summaryrefslogtreecommitdiff
path: root/neuralnetworks/aidl/utils/src/Conversions.cpp
blob: db3504bb7455f2b148659ad5bc85aa8d291e027c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
/*
 * Copyright (C) 2021 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "Conversions.h"

#include <aidl/android/hardware/common/NativeHandle.h>
#include <android-base/logging.h>
#include <android/hardware_buffer.h>
#include <cutils/native_handle.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/CommonUtils.h>
#include <nnapi/hal/HandleError.h>
#include <vndk/hardware_buffer.h>

#include <algorithm>
#include <chrono>
#include <functional>
#include <iterator>
#include <limits>
#include <type_traits>
#include <utility>

#define VERIFY_NON_NEGATIVE(value) \
    while (UNLIKELY(value < 0)) return NN_ERROR()

namespace {

template <typename Type>
constexpr std::underlying_type_t<Type> underlyingType(Type value) {
    return static_cast<std::underlying_type_t<Type>>(value);
}

constexpr auto kVersion = android::nn::Version::ANDROID_S;

}  // namespace

namespace android::nn {
namespace {

using ::aidl::android::hardware::common::NativeHandle;

constexpr auto validOperandType(nn::OperandType operandType) {
    switch (operandType) {
        case nn::OperandType::FLOAT32:
        case nn::OperandType::INT32:
        case nn::OperandType::UINT32:
        case nn::OperandType::TENSOR_FLOAT32:
        case nn::OperandType::TENSOR_INT32:
        case nn::OperandType::TENSOR_QUANT8_ASYMM:
        case nn::OperandType::BOOL:
        case nn::OperandType::TENSOR_QUANT16_SYMM:
        case nn::OperandType::TENSOR_FLOAT16:
        case nn::OperandType::TENSOR_BOOL8:
        case nn::OperandType::FLOAT16:
        case nn::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
        case nn::OperandType::TENSOR_QUANT16_ASYMM:
        case nn::OperandType::TENSOR_QUANT8_SYMM:
        case nn::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
        case nn::OperandType::SUBGRAPH:
            return true;
        case nn::OperandType::OEM:
        case nn::OperandType::TENSOR_OEM_BYTE:
            return false;
    }
    return nn::isExtension(operandType);
}

template <typename Input>
using UnvalidatedConvertOutput =
        std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;

template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvertVec(
        const std::vector<Type>& arguments) {
    std::vector<UnvalidatedConvertOutput<Type>> canonical;
    canonical.reserve(arguments.size());
    for (const auto& argument : arguments) {
        canonical.push_back(NN_TRY(nn::unvalidatedConvert(argument)));
    }
    return canonical;
}

template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvert(
        const std::vector<Type>& arguments) {
    return unvalidatedConvertVec(arguments);
}

template <typename Type>
GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& halObject) {
    auto canonical = NN_TRY(nn::unvalidatedConvert(halObject));
    const auto maybeVersion = validate(canonical);
    if (!maybeVersion.has_value()) {
        return error() << maybeVersion.error();
    }
    const auto version = maybeVersion.value();
    if (version > kVersion) {
        return NN_ERROR() << "Insufficient version: " << version << " vs required " << kVersion;
    }
    return canonical;
}

template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert(
        const std::vector<Type>& arguments) {
    std::vector<UnvalidatedConvertOutput<Type>> canonical;
    canonical.reserve(arguments.size());
    for (const auto& argument : arguments) {
        canonical.push_back(NN_TRY(validatedConvert(argument)));
    }
    return canonical;
}

GeneralResult<Handle> unvalidatedConvertHelper(const NativeHandle& aidlNativeHandle) {
    std::vector<base::unique_fd> fds;
    fds.reserve(aidlNativeHandle.fds.size());
    for (const auto& fd : aidlNativeHandle.fds) {
        const int dupFd = dup(fd.get());
        if (dupFd == -1) {
            // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct error to return
            // here?
            return NN_ERROR() << "Failed to dup the fd";
        }
        fds.emplace_back(dupFd);
    }

