const uint32_t width = size;
const uint32_t height = 1; // height is always 1 for BLOB mode AHardwareBuffer.
const uint32_t layers = 1; // layers is always 1 for BLOB mode AHardwareBuffer.
// AHardwareBuffer_createFromHandle() might fail because an allocator
// expects a specific stride value. In that case, we try to guess it by
// aligning the width to small powers of 2.
// TODO(b/174120849): Avoid stride assumptions.
AHardwareBuffer* hardwareBuffer = nullptr;
status_t status = UNKNOWN_ERROR;
for (uint32_t alignment : {1, 4, 32, 64, 128, 2, 8, 16}) {
const uint32_t stride = roundUpToMultiple(width, alignment);
AHardwareBuffer_Desc desc{
.width = width,
.height = height,
.layers = layers,
.format = format,
.usage = usage,
.stride = stride,
};
status = AHardwareBuffer_createFromHandle(&desc, memory.handle(),
AHARDWAREBUFFER_CREATE_FROM_HANDLE_METHOD_CLONE,
&hardwareBuffer);
if (status == NO_ERROR) {
break;
}
}
if (status != NO_ERROR) {
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
<< "Can't create AHardwareBuffer from handle. Error: " << status;
}
return std::make_shared<const nn::Memory>(nn::Memory{
.handle = nn::HardwareBufferHandle(hardwareBuffer, /*takeOwnership=*/true),
.size = static_cast<uint32_t>(memory.size()),
.name = memory.name(),
});
}
nn::GeneralResult<hidl_handle> hidlHandleFromSharedHandle(const nn::Handle& handle) {
std::vector<base::unique_fd> fds;
fds.reserve(handle.fds.size());
for (const auto& fd : handle.fds) {
const int dupFd = dup(fd);
if (dupFd == -1) {
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "Failed to dup the fd";
}
fds.emplace_back(dupFd);
}
constexpr size_t kIntMax = std::numeric_limits<int>::max();
CHECK_LE(handle.fds.size(), kIntMax);
CHECK_LE(handle.ints.size(), kIntMax);
native_handle_t* nativeHandle = native_handle_create(static_cast<int>(handle.fds.size()),
static_cast<int>(handle.ints.size()));
if (nativeHandle == nullptr) {
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "Failed to create native_handle";
}
for (size_t i = 0; i < fds.size(); ++i) {
nativeHandle->data[i] = fds[i].release();
}
std::copy(handle.ints.begin(), handle.ints.end(), &nativeHandle->data[nativeHandle->numFds]);
hidl_handle hidlHandle;
hidlHandle.setTo(nativeHandle, /*shouldOwn=*/true);
return hidlHandle;
}
nn::GeneralResult<nn::Handle> sharedHandleFromNativeHandle(const native_handle_t* handle) {
if (handle == nullptr) {
return NN_ERROR() << "sharedHandleFromNativeHandle failed because handle is nullptr";
}
std::vector<base::unique_fd> fds;
fds.reserve(handle->numFds);
for (int i = 0; i < handle->numFds; ++i) {
const int dupFd = dup(handle->data[i]);
if (dupFd == -1) {
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "Failed to dup the fd";
}
fds.emplace_back(dupFd);
}
std::vector<int> ints(&handle->data[handle->numFds],
&handle->data[handle->numFds + handle->numInts]);
return nn::Handle{.fds = std::move(fds), .ints = std::move(ints)};
}
nn::GeneralResult<hidl_vec<hidl_handle>> convertSyncFences(
const std::vector<nn::SyncFence>& syncFences) {
hidl_vec<hidl_handle> handles(syncFences.size());
for (size_t i = 0; i < syncFences.size(); ++i) {
const auto& handle = syncFences[i].getSharedHandle();
if (handle == nullptr) {
return NN_ERROR() << "convertSyncFences failed because sync fence is empty";
}
handles[i] = NN_TRY(hidlHandleFromSharedHandle(*handle));
}
return handles;
}
} // namespace android::hardware::neuralnetworks::utils
|