summaryrefslogtreecommitdiff
path: root/neuralnetworks/1.3/vts/functional/VtsHalNeuralnetworks.cpp
blob: eb8cb4bc6d303ec9f6ea91e385e667779781cff4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*
 * Copyright (C) 2018 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "neuralnetworks_hidl_hal_test"

#include "VtsHalNeuralnetworks.h"
#include <android-base/logging.h>
#include <hidl/ServiceManagement.h>
#include <string>
#include <utility>
#include "1.0/Utils.h"
#include "1.3/Callbacks.h"
#include "1.3/Utils.h"
#include "GeneratedTestHarness.h"
#include "TestHarness.h"
#include "Utils.h"

namespace android::hardware::neuralnetworks::V1_3::vts::functional {

using HidlToken =
        hidl_array<uint8_t, static_cast<uint32_t>(V1_2::Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
using implementation::PreparedModelCallback;
using V1_1::ExecutionPreference;

// internal helper function
void createPreparedModel(const sp<IDevice>& device, const Model& model,
                         sp<IPreparedModel>* preparedModel, bool reportSkipping) {
    ASSERT_NE(nullptr, preparedModel);
    *preparedModel = nullptr;

    // see if service can handle model
    bool fullySupportsModel = false;
    const Return<void> supportedCall = device->getSupportedOperations_1_3(
            model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
                ASSERT_EQ(ErrorStatus::NONE, status);
                ASSERT_NE(0ul, supported.size());
                fullySupportsModel = std::all_of(supported.begin(), supported.end(),
                                                 [](bool valid) { return valid; });
            });
    ASSERT_TRUE(supportedCall.isOk());

    // launch prepare model
    const sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
    const Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_3(
            model, ExecutionPreference::FAST_SINGLE_ANSWER, kDefaultPriority, {},
            hidl_vec<hidl_handle>(), hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
    ASSERT_TRUE(prepareLaunchStatus.isOk());
    ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));

    // retrieve prepared model
    preparedModelCallback->wait();
    const ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
    *preparedModel = getPreparedModel_1_3(preparedModelCallback);

    // The getSupportedOperations_1_3 call returns a list of operations that are
    // guaranteed not to fail if prepareModel_1_3 is called, and
    // 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
    // If a driver has any doubt that it can prepare an operation, it must
    // return false. So here, if a driver isn't sure if it can support an
    // operation, but reports that it successfully prepared the model, the test
    // can continue.
    if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
        ASSERT_EQ(nullptr, preparedModel->get());
        if (!reportSkipping) {
            return;
        }
        LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot prepare "
                     "model that it does not support.";
        std::cout << "[          ]   Early termination of test because vendor service cannot "
                     "prepare model that it does not support."
                  << std::endl;
        GTEST_SKIP();
    }

    ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
    ASSERT_NE(nullptr, preparedModel->get());
}

void NeuralnetworksHidlTest::SetUp() {
    testing::TestWithParam<NeuralnetworksHidlTestParam>::SetUp();
    ASSERT_NE(kDevice, nullptr);
    const bool deviceIsResponsive = kDevice->ping().isOk();
    ASSERT_TRUE(deviceIsResponsive);
}

static NamedDevice makeNamedDevice(const std::string& name) {
    return {name, IDevice::getService(name)};
}

static std::vector<NamedDevice> getNamedDevicesImpl() {
    // Retrieves the name of all service instances that implement IDevice,
    // including any Lazy HAL instances.
    const std::vector<std::string> names = hardware::getAllHalInstanceNames(IDevice::descriptor);

    // Get a handle to each device and pair it with its name.
    std::vector<NamedDevice> namedDevices;
    namedDevices.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(namedDevices), makeNamedDevice);
    return namedDevices;
}

const std::vector<NamedDevice>& getNamedDevices() {
    const static std::vector<NamedDevice> devices = getNamedDevicesImpl();
    return devices;
}

std::string printNeuralnetworksHidlTest(
        const testing::TestParamInfo<NeuralnetworksHidlTestParam>& info) {
    return gtestCompliantName(getName(info.param));
}