    return Handle{.fds = std::move(fds), .ints = aidlNativeHandle.ints};
}

struct NativeHandleDeleter {
    void operator()(native_handle_t* handle) const {
        if (handle) {
            native_handle_close(handle);
            native_handle_delete(handle);
        }
    }
};

using UniqueNativeHandle = std::unique_ptr<native_handle_t, NativeHandleDeleter>;

static nn::GeneralResult<UniqueNativeHandle> nativeHandleFromAidlHandle(
        const NativeHandle& handle) {
    std::vector<base::unique_fd> fds;
    fds.reserve(handle.fds.size());
    for (const auto& fd : handle.fds) {
        const int dupFd = dup(fd.get());
        if (dupFd == -1) {
            return NN_ERROR() << "Failed to dup the fd";
        }
        fds.emplace_back(dupFd);
    }

    constexpr size_t kIntMax = std::numeric_limits<int>::max();
    CHECK_LE(handle.fds.size(), kIntMax);
    CHECK_LE(handle.ints.size(), kIntMax);
    native_handle_t* nativeHandle = native_handle_create(static_cast<int>(handle.fds.size()),
                                                         static_cast<int>(handle.ints.size()));
    if (nativeHandle == nullptr) {
        return NN_ERROR() << "Failed to create native_handle";
    }
    for (size_t i = 0; i < fds.size(); ++i) {
        nativeHandle->data[i] = fds[i].release();
    }
    std::copy(handle.ints.begin(), handle.ints.end(), &nativeHandle->data[nativeHandle->numFds]);

    return UniqueNativeHandle(nativeHandle);
}

}  // anonymous namespace

GeneralResult<OperandType> unvalidatedConvert(const aidl_hal::OperandType& operandType) {
    VERIFY_NON_NEGATIVE(underlyingType(operandType)) << "Negative operand types are not allowed.";
    return static_cast<OperandType>(operandType);
}

GeneralResult<OperationType> unvalidatedConvert(const aidl_hal::OperationType& operationType) {
    VERIFY_NON_NEGATIVE(underlyingType(operationType))
            << "Negative operation types are not allowed.";
    return static_cast<OperationType>(operationType);
}

GeneralResult<DeviceType> unvalidatedConvert(const aidl_hal::DeviceType& deviceType) {
    return static_cast<DeviceType>(deviceType);
}

GeneralResult<Priority> unvalidatedConvert(const aidl_hal::Priority& priority) {
    return static_cast<Priority>(priority);
}

GeneralResult<Capabilities> unvalidatedConvert(const aidl_hal::Capabilities& capabilities) {
    const bool validOperandTypes = std::all_of(
            capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(),
            [](const aidl_hal::OperandPerformance& operandPerformance) {
                const auto maybeType = unvalidatedConvert(operandPerformance.type);
                return !maybeType.has_value() ? false : validOperandType(maybeType.value());
            });
    if (!validOperandTypes) {
        return NN_ERROR() << "Invalid OperandType when unvalidatedConverting OperandPerformance in "
                             "Capabilities";
    }

    auto operandPerformance = NN_TRY(unvalidatedConvert(capabilities.operandPerformance));
    auto table = NN_TRY(hal::utils::makeGeneralFailure(
            Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)),
            nn::ErrorStatus::GENERAL_FAILURE));

    return Capabilities{
            .relaxedFloat32toFloat16PerformanceScalar = NN_TRY(
                    unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
            .relaxedFloat32toFloat16PerformanceTensor = NN_TRY(
                    unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
            .operandPerformance = std::move(table),
            .ifPerformance = NN_TRY(unvalidatedConvert(capabilities.ifPerformance)),
            .whilePerformance = NN_TRY(unvalidatedConvert(capabilities.whilePerformance)),
    };
}

GeneralResult<Capabilities::OperandPerformance> unvalidatedConvert(
        const aidl_hal::OperandPerformance& operandPerformance) {
    return Capabilities::OperandPerformance{
            .type = NN_TRY(unvalidatedConvert(operandPerformance.type)),
            .info = NN_TRY(unvalidatedConvert(operandPerformance.info)),
    };
}

