summaryrefslogtreecommitdiff
path: root/neuralnetworks/utils/adapter/hidl/src/PreparedModel.cpp
blob: 71060d5ca707be18c16581c2fb29ab1443ba0338 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/*
 * Copyright (C) 2020 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "PreparedModel.h"

#include "Burst.h"

#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.2/IBurstCallback.h>
#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <android/hardware/neuralnetworks/1.3/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.3/IFencedExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.3/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.3/types.h>
#include <nnapi/IPreparedModel.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/1.0/Utils.h>
#include <nnapi/hal/1.2/Utils.h>
#include <nnapi/hal/1.3/Conversions.h>
#include <nnapi/hal/1.3/Utils.h>

#include <memory>
#include <thread>

// See hardware/interfaces/neuralnetworks/utils/README.md for more information on HIDL interface
// lifetimes across processes and for protecting asynchronous calls across HIDL.

namespace android::hardware::neuralnetworks::adapter {
namespace {

template <typename Type>
auto convertInput(const Type& object) -> decltype(nn::convert(std::declval<Type>())) {
    auto result = nn::convert(object);
    if (!result.has_value()) {
        result.error().code = nn::ErrorStatus::INVALID_ARGUMENT;
    }
    return result;
}

nn::GeneralResult<nn::Version> validateRequestForModel(const nn::Request& request,
                                                       const nn::Model& model) {
    nn::GeneralResult<nn::Version> version = nn::validateRequestForModel(request, model);
    if (!version.ok()) {
        version.error().code = nn::ErrorStatus::INVALID_ARGUMENT;
    }
    return version;
}

class FencedExecutionCallback final : public V1_3::IFencedExecutionCallback {
  public:
    explicit FencedExecutionCallback(const nn::ExecuteFencedInfoCallback& callback)
        : kCallback(callback) {
        CHECK(callback != nullptr);
    }

    Return<void> getExecutionInfo(getExecutionInfo_cb cb) override {
        const auto result = kCallback();
        if (!result.has_value()) {
            const auto& [message, code] = result.error();
            const auto status =
                    V1_3::utils::convert(code).value_or(V1_3::ErrorStatus::GENERAL_FAILURE);
            LOG(ERROR) << message;
            cb(status, V1_2::utils::kNoTiming, V1_2::utils::kNoTiming);
            return Void();
        }
        const auto [timingLaunched, timingFenced] = result.value();
        const auto hidlTimingLaunched = V1_3::utils::convert(timingLaunched).value();
        const auto hidlTimingFenced = V1_3::utils::convert(timingFenced).value();
        cb(V1_3::ErrorStatus::NONE, hidlTimingLaunched, hidlTimingFenced);
        return Void();
    }

  private:
    const nn::ExecuteFencedInfoCallback kCallback;
};

using ExecutionResult = nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>;

void notify(V1_0::IExecutionCallback* callback, nn::ErrorStatus status,
            const std::vector<nn::OutputShape>& /*outputShapes*/, const nn::Timing& /*timing*/) {
    if (callback != nullptr) {
        const auto hidlStatus = V1_0::utils::convert(status).value();
        const auto ret = callback->notify(hidlStatus);
        if (!ret.isOk()) {
            LOG(ERROR) << "V1_0::IExecutionCallback::notify failed with " << ret.description();
        }
    }
}

void notify(V1_2::IExecutionCallback* callback, nn::ErrorStatus status,
            const std::vector<nn::OutputShape>& outputShapes, const nn::Timing& timing) {
    if (callback != nullptr) {
        const auto hidlStatus = V1_2::utils::convert(status).value();
        const auto hidlOutputShapes = V1_2::utils::convert(outputShapes).value();
        const auto hidlTiming = V1_2::utils::convert(timing).value();
        const auto ret = callback->notify_1_2(hidlStatus, hidlOutputShapes, hidlTiming);
        if (!ret.isOk()) {
            LOG(ERROR) << "V1_2::IExecutionCallback::notify_1_2 failed with " << ret.description();
        }
    }
}

void notify(V1_3::IExecutionCallback* callback, nn::ErrorStatus status,
            const std::vector<nn::OutputShape>& outputShapes, const nn::Timing& timing) {
    if (callback != nullptr) {
        const auto hidlStatus = V1_3::utils::convert(status).value();
        const auto hidlOutputShapes = V1_3::utils::convert(outputShapes).value();
        const auto hidlTiming = V1_3::utils::convert(timing).value();
        const auto ret = callback->notify_1_3(hidlStatus, hidlOutputShapes, hidlTiming);
        if (!ret.isOk()) {
            LOG(ERROR) << "V1_3::IExecutionCallback::notify_1_3 failed with " << ret.description();
        }
    }
}