INSTANTIATE_DEVICE_TEST(NeuralnetworksHidlTest);

// Forward declaration from ValidateModel.cpp
void validateModel(const sp<IDevice>& device, const Model& model);
// Forward declaration from ValidateRequest.cpp
void validateRequest(const sp<IPreparedModel>& preparedModel, const Request& request);
// Forward declaration from ValidateRequest.cpp
void validateRequestFailure(const sp<IPreparedModel>& preparedModel, const Request& request);
// Forward declaration from ValidateBurst.cpp
void validateBurst(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);

// Validate sync_fence handles for dispatch with valid input
void validateExecuteFenced(const sp<IPreparedModel>& preparedModel, const Request& request) {
    SCOPED_TRACE("Expecting request to fail [executeFenced]");
    Return<void> ret_null = preparedModel->executeFenced(
            request, {hidl_handle(nullptr)}, V1_2::MeasureTiming::NO, {}, {}, {},
            [](ErrorStatus error, const hidl_handle& handle,
               const sp<IFencedExecutionCallback>& callback) {
                ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, error);
                ASSERT_EQ(handle.getNativeHandle(), nullptr);
                ASSERT_EQ(callback, nullptr);
            });
    ASSERT_TRUE(ret_null.isOk());
}

void validateEverything(const sp<IDevice>& device, const Model& model, const Request& request) {
    validateModel(device, model);

    // Create IPreparedModel.
    sp<IPreparedModel> preparedModel;
    createPreparedModel(device, model, &preparedModel);
    if (preparedModel == nullptr) return;

    validateRequest(preparedModel, request);
    validateExecuteFenced(preparedModel, request);

    // TODO(butlermichael): Check if we need to test burst in V1_3 if the interface remains V1_2.
    ASSERT_TRUE(nn::compliantWithV1_0(request));
    V1_0::Request request10 = nn::convertToV1_0(request);
    validateBurst(preparedModel, request10);
}

void validateFailure(const sp<IDevice>& device, const Model& model, const Request& request) {
    // TODO: Should this always succeed?
    //       What if the invalid input is part of the model (i.e., a parameter).
    validateModel(device, model);

    // Create IPreparedModel.
    sp<IPreparedModel> preparedModel;
    createPreparedModel(device, model, &preparedModel);
    if (preparedModel == nullptr) return;

    validateRequestFailure(preparedModel, request);
}

TEST_P(ValidationTest, Test) {
    const Model model = createModel(kTestModel);
    ExecutionContext context;
    const Request request = nn::convertToV1_3(context.createRequest(kTestModel));
    if (kTestModel.expectFailure) {
        validateFailure(kDevice, model, request);
    } else {
        validateEverything(kDevice, model, request);
    }
}

INSTANTIATE_GENERATED_TEST(ValidationTest, [](const std::string& testName) {
    // Skip validation for the "inputs_as_internal" and "all_tensors_as_inputs"
    // generated tests.
    return testName.find("inputs_as_internal") == std::string::npos &&
           testName.find("all_tensors_as_inputs") == std::string::npos;
});

sp<IPreparedModel> getPreparedModel_1_3(const sp<PreparedModelCallback>& callback) {
    sp<V1_0::IPreparedModel> preparedModelV1_0 = callback->getPreparedModel();
    return IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
}

std::string toString(Executor executor) {
    switch (executor) {
        case Executor::ASYNC:
            return "ASYNC";
        case Executor::SYNC:
            return "SYNC";
        case Executor::BURST:
            return "BURST";
        case Executor::FENCED:
            return "FENCED";
        default:
            CHECK(false);
    }
}

}  // namespace android::hardware::neuralnetworks::V1_3::vts::functional