GeneralResult<Capabilities::PerformanceInfo> unvalidatedConvert(
        const aidl_hal::PerformanceInfo& performanceInfo) {
    return Capabilities::PerformanceInfo{
            .execTime = performanceInfo.execTime,
            .powerUsage = performanceInfo.powerUsage,
    };
}

GeneralResult<DataLocation> unvalidatedConvert(const aidl_hal::DataLocation& location) {
    VERIFY_NON_NEGATIVE(location.poolIndex) << "DataLocation: pool index must not be negative";
    VERIFY_NON_NEGATIVE(location.offset) << "DataLocation: offset must not be negative";
    VERIFY_NON_NEGATIVE(location.length) << "DataLocation: length must not be negative";
    if (location.offset > std::numeric_limits<uint32_t>::max()) {
        return NN_ERROR() << "DataLocation: offset must be <= std::numeric_limits<uint32_t>::max()";
    }
    if (location.length > std::numeric_limits<uint32_t>::max()) {
        return NN_ERROR() << "DataLocation: length must be <= std::numeric_limits<uint32_t>::max()";
    }
    return DataLocation{
            .poolIndex = static_cast<uint32_t>(location.poolIndex),
            .offset = static_cast<uint32_t>(location.offset),
            .length = static_cast<uint32_t>(location.length),
    };
}

GeneralResult<Operation> unvalidatedConvert(const aidl_hal::Operation& operation) {
    return Operation{
            .type = NN_TRY(unvalidatedConvert(operation.type)),
            .inputs = NN_TRY(toUnsigned(operation.inputs)),
            .outputs = NN_TRY(toUnsigned(operation.outputs)),
    };
}

GeneralResult<Operand::LifeTime> unvalidatedConvert(
        const aidl_hal::OperandLifeTime& operandLifeTime) {
    return static_cast<Operand::LifeTime>(operandLifeTime);
}

GeneralResult<Operand> unvalidatedConvert(const aidl_hal::Operand& operand) {
    return Operand{
            .type = NN_TRY(unvalidatedConvert(operand.type)),
            .dimensions = NN_TRY(toUnsigned(operand.dimensions)),
            .scale = operand.scale,
            .zeroPoint = operand.zeroPoint,
            .lifetime = NN_TRY(unvalidatedConvert(operand.lifetime)),
            .location = NN_TRY(unvalidatedConvert(operand.location)),
            .extraParams = NN_TRY(unvalidatedConvert(operand.extraParams)),
    };
}

GeneralResult<Operand::ExtraParams> unvalidatedConvert(
        const std::optional<aidl_hal::OperandExtraParams>& optionalExtraParams) {
    if (!optionalExtraParams.has_value()) {
        return Operand::NoParams{};
    }
    const auto& extraParams = optionalExtraParams.value();
    using Tag = aidl_hal::OperandExtraParams::Tag;
    switch (extraParams.getTag()) {
        case Tag::channelQuant:
            return unvalidatedConvert(extraParams.get<Tag::channelQuant>());
        case Tag::extension:
            return extraParams.get<Tag::extension>();
    }
    return NN_ERROR() << "Unrecognized Operand::ExtraParams tag: "
                      << underlyingType(extraParams.getTag());
}

GeneralResult<Operand::SymmPerChannelQuantParams> unvalidatedConvert(
        const aidl_hal::SymmPerChannelQuantParams& symmPerChannelQuantParams) {
    VERIFY_NON_NEGATIVE(symmPerChannelQuantParams.channelDim)
            << "Per-channel quantization channel dimension must not be negative.";
    return Operand::SymmPerChannelQuantParams{
            .scales = symmPerChannelQuantParams.scales,
            .channelDim = static_cast<uint32_t>(symmPerChannelQuantParams.channelDim),
    };
}

GeneralResult<Model> unvalidatedConvert(const aidl_hal::Model& model) {
    return Model{
            .main = NN_TRY(unvalidatedConvert(model.main)),
            .referenced = NN_TRY(unvalidatedConvert(model.referenced)),
            .operandValues = NN_TRY(unvalidatedConvert(model.operandValues)),
            .pools = NN_TRY(unvalidatedConvert(model.pools)),
            .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
            .extensionNameToPrefix = NN_TRY(unvalidatedConvert(model.extensionNameToPrefix)),
    };
}

