1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "PreparedModel.h"
#include "Burst.h"
#include "Execution.h"
#include <aidl/android/hardware/neuralnetworks/BnFencedExecutionCallback.h>
#include <aidl/android/hardware/neuralnetworks/BnPreparedModel.h>
#include <aidl/android/hardware/neuralnetworks/ExecutionResult.h>
#include <aidl/android/hardware/neuralnetworks/FencedExecutionResult.h>
#include <aidl/android/hardware/neuralnetworks/IBurst.h>
#include <aidl/android/hardware/neuralnetworks/Request.h>
#include <android-base/logging.h>
#include <android/binder_auto_utils.h>
#include <nnapi/IExecution.h>
#include <nnapi/IPreparedModel.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/aidl/Conversions.h>
#include <nnapi/hal/aidl/Utils.h>
#include <memory>
#include <utility>
#include <vector>
namespace aidl::android::hardware::neuralnetworks::adapter {
namespace {
class FencedExecutionCallback : public BnFencedExecutionCallback {
public:
FencedExecutionCallback(nn::ExecuteFencedInfoCallback callback)
: kCallback(std::move(callback)) {}
ndk::ScopedAStatus getExecutionInfo(Timing* timingLaunched, Timing* timingFenced,
ErrorStatus* errorStatus) override {
const auto result = kCallback();
if (result.ok()) {
const auto& [nnTimingLaunched, nnTimingFenced] = result.value();
*timingLaunched = utils::convert(nnTimingLaunched).value();
*timingFenced = utils::convert(nnTimingFenced).value();
*errorStatus = ErrorStatus::NONE;
} else {
constexpr auto kNoTiming = Timing{.timeOnDeviceNs = -1, .timeInDriverNs = -1};
const auto& [message, code] = result.error();
LOG(ERROR) << "getExecutionInfo failed with " << code << ": " << message;
const auto aidlStatus = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
*timingLaunched = kNoTiming;
*timingFenced = kNoTiming;
*errorStatus = aidlStatus;
}
return ndk::ScopedAStatus::ok();
}
private:
const nn::ExecuteFencedInfoCallback kCallback;
};
template <typename Type>
auto convertInput(const Type& object) -> decltype(nn::convert(std::declval<Type>())) {
auto result = nn::convert(object);
if (!result.has_value()) {
result.error().code = nn::ErrorStatus::INVALID_ARGUMENT;
}
return result;
}
nn::GeneralResult<std::vector<nn::SyncFence>> convertSyncFences(
const std::vector<ndk::ScopedFileDescriptor>& waitFor) {
auto handles = NN_TRY(convertInput(waitFor));
constexpr auto valid = [](const nn::SharedHandle& handle) {
return handle != nullptr && handle->ok();
};
if (!std::all_of(handles.begin(), handles.end(), valid)) {
return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid sync fence";
}
std::vector<nn::SyncFence> syncFences;
syncFences.reserve(waitFor.size());
for (auto& handle : handles) {
syncFences.push_back(nn::SyncFence::create(std::move(handle)).value());
}
return syncFences;
}
nn::Duration makeDuration(int64_t durationNs) {
return nn::Duration(std::chrono::nanoseconds(durationNs));
}
nn::GeneralResult<nn::OptionalDuration> makeOptionalDuration(int64_t durationNs) {
if (durationNs < -1) {
return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid duration " << durationNs;
}
return durationNs < 0 ? nn::OptionalDuration{} : makeDuration(durationNs);
}
nn::GeneralResult<nn::OptionalTimePoint> makeOptionalTimePoint(int64_t durationNs) {
if (durationNs < -1) {
return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid time point " << durationNs;
}
return durationNs < 0 ? nn::OptionalTimePoint{} : nn::TimePoint(makeDuration(durationNs));
}
nn::ExecutionResult<ExecutionResult> executeSynchronously(const nn::IPreparedModel& preparedModel,
const Request& request,
bool measureTiming, int64_t deadlineNs,
int64_t loopTimeoutDurationNs) {
const auto nnRequest = NN_TRY(convertInput(request));
const auto nnMeasureTiming = measureTiming ? nn::MeasureTiming::YES : nn::MeasureTiming::NO;
const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs));
const auto nnLoopTimeoutDuration = NN_TRY(makeOptionalDuration(loopTimeoutDurationNs));
