blob: cc654f2c571d91f308b9d449a2c68d98c00b37a4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <functional>
#include <numeric>
namespace android {
namespace hardware {
namespace neuralnetworks {
uint32_t sizeOfData(V1_2::OperandType type) {
switch (type) {
case V1_2::OperandType::FLOAT32:
case V1_2::OperandType::INT32:
case V1_2::OperandType::UINT32:
case V1_2::OperandType::TENSOR_FLOAT32:
case V1_2::OperandType::TENSOR_INT32:
return 4;
case V1_2::OperandType::TENSOR_QUANT16_SYMM:
case V1_2::OperandType::TENSOR_FLOAT16:
case V1_2::OperandType::FLOAT16:
case V1_2::OperandType::TENSOR_QUANT16_ASYMM:
return 2;
case V1_2::OperandType::TENSOR_QUANT8_ASYMM:
case V1_2::OperandType::BOOL:
case V1_2::OperandType::TENSOR_BOOL8:
case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case V1_2::OperandType::TENSOR_QUANT8_SYMM:
return 1;
default:
CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
return 0;
}
}
static bool isTensor(V1_2::OperandType type) {
switch (type) {
case V1_2::OperandType::FLOAT32:
case V1_2::OperandType::INT32:
case V1_2::OperandType::UINT32:
case V1_2::OperandType::FLOAT16:
case V1_2::OperandType::BOOL:
return false;
case V1_2::OperandType::TENSOR_FLOAT32:
case V1_2::OperandType::TENSOR_INT32:
case V1_2::OperandType::TENSOR_QUANT16_SYMM:
case V1_2::OperandType::TENSOR_FLOAT16:
case V1_2::OperandType::TENSOR_QUANT16_ASYMM:
case V1_2::OperandType::TENSOR_QUANT8_ASYMM:
case V1_2::OperandType::TENSOR_BOOL8:
case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case V1_2::OperandType::TENSOR_QUANT8_SYMM:
return true;
default:
CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
return false;
}
}
uint32_t sizeOfData(const V1_2::Operand& operand) {
const uint32_t dataSize = sizeOfData(operand.type);
if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0;
return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize,
std::multiplies<>{});
}
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
|