GeneralResult<Model::Subgraph> unvalidatedConvert(const aidl_hal::Subgraph& subgraph) {
    return Model::Subgraph{
            .operands = NN_TRY(unvalidatedConvert(subgraph.operands)),
            .operations = NN_TRY(unvalidatedConvert(subgraph.operations)),
            .inputIndexes = NN_TRY(toUnsigned(subgraph.inputIndexes)),
            .outputIndexes = NN_TRY(toUnsigned(subgraph.outputIndexes)),
    };
}

GeneralResult<Model::ExtensionNameAndPrefix> unvalidatedConvert(
        const aidl_hal::ExtensionNameAndPrefix& extensionNameAndPrefix) {
    return Model::ExtensionNameAndPrefix{
            .name = extensionNameAndPrefix.name,
            .prefix = extensionNameAndPrefix.prefix,
    };
}

GeneralResult<Extension> unvalidatedConvert(const aidl_hal::Extension& extension) {
    return Extension{
            .name = extension.name,
            .operandTypes = NN_TRY(unvalidatedConvert(extension.operandTypes)),
    };
}

GeneralResult<Extension::OperandTypeInformation> unvalidatedConvert(
        const aidl_hal::ExtensionOperandTypeInformation& operandTypeInformation) {
    VERIFY_NON_NEGATIVE(operandTypeInformation.byteSize)
            << "Extension operand type byte size must not be negative";
    return Extension::OperandTypeInformation{
            .type = operandTypeInformation.type,
            .isTensor = operandTypeInformation.isTensor,
            .byteSize = static_cast<uint32_t>(operandTypeInformation.byteSize),
    };
}

GeneralResult<OutputShape> unvalidatedConvert(const aidl_hal::OutputShape& outputShape) {
    return OutputShape{
            .dimensions = NN_TRY(toUnsigned(outputShape.dimensions)),
            .isSufficient = outputShape.isSufficient,
    };
}

GeneralResult<MeasureTiming> unvalidatedConvert(bool measureTiming) {
    return measureTiming ? MeasureTiming::YES : MeasureTiming::NO;
}

static uint32_t roundUpToMultiple(uint32_t value, uint32_t multiple) {
    return (value + multiple - 1) / multiple * multiple;
}

GeneralResult<SharedMemory> unvalidatedConvert(const aidl_hal::Memory& memory) {
    VERIFY_NON_NEGATIVE(memory.size) << "Memory size must not be negative";
    if (memory.size > std::numeric_limits<uint32_t>::max()) {
        return NN_ERROR() << "Memory: size must be <= std::numeric_limits<size_t>::max()";
    }

    if (memory.name != "hardware_buffer_blob") {
        return std::make_shared<const Memory>(Memory{
                .handle = NN_TRY(unvalidatedConvertHelper(memory.handle)),
                .size = static_cast<uint32_t>(memory.size),
                .name = memory.name,
        });
    }

    const auto size = static_cast<uint32_t>(memory.size);
    const auto format = AHARDWAREBUFFER_FORMAT_BLOB;
    const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
    const uint32_t width = size;
    const uint32_t height = 1;  // height is always 1 for BLOB mode AHardwareBuffer.
    const uint32_t layers = 1;  // layers is always 1 for BLOB mode AHardwareBuffer.

    const UniqueNativeHandle handle = NN_TRY(nativeHandleFromAidlHandle(memory.handle));
    const native_handle_t* nativeHandle = handle.get();

    // AHardwareBuffer_createFromHandle() might fail because an allocator
    // expects a specific stride value. In that case, we try to guess it by
    // aligning the width to small powers of 2.
    // TODO(b/174120849): Avoid stride assumptions.
    AHardwareBuffer* hardwareBuffer = nullptr;
    status_t status = UNKNOWN_ERROR;
    for (uint32_t alignment : {1, 4, 32, 64, 128, 2, 8, 16}) {
        const uint32_t stride = roundUpToMultiple(width, alignment);
        AHardwareBuffer_Desc desc{
                .width = width,
                .height = height,
                .layers = layers,
                .format = format,
                .usage = usage,
                .stride = stride,
        };
        status = AHardwareBuffer_createFromHandle(&desc, nativeHandle,
                                                  AHARDWAREBUFFER_CREATE_FROM_HANDLE_METHOD_CLONE,
                                                  &hardwareBuffer);
        if (status == NO_ERROR) {
            break;
        }
    }
    if (status != NO_ERROR) {
        return NN_ERROR(ErrorStatus::GENERAL_FAILURE)
               << "Can't create AHardwareBuffer from handle. Error: " << status;
    }