template <typename CallbackType>
void notify(CallbackType* callback, ExecutionResult result) {
    if (!result.has_value()) {
        const auto [message, status, outputShapes] = std::move(result).error();
        LOG(ERROR) << message;
        notify(callback, status, outputShapes, {});
    } else {
        const auto [outputShapes, timing] = std::move(result).value();
        notify(callback, nn::ErrorStatus::NONE, outputShapes, timing);
    }
}

nn::GeneralResult<void> execute(const nn::SharedPreparedModel& preparedModel,
                                const Executor& executor, const V1_0::Request& request,
                                const sp<V1_0::IExecutionCallback>& callback) {
    if (callback.get() == nullptr) {
        return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid callback";
    }

    auto nnRequest = NN_TRY(convertInput(request));

    const std::any resource = preparedModel->getUnderlyingResource();
    if (const auto* model = std::any_cast<const nn::Model*>(&resource)) {
        CHECK(*model != nullptr);
        NN_TRY(adapter::validateRequestForModel(nnRequest, **model));
    }

    Task task = [preparedModel, nnRequest = std::move(nnRequest), callback] {
        auto result = preparedModel->execute(nnRequest, nn::MeasureTiming::NO, {}, {});
        notify(callback.get(), std::move(result));
    };
    executor(std::move(task), {});

    return {};
}

nn::GeneralResult<void> execute_1_2(const nn::SharedPreparedModel& preparedModel,
                                    const Executor& executor, const V1_0::Request& request,
                                    V1_2::MeasureTiming measure,
                                    const sp<V1_2::IExecutionCallback>& callback) {
    if (callback.get() == nullptr) {
        return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid callback";
    }

    auto nnRequest = NN_TRY(convertInput(request));
    const auto nnMeasure = NN_TRY(convertInput(measure));

    const std::any resource = preparedModel->getUnderlyingResource();
    if (const auto* model = std::any_cast<const nn::Model*>(&resource)) {
        CHECK(*model != nullptr);
        NN_TRY(adapter::validateRequestForModel(nnRequest, **model));
    }

    Task task = [preparedModel, nnRequest = std::move(nnRequest), nnMeasure, callback] {
        auto result = preparedModel->execute(nnRequest, nnMeasure, {}, {});
        notify(callback.get(), std::move(result));
    };
    executor(std::move(task), {});

    return {};
}

nn::GeneralResult<void> execute_1_3(const nn::SharedPreparedModel& preparedModel,
                                    const Executor& executor, const V1_3::Request& request,
                                    V1_2::MeasureTiming measure,
                                    const V1_3::OptionalTimePoint& deadline,
                                    const V1_3::OptionalTimeoutDuration& loopTimeoutDuration,
                                    const sp<V1_3::IExecutionCallback>& callback) {
    if (callback.get() == nullptr) {
        return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid callback";
    }

    auto nnRequest = NN_TRY(convertInput(request));
    const auto nnMeasure = NN_TRY(convertInput(measure));
    const auto nnDeadline = NN_TRY(convertInput(deadline));
    const auto nnLoopTimeoutDuration = NN_TRY(convertInput(loopTimeoutDuration));

    const std::any resource = preparedModel->getUnderlyingResource();
    if (const auto* model = std::any_cast<const nn::Model*>(&resource)) {
        CHECK(*model != nullptr);
        NN_TRY(adapter::validateRequestForModel(nnRequest, **model));
    }

    Task task = [preparedModel, nnRequest = std::move(nnRequest), nnMeasure, nnDeadline,
                 nnLoopTimeoutDuration, callback] {
        auto result =
                preparedModel->execute(nnRequest, nnMeasure, nnDeadline, nnLoopTimeoutDuration);
        notify(callback.get(), std::move(result));
    };
    executor(std::move(task), nnDeadline);

    return {};
}

nn::ExecutionResult<std::pair<hidl_vec<V1_2::OutputShape>, V1_2::Timing>> executeSynchronously(
        const nn::SharedPreparedModel& preparedModel, const V1_0::Request& request,
        V1_2::MeasureTiming measure) {
    const auto nnRequest = NN_TRY(convertInput(request));
    const auto nnMeasure = NN_TRY(convertInput(measure));

    const auto [outputShapes, timing] =
            NN_TRY(preparedModel->execute(nnRequest, nnMeasure, {}, {}));

    auto hidlOutputShapes = NN_TRY(V1_2::utils::convert(outputShapes));
    const auto hidlTiming = NN_TRY(V1_2::utils::convert(timing));
    return std::make_pair(std::move(hidlOutputShapes), hidlTiming);
}

