1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Callbacks"
#include "1.3/Callbacks.h"
#include <android-base/logging.h>
#include <limits>
namespace android::hardware::neuralnetworks::V1_3::implementation {
using V1_2::OutputShape;
using V1_2::Timing;
constexpr Timing kNoTiming = {.timeOnDevice = std::numeric_limits<uint64_t>::max(),
.timeInDriver = std::numeric_limits<uint64_t>::max()};
// PreparedModelCallback methods begin here
Return<void> PreparedModelCallback::notifyInternal(ErrorStatus errorStatus,
const sp<V1_0::IPreparedModel>& preparedModel) {
{
std::lock_guard<std::mutex> hold(mMutex);
// quick-return if object has already been notified
if (mNotified) {
return Void();
}
// store results and mark as notified
mErrorStatus = errorStatus;
mPreparedModel = preparedModel;
mNotified = true;
}
mCondition.notify_all();
return Void();
}
Return<void> PreparedModelCallback::notify(V1_0::ErrorStatus errorStatus,
const sp<V1_0::IPreparedModel>& preparedModel) {
return notifyInternal(static_cast<ErrorStatus>(errorStatus), preparedModel);
}
Return<void> PreparedModelCallback::notify_1_2(V1_0::ErrorStatus errorStatus,
const sp<V1_2::IPreparedModel>& preparedModel) {
return notifyInternal(static_cast<ErrorStatus>(errorStatus), preparedModel);
}
Return<void> PreparedModelCallback::notify_1_3(V1_3::ErrorStatus errorStatus,
const sp<V1_3::IPreparedModel>& preparedModel) {
return notifyInternal(errorStatus, preparedModel);
}
void PreparedModelCallback::wait() const {
std::unique_lock<std::mutex> lock(mMutex);
mCondition.wait(lock, [this] { return mNotified; });
}
ErrorStatus PreparedModelCallback::getStatus() const {
wait();
return mErrorStatus;
}
sp<V1_0::IPreparedModel> PreparedModelCallback::getPreparedModel() const {
wait();
return mPreparedModel;
}
// ExecutionCallback methods begin here
Return<void> ExecutionCallback::notify(V1_0::ErrorStatus errorStatus) {
return notifyInternal(static_cast<ErrorStatus>(errorStatus), {}, kNoTiming);
}
Return<void> ExecutionCallback::notify_1_2(V1_0::ErrorStatus errorStatus,
const hidl_vec<OutputShape>& outputShapes,
const Timing& timing) {
return notifyInternal(static_cast<ErrorStatus>(errorStatus), outputShapes, timing);
}
Return<void> ExecutionCallback::notify_1_3(V1_3::ErrorStatus errorStatus,
const hidl_vec<OutputShape>& outputShapes,
const Timing& timing) {
return notifyInternal(errorStatus, outputShapes, timing);
}
void ExecutionCallback::wait() const {
std::unique_lock<std::mutex> lock(mMutex);
mCondition.wait(lock, [this] { return mNotified; });
}
ErrorStatus ExecutionCallback::getStatus() const {
wait();
return mErrorStatus;
}
const std::vector<OutputShape>& ExecutionCallback::getOutputShapes() const {
wait();
return mOutputShapes;
}
Timing ExecutionCallback::getTiming() const {
wait();
return mTiming;
}
Return<void> ExecutionCallback::notifyInternal(ErrorStatus errorStatus,
hidl_vec<OutputShape> outputShapes, Timing timing) {
// check results
if (errorStatus == ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
// outputShapes must not be empty if OUTPUT_INSUFFICIENT_SIZE.
if (outputShapes.size() == 0) {
LOG(ERROR) << "Notifid with empty output shape vector when OUTPUT_INSUFFICIENT_SIZE";
errorStatus = ErrorStatus::GENERAL_FAILURE;
outputShapes = {};
timing = kNoTiming;
}
} else if (errorStatus != ErrorStatus::NONE) {
// outputShapes must be empty if errorStatus is neither NONE nor OUTPUT_INSUFFICIENT_SIZE.
if (outputShapes.size() != 0) {
LOG(ERROR) << "Notified with non-empty output shape vector when error status is "
"neither NONE nor OUTPUT_INSUFFICIENT_SIZE";
errorStatus = ErrorStatus::GENERAL_FAILURE;
outputShapes = {};
timing = kNoTiming;
}
}
// store results
{
std::lock_guard<std::mutex> hold(mMutex);
// quick-return if object has already been notified
if (mNotified) {
return Void();
}
mErrorStatus = errorStatus;
mOutputShapes = std::move(outputShapes);
mTiming = timing;
mNotified = true;
}
mCondition.notify_all();
return Void();
}
} // namespace android::hardware::neuralnetworks::V1_3::implementation
|