    return std::make_shared<const Memory>(Memory{
            .handle = HardwareBufferHandle(hardwareBuffer, /*takeOwnership=*/true),
            .size = static_cast<uint32_t>(memory.size),
            .name = memory.name,
    });
}

GeneralResult<Model::OperandValues> unvalidatedConvert(const std::vector<uint8_t>& operandValues) {
    return Model::OperandValues(operandValues.data(), operandValues.size());
}

GeneralResult<BufferDesc> unvalidatedConvert(const aidl_hal::BufferDesc& bufferDesc) {
    return BufferDesc{.dimensions = NN_TRY(toUnsigned(bufferDesc.dimensions))};
}

GeneralResult<BufferRole> unvalidatedConvert(const aidl_hal::BufferRole& bufferRole) {
    VERIFY_NON_NEGATIVE(bufferRole.modelIndex) << "BufferRole: modelIndex must not be negative";
    VERIFY_NON_NEGATIVE(bufferRole.ioIndex) << "BufferRole: ioIndex must not be negative";
    return BufferRole{
            .modelIndex = static_cast<uint32_t>(bufferRole.modelIndex),
            .ioIndex = static_cast<uint32_t>(bufferRole.ioIndex),
            .frequency = bufferRole.frequency,
    };
}

GeneralResult<Request> unvalidatedConvert(const aidl_hal::Request& request) {
    return Request{
            .inputs = NN_TRY(unvalidatedConvert(request.inputs)),
            .outputs = NN_TRY(unvalidatedConvert(request.outputs)),
            .pools = NN_TRY(unvalidatedConvert(request.pools)),
    };
}

GeneralResult<Request::Argument> unvalidatedConvert(const aidl_hal::RequestArgument& argument) {
    const auto lifetime = argument.hasNoValue ? Request::Argument::LifeTime::NO_VALUE
                                              : Request::Argument::LifeTime::POOL;
    return Request::Argument{
            .lifetime = lifetime,
            .location = NN_TRY(unvalidatedConvert(argument.location)),
            .dimensions = NN_TRY(toUnsigned(argument.dimensions)),
    };
}

GeneralResult<Request::MemoryPool> unvalidatedConvert(
        const aidl_hal::RequestMemoryPool& memoryPool) {
    using Tag = aidl_hal::RequestMemoryPool::Tag;
    switch (memoryPool.getTag()) {
        case Tag::pool:
            return unvalidatedConvert(memoryPool.get<Tag::pool>());
        case Tag::token: {
            const auto token = memoryPool.get<Tag::token>();
            VERIFY_NON_NEGATIVE(token) << "Memory pool token must not be negative";
            return static_cast<Request::MemoryDomainToken>(token);
        }
    }
    return NN_ERROR() << "Invalid Request::MemoryPool tag " << underlyingType(memoryPool.getTag());
}

GeneralResult<ErrorStatus> unvalidatedConvert(const aidl_hal::ErrorStatus& status) {
    switch (status) {
        case aidl_hal::ErrorStatus::NONE:
        case aidl_hal::ErrorStatus::DEVICE_UNAVAILABLE:
        case aidl_hal::ErrorStatus::GENERAL_FAILURE:
        case aidl_hal::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
        case aidl_hal::ErrorStatus::INVALID_ARGUMENT:
        case aidl_hal::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
        case aidl_hal::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
        case aidl_hal::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
        case aidl_hal::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
            return static_cast<ErrorStatus>(status);
    }
    return NN_ERROR() << "Invalid ErrorStatus " << underlyingType(status);
}

GeneralResult<ExecutionPreference> unvalidatedConvert(
        const aidl_hal::ExecutionPreference& executionPreference) {
    return static_cast<ExecutionPreference>(executionPreference);
}