const auto result =
preparedModel.execute(nnRequest, nnMeasureTiming, nnDeadline, nnLoopTimeoutDuration);
if (!result.ok() && result.error().code == nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
const auto& [message, code, outputShapes] = result.error();
LOG(ERROR) << "executeSynchronously failed with " << code << ": " << message;
return ExecutionResult{.outputSufficientSize = false,
.outputShapes = utils::convert(outputShapes).value(),
.timing = {.timeInDriverNs = -1, .timeOnDeviceNs = -1}};
}
const auto& [outputShapes, timing] = NN_TRY(result);
return ExecutionResult{.outputSufficientSize = true,
.outputShapes = utils::convert(outputShapes).value(),
.timing = utils::convert(timing).value()};
}
nn::GeneralResult<FencedExecutionResult> executeFenced(
const nn::IPreparedModel& preparedModel, const Request& request,
const std::vector<ndk::ScopedFileDescriptor>& waitFor, bool measureTiming,
int64_t deadlineNs, int64_t loopTimeoutDurationNs, int64_t durationNs) {
const auto nnRequest = NN_TRY(convertInput(request));
const auto nnWaitFor = NN_TRY(convertSyncFences(waitFor));
const auto nnMeasureTiming = measureTiming ? nn::MeasureTiming::YES : nn::MeasureTiming::NO;
const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs));
const auto nnLoopTimeoutDuration = NN_TRY(makeOptionalDuration(loopTimeoutDurationNs));
const auto nnDuration = NN_TRY(makeOptionalDuration(durationNs));
auto [syncFence, executeFencedInfoCallback] = NN_TRY(preparedModel.executeFenced(
nnRequest, nnWaitFor, nnMeasureTiming, nnDeadline, nnLoopTimeoutDuration, nnDuration));
ndk::ScopedFileDescriptor fileDescriptor;
if (syncFence.hasFd()) {
auto uniqueFd = NN_TRY(nn::dupFd(syncFence.getFd()));
fileDescriptor = ndk::ScopedFileDescriptor(uniqueFd.release());
}
return FencedExecutionResult{.callback = ndk::SharedRefBase::make<FencedExecutionCallback>(
std::move(executeFencedInfoCallback)),
.syncFence = std::move(fileDescriptor)};
}
nn::GeneralResult<nn::SharedExecution> createReusableExecution(
const nn::IPreparedModel& preparedModel, const Request& request, bool measureTiming,
int64_t loopTimeoutDurationNs) {
const auto nnRequest = NN_TRY(convertInput(request));
const auto nnMeasureTiming = measureTiming ? nn::MeasureTiming::YES : nn::MeasureTiming::NO;
const auto nnLoopTimeoutDuration = NN_TRY(makeOptionalDuration(loopTimeoutDurationNs));
return preparedModel.createReusableExecution(nnRequest, nnMeasureTiming, nnLoopTimeoutDuration);
}
nn::ExecutionResult<ExecutionResult> executeSynchronously(const nn::IExecution& execution,
int64_t deadlineNs) {
const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs));
const auto result = execution.compute(nnDeadline);
if (!result.ok() && result.error().code == nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
const auto& [message, code, outputShapes] = result.error();
LOG(ERROR) << "executeSynchronously failed with " << code << ": " << message;
return ExecutionResult{.outputSufficientSize = false,
.outputShapes = utils::convert(outputShapes).value(),
.timing = {.timeInDriverNs = -1, .timeOnDeviceNs = -1}};
}
const auto& [outputShapes, timing] = NN_TRY(result);
return ExecutionResult{.outputSufficientSize = true,
.outputShapes = utils::convert(outputShapes).value(),
.timing = utils::convert(timing).value()};
}
nn::GeneralResult<FencedExecutionResult> executeFenced(
const nn::IExecution& execution, const std::vector<ndk::ScopedFileDescriptor>& waitFor,
int64_t deadlineNs, int64_t durationNs) {
const auto nnWaitFor = NN_TRY(convertSyncFences(waitFor));
const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs));
const auto nnDuration = NN_TRY(makeOptionalDuration(durationNs));
auto [syncFence, executeFencedInfoCallback] =
NN_TRY(execution.computeFenced(nnWaitFor, nnDeadline, nnDuration));
ndk::ScopedFileDescriptor fileDescriptor;
if (syncFence.hasFd()) {
auto uniqueFd = NN_TRY(nn::dupFd(syncFence.getFd()));