nn::ExecutionResult<std::pair<hidl_vec<V1_2::OutputShape>, V1_2::Timing>> executeSynchronously_1_3(
        const nn::SharedPreparedModel& preparedModel, const V1_3::Request& request,
        V1_2::MeasureTiming measure, const V1_3::OptionalTimePoint& deadline,
        const V1_3::OptionalTimeoutDuration& loopTimeoutDuration) {
    const auto nnRequest = NN_TRY(convertInput(request));
    const auto nnMeasure = NN_TRY(convertInput(measure));
    const auto nnDeadline = NN_TRY(convertInput(deadline));
    const auto nnLoopTimeoutDuration = NN_TRY(convertInput(loopTimeoutDuration));

    const auto [outputShapes, timing] =
            NN_TRY(preparedModel->execute(nnRequest, nnMeasure, nnDeadline, nnLoopTimeoutDuration));

    auto hidlOutputShapes = NN_TRY(V1_3::utils::convert(outputShapes));
    const auto hidlTiming = NN_TRY(V1_3::utils::convert(timing));
    return std::make_pair(std::move(hidlOutputShapes), hidlTiming);
}

nn::GeneralResult<std::vector<nn::SyncFence>> convertSyncFences(
        const hidl_vec<hidl_handle>& handles) {
    auto nnHandles = NN_TRY(convertInput(handles));
    std::vector<nn::SyncFence> syncFences;
    syncFences.reserve(handles.size());
    for (auto&& handle : nnHandles) {
        if (auto syncFence = nn::SyncFence::create(std::move(handle)); !syncFence.ok()) {
            return nn::error(nn::ErrorStatus::INVALID_ARGUMENT) << std::move(syncFence).error();
        } else {
            syncFences.push_back(std::move(syncFence).value());
        }
    }
    return syncFences;
}

nn::GeneralResult<sp<V1_2::IBurstContext>> configureExecutionBurst(
        const nn::SharedPreparedModel& preparedModel, const sp<V1_2::IBurstCallback>& callback,
        const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
        const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel) {
    auto burstExecutor = NN_TRY(preparedModel->configureExecutionBurst());
    return Burst::create(callback, requestChannel, resultChannel, std::move(burstExecutor),
                         V1_2::utils::getBurstServerPollingTimeWindow());
}

nn::GeneralResult<std::pair<hidl_handle, sp<V1_3::IFencedExecutionCallback>>> executeFenced(
        const nn::SharedPreparedModel& preparedModel, const V1_3::Request& request,
        const hidl_vec<hidl_handle>& waitFor, V1_2::MeasureTiming measure,
        const V1_3::OptionalTimePoint& deadline,
        const V1_3::OptionalTimeoutDuration& loopTimeoutDuration,
        const V1_3::OptionalTimeoutDuration& duration) {
    const auto nnRequest = NN_TRY(convertInput(request));
    const auto nnWaitFor = NN_TRY(convertSyncFences(waitFor));
    const auto nnMeasure = NN_TRY(convertInput(measure));
    const auto nnDeadline = NN_TRY(convertInput(deadline));
    const auto nnLoopTimeoutDuration = NN_TRY(convertInput(loopTimeoutDuration));
    const auto nnDuration = NN_TRY(convertInput(duration));

    auto [syncFence, executeFencedCallback] = NN_TRY(preparedModel->executeFenced(
            nnRequest, nnWaitFor, nnMeasure, nnDeadline, nnLoopTimeoutDuration, nnDuration));

    auto hidlSyncFence = NN_TRY(V1_3::utils::convert(syncFence.getSharedHandle()));
    auto hidlExecuteFencedCallback = sp<FencedExecutionCallback>::make(executeFencedCallback);
    return std::make_pair(std::move(hidlSyncFence), std::move(hidlExecuteFencedCallback));
}

}  // namespace

PreparedModel::PreparedModel(nn::SharedPreparedModel preparedModel, Executor executor)
    : kPreparedModel(std::move(preparedModel)), kExecutor(std::move(executor)) {
    CHECK(kPreparedModel != nullptr);
    CHECK(kExecutor != nullptr);
}

nn::SharedPreparedModel PreparedModel::getUnderlyingPreparedModel() const {
    return kPreparedModel;
}

Return<V1_0::ErrorStatus> PreparedModel::execute(const V1_0::Request& request,
                                                 const sp<V1_0::IExecutionCallback>& callback) {
    auto result = adapter::execute(kPreparedModel, kExecutor, request, callback);
    if (!result.has_value()) {
        auto [message, code] = std::move(result).error();
        LOG(ERROR) << "adapter::PreparedModel::execute failed with " << code << ": " << message;
        notify(callback.get(), code, {}, {});
        return V1_0::utils::convert(code).value();
    }
    return V1_0::ErrorStatus::NONE;
}