GeneralResult<SharedHandle> unvalidatedConvert(const NativeHandle& aidlNativeHandle) {
    return std::make_shared<const Handle>(NN_TRY(unvalidatedConvertHelper(aidlNativeHandle)));
}

GeneralResult<ExecutionPreference> convert(
        const aidl_hal::ExecutionPreference& executionPreference) {
    return validatedConvert(executionPreference);
}

GeneralResult<SharedMemory> convert(const aidl_hal::Memory& operand) {
    return validatedConvert(operand);
}

GeneralResult<Model> convert(const aidl_hal::Model& model) {
    return validatedConvert(model);
}

GeneralResult<Operand> convert(const aidl_hal::Operand& operand) {
    return unvalidatedConvert(operand);
}

GeneralResult<OperandType> convert(const aidl_hal::OperandType& operandType) {
    return unvalidatedConvert(operandType);
}

GeneralResult<Priority> convert(const aidl_hal::Priority& priority) {
    return validatedConvert(priority);
}

GeneralResult<Request::MemoryPool> convert(const aidl_hal::RequestMemoryPool& memoryPool) {
    return unvalidatedConvert(memoryPool);
}

GeneralResult<Request> convert(const aidl_hal::Request& request) {
    return validatedConvert(request);
}

GeneralResult<std::vector<Operation>> convert(const std::vector<aidl_hal::Operation>& operations) {
    return unvalidatedConvert(operations);
}

GeneralResult<std::vector<SharedMemory>> convert(const std::vector<aidl_hal::Memory>& memories) {
    return validatedConvert(memories);
}

GeneralResult<std::vector<uint32_t>> toUnsigned(const std::vector<int32_t>& vec) {
    if (!std::all_of(vec.begin(), vec.end(), [](int32_t v) { return v >= 0; })) {
        return NN_ERROR() << "Negative value passed to conversion from signed to unsigned";
    }
    return std::vector<uint32_t>(vec.begin(), vec.end());
}

}  // namespace android::nn

namespace aidl::android::hardware::neuralnetworks::utils {
namespace {

template <typename Input>
using UnvalidatedConvertOutput =
        std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;

template <typename Type>
nn::GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvertVec(
        const std::vector<Type>& arguments) {
    std::vector<UnvalidatedConvertOutput<Type>> halObject(arguments.size());
    for (size_t i = 0; i < arguments.size(); ++i) {
        halObject[i] = NN_TRY(unvalidatedConvert(arguments[i]));
    }
    return halObject;
}

template <typename Type>
nn::GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& canonical) {
    const auto maybeVersion = nn::validate(canonical);
    if (!maybeVersion.has_value()) {
        return nn::error() << maybeVersion.error();
    }
    const auto version = maybeVersion.value();
    if (version > kVersion) {
        return NN_ERROR() << "Insufficient version: " << version << " vs required " << kVersion;
    }
    return utils::unvalidatedConvert(canonical);
}

template <typename Type>
nn::GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert(
        const std::vector<Type>& arguments) {
    std::vector<UnvalidatedConvertOutput<Type>> halObject(arguments.size());
    for (size_t i = 0; i < arguments.size(); ++i) {
        halObject[i] = NN_TRY(validatedConvert(arguments[i]));
    }
    return halObject;
}

nn::GeneralResult<common::NativeHandle> unvalidatedConvert(const nn::Handle& handle) {
    common::NativeHandle aidlNativeHandle;
    aidlNativeHandle.fds.reserve(handle.fds.size());
    for (const auto& fd : handle.fds) {
        const int dupFd = dup(fd.get());
        if (dupFd == -1) {
            // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct error to return
            // here?
            return NN_ERROR() << "Failed to dup the fd";
        }
        aidlNativeHandle.fds.emplace_back(dupFd);
    }
    aidlNativeHandle.ints = handle.ints;
    return aidlNativeHandle;
}

static nn::GeneralResult<common::NativeHandle> aidlHandleFromNativeHandle(
        const native_handle_t& handle) {
    common::NativeHandle aidlNativeHandle;

