1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "1.0/Utils.h"
#include "1.3/Callbacks.h"
#include "1.3/Utils.h"
#include "GeneratedTestHarness.h"
#include "Utils.h"
namespace android::hardware::neuralnetworks::V1_3::vts::functional {
using implementation::ExecutionCallback;
using implementation::PreparedModelCallback;
using test_helper::TestBuffer;
using test_helper::TestModel;
using V1_1::ExecutionPreference;
using V1_2::MeasureTiming;
using V1_2::OutputShape;
using V1_2::Timing;
using HidlToken =
hidl_array<uint8_t, static_cast<uint32_t>(V1_2::Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
enum class DeadlineBoundType { NOW, UNLIMITED, SHORT };
constexpr std::array<DeadlineBoundType, 3> deadlineBounds = {
DeadlineBoundType::NOW, DeadlineBoundType::UNLIMITED, DeadlineBoundType::SHORT};
std::string toString(DeadlineBoundType type) {
switch (type) {
case DeadlineBoundType::NOW:
return "NOW";
case DeadlineBoundType::UNLIMITED:
return "UNLIMITED";
case DeadlineBoundType::SHORT:
return "SHORT";
}
LOG(FATAL) << "Unrecognized DeadlineBoundType: " << static_cast<int>(type);
return {};
}
constexpr auto kShortDuration = std::chrono::milliseconds{5};
using Results = std::tuple<ErrorStatus, hidl_vec<OutputShape>, Timing>;
using MaybeResults = std::optional<Results>;
using ExecutionFunction =
std::function<MaybeResults(const sp<IPreparedModel>& preparedModel, const Request& request,
const OptionalTimePoint& deadline)>;
static OptionalTimePoint makeDeadline(DeadlineBoundType deadlineBoundType) {
const auto getNanosecondsSinceEpoch = [](const auto& time) -> uint64_t {
const auto timeSinceEpoch = time.time_since_epoch();
return std::chrono::duration_cast<std::chrono::nanoseconds>(timeSinceEpoch).count();
};
std::chrono::steady_clock::time_point timePoint;
switch (deadlineBoundType) {
case DeadlineBoundType::NOW:
timePoint = std::chrono::steady_clock::now();
break;
case DeadlineBoundType::UNLIMITED:
timePoint = std::chrono::steady_clock::time_point::max();
break;
case DeadlineBoundType::SHORT:
timePoint = std::chrono::steady_clock::now() + kShortDuration;
break;
}
OptionalTimePoint deadline;
deadline.nanosecondsSinceEpoch(getNanosecondsSinceEpoch(timePoint));
return deadline;
}
void runPrepareModelTest(const sp<IDevice>& device, const Model& model, Priority priority,
std::optional<DeadlineBoundType> deadlineBound) {
OptionalTimePoint deadline;
if (deadlineBound.has_value()) {
deadline = makeDeadline(deadlineBound.value());
}
// see if service can handle model
bool fullySupportsModel = false;
const Return<void> supportedCall = device->getSupportedOperations_1_3(
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
ASSERT_EQ(ErrorStatus::NONE, status);
ASSERT_NE(0ul, supported.size());
fullySupportsModel = std::all_of(supported.begin(), supported.end(),
[](bool valid) { return valid; });
});
ASSERT_TRUE(supportedCall.isOk());
// launch prepare model
const sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
const Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_3(
model, ExecutionPreference::FAST_SINGLE_ANSWER, priority, deadline,
hidl_vec<hidl_handle>(), hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
// retrieve prepared model
preparedModelCallback->wait();
const ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
const sp<V1_0::IPreparedModel> preparedModelV1_0 = preparedModelCallback->getPreparedModel();
const sp<IPreparedModel> preparedModel =
IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
// The getSupportedOperations_1_3 call returns a list of operations that are
// guaranteed not to fail if prepareModel_1_3 is called, and
// 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
// If a driver has any doubt that it can prepare an operation, it must
// return false. So here, if a driver isn't sure if it can support an
// operation, but reports that it successfully prepared the model, the test
// can continue.
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
ASSERT_EQ(nullptr, preparedModel.get());
return;
}
// verify return status
if (!deadlineBound.has_value()) {
EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
} else {
switch (deadlineBound.value()) {
case DeadlineBoundType::NOW:
case DeadlineBoundType::SHORT:
// Either the driver successfully completed the task or it
// aborted and returned MISSED_DEADLINE_*.
EXPECT_TRUE(prepareReturnStatus == ErrorStatus::NONE ||
prepareReturnStatus == ErrorStatus::MISSED_DEADLINE_TRANSIENT ||
prepareReturnStatus == ErrorStatus::MISSED_DEADLINE_PERSISTENT);
break;
case DeadlineBoundType::UNLIMITED:
// If an unlimited deadline is supplied, we expect the execution to
// proceed normally. In this case, check it normally by breaking out
// of the switch statement.
EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
break;
}
}
ASSERT_EQ(prepareReturnStatus == ErrorStatus::NONE, preparedModel.get() != nullptr);
}
void runPrepareModelTests(const sp<IDevice>& device, const Model& model) {
// test priority
for (auto priority : hidl_enum_range<Priority>{}) {
SCOPED_TRACE("priority: " + toString(priority));
if (priority == kDefaultPriority) continue;
runPrepareModelTest(device, model, priority, {});
}
// test deadline
for (auto deadlineBound : deadlineBounds) {
SCOPED_TRACE("deadlineBound: " + toString(deadlineBound));
runPrepareModelTest(device, model, kDefaultPriority, deadlineBound);
}
}
static MaybeResults executeAsynchronously(const sp<IPreparedModel>& preparedModel,
const Request& request,
const OptionalTimePoint& deadline) {
SCOPED_TRACE("asynchronous");
const MeasureTiming measure = MeasureTiming::NO;
// launch execution
const sp<ExecutionCallback> callback = new ExecutionCallback();
Return<ErrorStatus> ret = preparedModel->execute_1_3(request, measure, deadline, {}, callback);
EXPECT_TRUE(ret.isOk());
EXPECT_EQ(ErrorStatus::NONE, ret.withDefault(ErrorStatus::GENERAL_FAILURE));
if (!ret.isOk() || ret != ErrorStatus::NONE) return std::nullopt;
// retrieve execution results
callback->wait();
const ErrorStatus status = callback->getStatus();
hidl_vec<OutputShape> outputShapes = callback->getOutputShapes();
const Timing timing = callback->getTiming();
// return results
return Results{status, std::move(outputShapes), timing};
}
static MaybeResults executeSynchronously(const sp<IPreparedModel>& preparedModel,
const Request& request,
const OptionalTimePoint& deadline) {
SCOPED_TRACE("synchronous");
const MeasureTiming measure = MeasureTiming::NO;
// configure results callback
MaybeResults results;
const auto cb = [&results](ErrorStatus status, const hidl_vec<OutputShape>& outputShapes,
const Timing& timing) {
results.emplace(status, outputShapes, timing);
};
// run execution
const Return<void> ret =
preparedModel->executeSynchronously_1_3(request, measure, deadline, {}, cb);
EXPECT_TRUE(ret.isOk());
if (!ret.isOk()) return std::nullopt;
// return results
return results;
}
void runExecutionTest(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
const Request& request, const ExecutionContext& context, bool synchronous,
DeadlineBoundType deadlineBound) {
const ExecutionFunction execute = synchronous ? executeSynchronously : executeAsynchronously;
const auto deadline = makeDeadline(deadlineBound);
// Perform execution and unpack results.
const auto results = execute(preparedModel, request, deadline);
if (!results.has_value()) return;
const auto& [status, outputShapes, timing] = results.value();
// Verify no timing information was returned
EXPECT_EQ(UINT64_MAX, timing.timeOnDevice);
EXPECT_EQ(UINT64_MAX, timing.timeInDriver);
// Validate deadline information if applicable.
switch (deadlineBound) {
case DeadlineBoundType::NOW:
case DeadlineBoundType::SHORT:
// Either the driver successfully completed the task or it
// aborted and returned MISSED_DEADLINE_*.
ASSERT_TRUE(status == ErrorStatus::NONE ||
status == ErrorStatus::MISSED_DEADLINE_TRANSIENT ||
status == ErrorStatus::MISSED_DEADLINE_PERSISTENT);
break;
case DeadlineBoundType::UNLIMITED:
// If an unlimited deadline is supplied, we expect the execution to
// proceed normally. In this case, check it normally by breaking out
// of the switch statement.
ASSERT_EQ(ErrorStatus::NONE, status);
break;
}
// If the model output operands are fully specified, outputShapes must be either
// either empty, or have the same number of elements as the number of outputs.
ASSERT_TRUE(outputShapes.size() == 0 ||
outputShapes.size() == testModel.main.outputIndexes.size());
// Go through all outputs, check returned output shapes.
for (uint32_t i = 0; i < outputShapes.size(); i++) {
EXPECT_TRUE(outputShapes[i].isSufficient);
const auto& expect = testModel.main.operands[testModel.main.outputIndexes[i]].dimensions;
const std::vector<uint32_t> actual = outputShapes[i].dimensions;
EXPECT_EQ(expect, actual);
}
// Retrieve execution results.
ASSERT_TRUE(nn::compliantWithV1_0(request));
const V1_0::Request request10 = nn::convertToV1_0(request);
const std::vector<TestBuffer> outputs = context.getOutputBuffers(request10);
// We want "close-enough" results.
if (status == ErrorStatus::NONE) {
checkResults(testModel, outputs);
}
}
void runExecutionTests(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
const Request& request, const ExecutionContext& context) {
for (bool synchronous : {false, true}) {
for (auto deadlineBound : deadlineBounds) {
runExecutionTest(preparedModel, testModel, request, context, synchronous,
deadlineBound);
}
}
}
void runTests(const sp<IDevice>& device, const TestModel& testModel) {
// setup
const Model model = createModel(testModel);
// run prepare model tests
runPrepareModelTests(device, model);
// prepare model
sp<IPreparedModel> preparedModel;
createPreparedModel(device, model, &preparedModel);
if (preparedModel == nullptr) return;
// run execution tests
ExecutionContext context;
const Request request = nn::convertToV1_3(context.createRequest(testModel));
runExecutionTests(preparedModel, testModel, request, context);
}
class DeadlineTest : public GeneratedTestBase {};
TEST_P(DeadlineTest, Test) {
runTests(kDevice, kTestModel);
}
INSTANTIATE_GENERATED_TEST(DeadlineTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
} // namespace android::hardware::neuralnetworks::V1_3::vts::functional
|