Return<V1_0::ErrorStatus> PreparedModel::execute_1_2(const V1_0::Request& request,
                                                     V1_2::MeasureTiming measure,
                                                     const sp<V1_2::IExecutionCallback>& callback) {
    auto result = adapter::execute_1_2(kPreparedModel, kExecutor, request, measure, callback);
    if (!result.has_value()) {
        auto [message, code] = std::move(result).error();
        LOG(ERROR) << "adapter::PreparedModel::execute_1_2 failed with " << code << ": " << message;
        notify(callback.get(), code, {}, {});
        return V1_2::utils::convert(code).value();
    }
    return V1_0::ErrorStatus::NONE;
}

Return<V1_3::ErrorStatus> PreparedModel::execute_1_3(
        const V1_3::Request& request, V1_2::MeasureTiming measure,
        const V1_3::OptionalTimePoint& deadline,
        const V1_3::OptionalTimeoutDuration& loopTimeoutDuration,
        const sp<V1_3::IExecutionCallback>& callback) {
    auto result = adapter::execute_1_3(kPreparedModel, kExecutor, request, measure, deadline,
                                       loopTimeoutDuration, callback);
    if (!result.has_value()) {
        auto [message, code] = std::move(result).error();
        LOG(ERROR) << "adapter::PreparedModel::execute_1_3 failed with " << code << ": " << message;
        notify(callback.get(), code, {}, {});
        return V1_3::utils::convert(code).value();
    }
    return V1_3::ErrorStatus::NONE;
}

Return<void> PreparedModel::executeSynchronously(const V1_0::Request& request,
                                                 V1_2::MeasureTiming measure,
                                                 executeSynchronously_cb cb) {
    auto result = adapter::executeSynchronously(kPreparedModel, request, measure);
    if (!result.has_value()) {
        auto [message, code, outputShapes] = std::move(result).error();
        LOG(ERROR) << "adapter::PreparedModel::executeSynchronously failed with " << code << ": "
                   << message;
        cb(V1_2::utils::convert(code).value(), V1_2::utils::convert(outputShapes).value(),
           V1_2::utils::kNoTiming);
        return Void();
    }
    auto [outputShapes, timing] = std::move(result).value();
    cb(V1_0::ErrorStatus::NONE, outputShapes, timing);
    return Void();
}

Return<void> PreparedModel::executeSynchronously_1_3(
        const V1_3::Request& request, V1_2::MeasureTiming measure,
        const V1_3::OptionalTimePoint& deadline,
        const V1_3::OptionalTimeoutDuration& loopTimeoutDuration, executeSynchronously_1_3_cb cb) {
    auto result = adapter::executeSynchronously_1_3(kPreparedModel, request, measure, deadline,
                                                    loopTimeoutDuration);
    if (!result.has_value()) {
        auto [message, code, outputShapes] = std::move(result).error();
        LOG(ERROR) << "adapter::PreparedModel::executeSynchronously_1_3 failed with " << code
                   << ": " << message;
        cb(V1_3::utils::convert(code).value(), V1_3::utils::convert(outputShapes).value(),
           V1_2::utils::kNoTiming);
        return Void();
    }
    auto [outputShapes, timing] = std::move(result).value();
    cb(V1_3::ErrorStatus::NONE, outputShapes, timing);
    return Void();
}

Return<void> PreparedModel::configureExecutionBurst(
        const sp<V1_2::IBurstCallback>& callback,
        const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
        const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel,
        configureExecutionBurst_cb cb) {
    auto result = adapter::configureExecutionBurst(kPreparedModel, callback, requestChannel,
                                                   resultChannel);
    if (!result.has_value()) {
        auto [message, code] = std::move(result).error();
        LOG(ERROR) << "adapter::PreparedModel::configureExecutionBurst failed with " << code << ": "
                   << message;
        cb(V1_2::utils::convert(code).value(), nullptr);
        return Void();
    }
    auto burstContext = std::move(result).value();
    cb(V1_0::ErrorStatus::NONE, std::move(burstContext));
    return Void();
}

Return<void> PreparedModel::executeFenced(const V1_3::Request& request,
                                          const hidl_vec<hidl_handle>& waitFor,
                                          V1_2::MeasureTiming measure,
                                          const V1_3::OptionalTimePoint& deadline,
                                          const V1_3::OptionalTimeoutDuration& loopTimeoutDuration,
                                          const V1_3::OptionalTimeoutDuration& duration,
                                          executeFenced_cb callback) {
    auto result = adapter::executeFenced(kPreparedModel, request, waitFor, measure, deadline,
                                         loopTimeoutDuration, duration);
    if (!result.has_value()) {
        auto [message, code] = std::move(result).error();
        LOG(ERROR) << "adapter::PreparedModel::executeFenced failed with " << code << ": "
                   << message;
        callback(V1_3::utils::convert(code).value(), {}, nullptr);
        return Void();
    }
    auto [syncFence, executeFencedCallback] = std::move(result).value();
    callback(V1_3::ErrorStatus::NONE, syncFence, executeFencedCallback);
    return Void();
}

}  // namespace android::hardware::neuralnetworks::adapter