summaryrefslogtreecommitdiff
path: root/neuralnetworks/1.3/utils/src/PreparedModel.cpp
blob: ce977e55ed6a3d22b2c24852e2dc3a1991d2b0d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
 * Copyright (C) 2020 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "PreparedModel.h"

#include "Callbacks.h"
#include "Conversions.h"
#include "Execution.h"
#include "Utils.h"

#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <android/hardware/neuralnetworks/1.3/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.3/types.h>
#include <nnapi/IPreparedModel.h>
#include <nnapi/Result.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/hal/1.0/HandleError.h>
#include <nnapi/hal/1.0/ProtectCallback.h>
#include <nnapi/hal/1.2/Burst.h>
#include <nnapi/hal/1.2/BurstUtils.h>
#include <nnapi/hal/1.2/Conversions.h>
#include <nnapi/hal/CommonUtils.h>

#include <memory>
#include <tuple>
#include <utility>
#include <vector>

// See hardware/interfaces/neuralnetworks/utils/README.md for more information on HIDL interface
// lifetimes across processes and for protecting asynchronous calls across HIDL.

namespace android::hardware::neuralnetworks::V1_3::utils {
namespace {

nn::GeneralResult<std::pair<nn::Timing, nn::Timing>> convertFencedExecutionCallbackResults(
        ErrorStatus status, const V1_2::Timing& timingLaunched, const V1_2::Timing& timingFenced) {
    HANDLE_STATUS_HIDL(status) << "fenced execution callback info failed with " << toString(status);
    return std::make_pair(NN_TRY(nn::convert(timingLaunched)), NN_TRY(nn::convert(timingFenced)));
}

nn::GeneralResult<std::pair<nn::SyncFence, nn::ExecuteFencedInfoCallback>> fencedExecutionCallback(
        ErrorStatus status, const hidl_handle& syncFence,
        const sp<IFencedExecutionCallback>& callback) {
    HANDLE_STATUS_HIDL(status) << "fenced execution failed with " << toString(status);

    auto resultSyncFence = nn::SyncFence::createAsSignaled();
    if (syncFence.getNativeHandle() != nullptr) {
        auto sharedHandle = NN_TRY(nn::convert(syncFence));
        resultSyncFence = NN_TRY(nn::SyncFence::create(std::move(sharedHandle)));
    }

    if (callback == nullptr) {
        return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "callback is null";
    }

    // Create callback which can be used to retrieve the execution error status and timings.
    nn::ExecuteFencedInfoCallback resultCallback =
            [callback]() -> nn::GeneralResult<std::pair<nn::Timing, nn::Timing>> {
        auto cb = hal::utils::CallbackValue(convertFencedExecutionCallbackResults);

        const auto ret = callback->getExecutionInfo(cb);
        HANDLE_TRANSPORT_FAILURE(ret);

        return cb.take();
    };

    return std::make_pair(std::move(resultSyncFence), std::move(resultCallback));
}

}  // namespace

nn::GeneralResult<std::shared_ptr<const PreparedModel>> PreparedModel::create(
        sp<V1_3::IPreparedModel> preparedModel, bool executeSynchronously) {
    if (preparedModel == nullptr) {
        return NN_ERROR() << "V1_3::utils::PreparedModel::create must have non-null preparedModel";
    }

    auto deathHandler = NN_TRY(hal::utils::DeathHandler::create(preparedModel));
    return std::make_shared<const PreparedModel>(PrivateConstructorTag{}, executeSynchronously,
                                                 std::move(preparedModel), std::move(deathHandler));
}

PreparedModel::PreparedModel(PrivateConstructorTag /*tag*/, bool executeSynchronously,
                             sp<V1_3::IPreparedModel> preparedModel,
                             hal::utils::DeathHandler deathHandler)
    : kExecuteSynchronously(executeSynchronously),
      kPreparedModel(std::move(preparedModel)),
      kDeathHandler(std::move(deathHandler)) {}

nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>
PreparedModel::executeSynchronously(const Request& request, V1_2::MeasureTiming measure,
                                    const OptionalTimePoint& deadline,
                                    const OptionalTimeoutDuration& loopTimeoutDuration) const {
    auto cb = hal::utils::CallbackValue(executionCallback);

    const auto ret = kPreparedModel->executeSynchronously_1_3(request, measure, deadline,
                                                              loopTimeoutDuration, cb);
    HANDLE_TRANSPORT_FAILURE(ret);

    return cb.take();
}

nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>
PreparedModel::executeAsynchronously(const Request& request, V1_2::MeasureTiming measure,
                                     const OptionalTimePoint& deadline,
                                     const OptionalTimeoutDuration& loopTimeoutDuration) const {
    const auto cb = sp<ExecutionCallback>::make();
    const auto scoped = kDeathHandler.protectCallback(cb.get());

    const auto ret =
            kPreparedModel->execute_1_3(request, measure, deadline, loopTimeoutDuration, cb);
    const auto status = HANDLE_TRANSPORT_FAILURE(ret);
    if (status != ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
        HANDLE_STATUS_HIDL(status) << "execution failed with " << toString(status);
    }

    return cb->get();
}

nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> PreparedModel::execute(
        const nn::Request& request, nn::MeasureTiming measure,
        const nn::OptionalTimePoint& deadline,
        const nn::OptionalDuration& loopTimeoutDuration) const {
    // Ensure that request is ready for IPC.
    std::optional<nn::Request> maybeRequestInShared;
    hal::utils::RequestRelocation relocation;
    const nn::Request& requestInShared = NN_TRY(hal::utils::convertRequestFromPointerToShared(
            &request, nn::kDefaultRequestMemoryAlignment, nn::kMinMemoryPadding,
            &maybeRequestInShared, &relocation));

