1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "GeneratedTestHarness.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/IDevice.h>
#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
#include <android/hardware/neuralnetworks/1.2/IDevice.h>
#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <gtest/gtest.h>
#include <hidlmemory/mapping.h>
#include <algorithm>
#include <chrono>
#include <iostream>
#include <numeric>
#include <vector>
#include "1.0/Utils.h"
#include "1.2/Callbacks.h"
#include "ExecutionBurstController.h"
#include "MemoryUtils.h"
#include "TestHarness.h"
#include "VtsHalNeuralnetworks.h"
namespace android::hardware::neuralnetworks::V1_2::vts::functional {
using namespace test_helper;
using hidl::memory::V1_0::IMemory;
using implementation::ExecutionCallback;
using implementation::PreparedModelCallback;
using V1_0::DataLocation;
using V1_0::ErrorStatus;
using V1_0::OperandLifeTime;
using V1_0::Request;
using V1_1::ExecutionPreference;
using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
namespace {
enum class Executor { ASYNC, SYNC, BURST };
enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT };
struct TestConfig {
Executor executor;
MeasureTiming measureTiming;
OutputType outputType;
MemoryType memoryType;
};
} // namespace
Model createModel(const TestModel& testModel) {
// Model operands.
CHECK_EQ(testModel.referenced.size(), 0u); // Not supported in 1.1.
hidl_vec<Operand> operands(testModel.main.operands.size());
size_t constCopySize = 0, constRefSize = 0;
for (uint32_t i = 0; i < testModel.main.operands.size(); i++) {
const auto& op = testModel.main.operands[i];
DataLocation loc = {};
if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
loc = {.poolIndex = 0,
.offset = static_cast<uint32_t>(constCopySize),
.length = static_cast<uint32_t>(op.data.size())};
constCopySize += op.data.alignedSize();
} else if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
loc = {.poolIndex = 0,
.offset = static_cast<uint32_t>(constRefSize),
.length = static_cast<uint32_t>(op.data.size())};
constRefSize += op.data.alignedSize();
}
Operand::ExtraParams extraParams;
if (op.type == TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
extraParams.channelQuant(SymmPerChannelQuantParams{
.scales = op.channelQuant.scales, .channelDim = op.channelQuant.channelDim});
}
operands[i] = {.type = static_cast<OperandType>(op.type),
.dimensions = op.dimensions,
.numberOfConsumers = op.numberOfConsumers,
.scale = op.scale,
.zeroPoint = op.zeroPoint,
.lifetime = static_cast<OperandLifeTime>(op.lifetime),
.location = loc,
.extraParams = std::move(extraParams)};
}
// Model operations.
hidl_vec<Operation> operations(testModel.main.operations.size());
std::transform(testModel.main.operations.begin(), testModel.main.operations.end(),
operations.begin(), [](const TestOperation& op) -> Operation {
return {.type = static_cast<OperationType>(op.type),
.inputs = op.inputs,
.outputs = op.outputs};
});
// Constant copies.
hidl_vec<uint8_t> operandValues(constCopySize);
for (uint32_t i = 0; i < testModel.main.operands.size(); i++) {
const auto& op = testModel.main.operands[i];
if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
const uint8_t* begin = op.data.get<uint8_t>();
const uint8_t* end = begin + op.data.size();
std::copy(begin, end, operandValues.data() + operands[i].location.offset);
}
}
// Shared memory.
hidl_vec<hidl_memory> pools = {};
if (constRefSize > 0) {
hidl_vec_push_back(&pools, nn::allocateSharedMemory(constRefSize));
CHECK_NE(pools[0].size(), 0u);
// load data
sp<IMemory> mappedMemory = mapMemory(pools[0]);
CHECK(mappedMemory.get() != nullptr);
uint8_t* mappedPtr =
reinterpret_cast<uint8_t*>(static_cast<void*>(mappedMemory->getPointer()));
CHECK(mappedPtr != nullptr);
for (uint32_t i = 0; i < testModel.main.operands.size(); i++) {
const auto& op = testModel.main.operands[i];
if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
const uint8_t* begin = op.data.get<uint8_t>();
const uint8_t* end = begin + op.data.size();
std::copy(begin, end, mappedPtr + operands[i].location.offset);
}
}
}
return {.operands = std::move(operands),
.operations = std::move(operations),
.inputIndexes = testModel.main.inputIndexes,
.outputIndexes = testModel.main.outputIndexes,
.operandValues = std::move(operandValues),
.pools = std::move(pools),
.relaxComputationFloat32toFloat16 = testModel.isRelaxed};
}
static bool isOutputSizeGreaterThanOne(const TestModel& testModel, uint32_t index) {
const auto byteSize = testModel.main.operands[testModel.main.outputIndexes[index]].data.size();
return byteSize > 1u;
}
static void makeOutputInsufficientSize(uint32_t outputIndex, Request* request) {
auto& length = request->outputs[outputIndex].location.length;
ASSERT_GT(length, 1u);
length -= 1u;
}
static void makeOutputDimensionsUnspecified(Model* model) {
for (auto i : model->outputIndexes) {
auto& dims = model->operands[i].dimensions;
std::fill(dims.begin(), dims.end(), 0);
}
}
static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
const Request& request, MeasureTiming measure,
sp<ExecutionCallback>& callback) {
return preparedModel->execute_1_2(request, measure, callback);
}
static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
const Request& request, MeasureTiming measure,
hidl_vec<OutputShape>* outputShapes,
Timing* timing) {
ErrorStatus result;
Return<void> ret = preparedModel->executeSynchronously(
request, measure,
[&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes,
const Timing& time) {
result = error;
*outputShapes = shapes;
*timing = time;
});
if (!ret.isOk()) {
return ErrorStatus::GENERAL_FAILURE;
}
return result;
}
static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst(
const sp<IPreparedModel>& preparedModel) {
return android::nn::ExecutionBurstController::create(preparedModel,
std::chrono::microseconds{0});
}
void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
const TestConfig& testConfig) {
// If output0 does not have size larger than one byte, we can not test with insufficient buffer.