    aidlNativeHandle.fds.reserve(handle.numFds);
    for (int i = 0; i < handle.numFds; ++i) {
        const int dupFd = dup(handle.data[i]);
        if (dupFd == -1) {
            return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "Failed to dup the fd";
        }
        aidlNativeHandle.fds.emplace_back(dupFd);
    }

    aidlNativeHandle.ints = std::vector<int>(&handle.data[handle.numFds],
                                             &handle.data[handle.numFds + handle.numInts]);

    return aidlNativeHandle;
}

}  // namespace

nn::GeneralResult<common::NativeHandle> unvalidatedConvert(const nn::SharedHandle& sharedHandle) {
    CHECK(sharedHandle != nullptr);
    return unvalidatedConvert(*sharedHandle);
}

nn::GeneralResult<Memory> unvalidatedConvert(const nn::SharedMemory& memory) {
    CHECK(memory != nullptr);
    if (memory->size > std::numeric_limits<int64_t>::max()) {
        return NN_ERROR() << "Memory size doesn't fit into int64_t.";
    }
    if (const auto* handle = std::get_if<nn::Handle>(&memory->handle)) {
        return Memory{
                .handle = NN_TRY(unvalidatedConvert(*handle)),
                .size = static_cast<int64_t>(memory->size),
                .name = memory->name,
        };
    }

    const auto* ahwb = std::get<nn::HardwareBufferHandle>(memory->handle).get();
    AHardwareBuffer_Desc bufferDesc;
    AHardwareBuffer_describe(ahwb, &bufferDesc);

    if (bufferDesc.format == AHARDWAREBUFFER_FORMAT_BLOB) {
        CHECK_EQ(memory->size, bufferDesc.width);
        CHECK_EQ(memory->name, "hardware_buffer_blob");
    } else {
        CHECK_EQ(memory->size, 0u);
        CHECK_EQ(memory->name, "hardware_buffer");
    }

    const native_handle_t* nativeHandle = AHardwareBuffer_getNativeHandle(ahwb);
    if (nativeHandle == nullptr) {
        return NN_ERROR() << "unvalidatedConvert failed because AHardwareBuffer_getNativeHandle "
                             "returned nullptr";
    }

    return Memory{
            .handle = NN_TRY(aidlHandleFromNativeHandle(*nativeHandle)),
            .size = static_cast<int64_t>(memory->size),
            .name = memory->name,
    };
}

nn::GeneralResult<ErrorStatus> unvalidatedConvert(const nn::ErrorStatus& errorStatus) {
    switch (errorStatus) {
        case nn::ErrorStatus::NONE:
        case nn::ErrorStatus::DEVICE_UNAVAILABLE:
        case nn::ErrorStatus::GENERAL_FAILURE:
        case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
        case nn::ErrorStatus::INVALID_ARGUMENT:
        case nn::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
        case nn::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
        case nn::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
        case nn::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
            return static_cast<ErrorStatus>(errorStatus);
        default:
            return ErrorStatus::GENERAL_FAILURE;
    }
}

nn::GeneralResult<OutputShape> unvalidatedConvert(const nn::OutputShape& outputShape) {
    return OutputShape{.dimensions = NN_TRY(toSigned(outputShape.dimensions)),
                       .isSufficient = outputShape.isSufficient};
}

nn::GeneralResult<Memory> convert(const nn::SharedMemory& memory) {
    return validatedConvert(memory);
}

nn::GeneralResult<ErrorStatus> convert(const nn::ErrorStatus& errorStatus) {
    return validatedConvert(errorStatus);
}

nn::GeneralResult<std::vector<OutputShape>> convert(
        const std::vector<nn::OutputShape>& outputShapes) {
    return validatedConvert(outputShapes);
}

nn::GeneralResult<std::vector<int32_t>> toSigned(const std::vector<uint32_t>& vec) {
    if (!std::all_of(vec.begin(), vec.end(),
                     [](uint32_t v) { return v <= std::numeric_limits<int32_t>::max(); })) {
        return NN_ERROR() << "Vector contains a value that doesn't fit into int32_t.";
    }
    return std::vector<int32_t>(vec.begin(), vec.end());
}

}  // namespace aidl::android::hardware::neuralnetworks::utils