fileDescriptor = ndk::ScopedFileDescriptor(uniqueFd.release());
}
return FencedExecutionResult{.callback = ndk::SharedRefBase::make<FencedExecutionCallback>(
std::move(executeFencedInfoCallback)),
.syncFence = std::move(fileDescriptor)};
}
} // namespace
PreparedModel::PreparedModel(nn::SharedPreparedModel preparedModel)
: kPreparedModel(std::move(preparedModel)) {
CHECK(kPreparedModel != nullptr);
}
ndk::ScopedAStatus PreparedModel::executeSynchronously(const Request& request, bool measureTiming,
int64_t deadlineNs,
int64_t loopTimeoutDurationNs,
ExecutionResult* executionResult) {
auto result = adapter::executeSynchronously(*kPreparedModel, request, measureTiming, deadlineNs,
loopTimeoutDurationNs);
if (!result.has_value()) {
const auto& [message, code, _] = result.error();
const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
static_cast<int32_t>(aidlCode), message.c_str());
}
*executionResult = std::move(result).value();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus PreparedModel::executeFenced(
const Request& request, const std::vector<ndk::ScopedFileDescriptor>& waitFor,
bool measureTiming, int64_t deadlineNs, int64_t loopTimeoutDurationNs, int64_t durationNs,
FencedExecutionResult* executionResult) {
auto result = adapter::executeFenced(*kPreparedModel, request, waitFor, measureTiming,
deadlineNs, loopTimeoutDurationNs, durationNs);
if (!result.has_value()) {
const auto& [message, code] = result.error();
const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
static_cast<int32_t>(aidlCode), message.c_str());
}
*executionResult = std::move(result).value();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus PreparedModel::configureExecutionBurst(std::shared_ptr<IBurst>* burst) {
auto result = kPreparedModel->configureExecutionBurst();
if (!result.has_value()) {
const auto& [message, code] = result.error();
const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
static_cast<int32_t>(aidlCode), message.c_str());
}
*burst = ndk::SharedRefBase::make<Burst>(std::move(result).value());
return ndk::ScopedAStatus::ok();
}
nn::SharedPreparedModel PreparedModel::getUnderlyingPreparedModel() const {
return kPreparedModel;
}
ndk::ScopedAStatus PreparedModel::createReusableExecution(const Request& request,
bool measureTiming,
int64_t loopTimeoutDurationNs,
std::shared_ptr<IExecution>* execution) {
auto result = adapter::createReusableExecution(*kPreparedModel, request, measureTiming,
loopTimeoutDurationNs);
if (!result.has_value()) {
const auto& [message, code] = result.error();
const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
static_cast<int32_t>(aidlCode), message.c_str());
}
*execution = ndk::SharedRefBase::make<Execution>(std::move(result).value());
return ndk::ScopedAStatus::ok();
}
Execution::Execution(nn::SharedExecution execution) : kExecution(std::move(execution)) {
CHECK(kExecution != nullptr);
}
ndk::ScopedAStatus Execution::executeSynchronously(int64_t deadlineNs,
ExecutionResult* executionResult) {
auto result = adapter::executeSynchronously(*kExecution, deadlineNs);
if (!result.has_value()) {
const auto& [message, code, _] = result.error();
const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
static_cast<int32_t>(aidlCode), message.c_str());
}
*executionResult = std::move(result).value();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Execution::executeFenced(const std::vector<ndk::ScopedFileDescriptor>& waitFor,
int64_t deadlineNs, int64_t durationNs,
FencedExecutionResult* executionResult) {
auto result = adapter::executeFenced(*kExecution, waitFor, deadlineNs, durationNs);
if (!result.has_value()) {
const auto& [message, code] = result.error();
const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
static_cast<int32_t>(aidlCode), message.c_str());
}
*executionResult = std::move(result).value();
return ndk::ScopedAStatus::ok();
}
} // namespace aidl::android::hardware::neuralnetworks::adapter
|