    const auto hidlRequest = NN_TRY(convert(requestInShared));
    const auto hidlMeasure = NN_TRY(convert(measure));
    const auto hidlDeadline = NN_TRY(convert(deadline));
    const auto hidlLoopTimeoutDuration = NN_TRY(convert(loopTimeoutDuration));

    return executeInternal(hidlRequest, hidlMeasure, hidlDeadline, hidlLoopTimeoutDuration,
                           relocation);
}

nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>
PreparedModel::executeInternal(const Request& request, V1_2::MeasureTiming measure,
                               const OptionalTimePoint& deadline,
                               const OptionalTimeoutDuration& loopTimeoutDuration,
                               const hal::utils::RequestRelocation& relocation) const {
    if (relocation.input) {
        relocation.input->flush();
    }

    auto result = kExecuteSynchronously
                          ? executeSynchronously(request, measure, deadline, loopTimeoutDuration)
                          : executeAsynchronously(request, measure, deadline, loopTimeoutDuration);
    auto [outputShapes, timing] = NN_TRY(std::move(result));

    if (relocation.output) {
        relocation.output->flush();
    }
    return std::make_pair(std::move(outputShapes), timing);
}

nn::GeneralResult<std::pair<nn::SyncFence, nn::ExecuteFencedInfoCallback>>
PreparedModel::executeFenced(const nn::Request& request, const std::vector<nn::SyncFence>& waitFor,
                             nn::MeasureTiming measure, const nn::OptionalTimePoint& deadline,
                             const nn::OptionalDuration& loopTimeoutDuration,
                             const nn::OptionalDuration& timeoutDurationAfterFence) const {
    // Ensure that request is ready for IPC.
    std::optional<nn::Request> maybeRequestInShared;
    hal::utils::RequestRelocation relocation;
    const nn::Request& requestInShared = NN_TRY(hal::utils::convertRequestFromPointerToShared(
            &request, nn::kDefaultRequestMemoryAlignment, nn::kMinMemoryPadding,
            &maybeRequestInShared, &relocation));

    const auto hidlRequest = NN_TRY(convert(requestInShared));
    const auto hidlWaitFor = NN_TRY(convertSyncFences(waitFor));
    const auto hidlMeasure = NN_TRY(convert(measure));
    const auto hidlDeadline = NN_TRY(convert(deadline));
    const auto hidlLoopTimeoutDuration = NN_TRY(convert(loopTimeoutDuration));
    const auto hidlTimeoutDurationAfterFence = NN_TRY(convert(timeoutDurationAfterFence));

    return executeFencedInternal(hidlRequest, hidlWaitFor, hidlMeasure, hidlDeadline,
                                 hidlLoopTimeoutDuration, hidlTimeoutDurationAfterFence,
                                 relocation);
}

nn::GeneralResult<std::pair<nn::SyncFence, nn::ExecuteFencedInfoCallback>>
PreparedModel::executeFencedInternal(const Request& request, const hidl_vec<hidl_handle>& waitFor,
                                     V1_2::MeasureTiming measure, const OptionalTimePoint& deadline,
                                     const OptionalTimeoutDuration& loopTimeoutDuration,
                                     const OptionalTimeoutDuration& timeoutDurationAfterFence,
                                     const hal::utils::RequestRelocation& relocation) const {
    if (relocation.input) {
        relocation.input->flush();
    }

    auto cb = hal::utils::CallbackValue(fencedExecutionCallback);

    const auto ret =
            kPreparedModel->executeFenced(request, waitFor, measure, deadline, loopTimeoutDuration,
                                          timeoutDurationAfterFence, cb);
    HANDLE_TRANSPORT_FAILURE(ret);
    auto [syncFence, callback] = NN_TRY(cb.take());

    // If executeFenced required the request memory to be moved into shared memory, block here until
    // the fenced execution has completed and flush the memory back.
    if (relocation.output) {
        const auto state = syncFence.syncWait({});
        if (state != nn::SyncFence::FenceState::SIGNALED) {
            return NN_ERROR() << "syncWait failed with " << state;
        }
        relocation.output->flush();
    }

    return std::make_pair(std::move(syncFence), std::move(callback));
}

nn::GeneralResult<nn::SharedExecution> PreparedModel::createReusableExecution(
        const nn::Request& request, nn::MeasureTiming measure,
        const nn::OptionalDuration& loopTimeoutDuration) const {
    // Ensure that request is ready for IPC.
    std::optional<nn::Request> maybeRequestInShared;
    hal::utils::RequestRelocation relocation;
    const nn::Request& requestInShared = NN_TRY(hal::utils::convertRequestFromPointerToShared(
            &request, nn::kDefaultRequestMemoryAlignment, nn::kMinMemoryPadding,
            &maybeRequestInShared, &relocation));

    auto hidlRequest = NN_TRY(convert(requestInShared));
    auto hidlMeasure = NN_TRY(convert(measure));
    auto hidlLoopTimeoutDuration = NN_TRY(convert(loopTimeoutDuration));
    return Execution::create(shared_from_this(), std::move(hidlRequest), std::move(relocation),
                             hidlMeasure, std::move(hidlLoopTimeoutDuration));
}

nn::GeneralResult<nn::SharedBurst> PreparedModel::configureExecutionBurst() const {
    const auto pollingTimeWindow = V1_2::utils::getBurstControllerPollingTimeWindow();
    return V1_2::utils::Burst::create(shared_from_this(), kPreparedModel, pollingTimeWindow);
}

std::any PreparedModel::getUnderlyingResource() const {
    sp<V1_3::IPreparedModel> resource = kPreparedModel;
    return resource;
}

}  // namespace android::hardware::neuralnetworks::V1_3::utils