if (testConfig.outputType == OutputType::INSUFFICIENT &&
!isOutputSizeGreaterThanOne(testModel, 0)) {
return;
}
ExecutionContext context;
Request request = context.createRequest(testModel, testConfig.memoryType);
if (testConfig.outputType == OutputType::INSUFFICIENT) {
makeOutputInsufficientSize(/*outputIndex=*/0, &request);
}
ErrorStatus executionStatus;
hidl_vec<OutputShape> outputShapes;
Timing timing;
switch (testConfig.executor) {
case Executor::ASYNC: {
SCOPED_TRACE("asynchronous");
// launch execution
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
Return<ErrorStatus> executionLaunchStatus = ExecutePreparedModel(
preparedModel, request, testConfig.measureTiming, executionCallback);
ASSERT_TRUE(executionLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
// retrieve execution status
executionCallback->wait();
executionStatus = executionCallback->getStatus();
outputShapes = executionCallback->getOutputShapes();
timing = executionCallback->getTiming();
break;
}
case Executor::SYNC: {
SCOPED_TRACE("synchronous");
// execute
Return<ErrorStatus> executionReturnStatus = ExecutePreparedModel(
preparedModel, request, testConfig.measureTiming, &outputShapes, &timing);
ASSERT_TRUE(executionReturnStatus.isOk());
executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
break;
}
case Executor::BURST: {
SCOPED_TRACE("burst");
// create burst
const std::shared_ptr<::android::nn::ExecutionBurstController> controller =
CreateBurst(preparedModel);
ASSERT_NE(nullptr, controller.get());
// create memory keys
std::vector<intptr_t> keys(request.pools.size());
for (size_t i = 0; i < keys.size(); ++i) {
keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
}
// execute burst
int n;
std::tie(n, outputShapes, timing, std::ignore) =
controller->compute(request, testConfig.measureTiming, keys);
executionStatus = nn::legacyConvertResultCodeToErrorStatus(n);
break;
}
}
if (testConfig.outputType != OutputType::FULLY_SPECIFIED &&
executionStatus == ErrorStatus::GENERAL_FAILURE) {
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"execute model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"execute model that it does not support."
<< std::endl;
GTEST_SKIP();
}
if (testConfig.measureTiming == MeasureTiming::NO) {
EXPECT_EQ(UINT64_MAX, timing.timeOnDevice);
EXPECT_EQ(UINT64_MAX, timing.timeInDriver);
} else {
if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) {
EXPECT_LE(timing.timeOnDevice, timing.timeInDriver);
}
}
switch (testConfig.outputType) {
case OutputType::FULLY_SPECIFIED:
// If the model output operands are fully specified, outputShapes must be either
// either empty, or have the same number of elements as the number of outputs.
ASSERT_EQ(ErrorStatus::NONE, executionStatus);
ASSERT_TRUE(outputShapes.size() == 0 ||
outputShapes.size() == testModel.main.outputIndexes.size());
break;
case OutputType::UNSPECIFIED:
// If the model output operands are not fully specified, outputShapes must have
// the same number of elements as the number of outputs.
ASSERT_EQ(ErrorStatus::NONE, executionStatus);
ASSERT_EQ(outputShapes.size(), testModel.main.outputIndexes.size());
break;
case OutputType::INSUFFICIENT:
ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus);
ASSERT_EQ(outputShapes.size(), testModel.main.outputIndexes.size());
ASSERT_FALSE(outputShapes[0].isSufficient);
return;
}
// Go through all outputs, check returned output shapes.
for (uint32_t i = 0; i < outputShapes.size(); i++) {
EXPECT_TRUE(outputShapes[i].isSufficient);
const auto& expect = testModel.main.operands[testModel.main.outputIndexes[i]].dimensions;
const std::vector<uint32_t> actual = outputShapes[i].dimensions;
EXPECT_EQ(expect, actual);
}
// Retrieve execution results.
const std::vector<TestBuffer> outputs = context.getOutputBuffers(request);
// We want "close-enough" results.
checkResults(testModel, outputs);
}
void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
bool testDynamicOutputShape) {
std::vector<OutputType> outputTypesList;
std::vector<MeasureTiming> measureTimingList;
std::vector<Executor> executorList;
std::vector<MemoryType> memoryTypeList;
if (testDynamicOutputShape) {
outputTypesList = {OutputType::UNSPECIFIED, OutputType::INSUFFICIENT};
measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST};
memoryTypeList = {MemoryType::ASHMEM};
} else {
outputTypesList = {OutputType::FULLY_SPECIFIED};
measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST};
memoryTypeList = {MemoryType::ASHMEM};
}
for (const OutputType outputType : outputTypesList) {
for (const MeasureTiming measureTiming : measureTimingList) {
for (const Executor executor : executorList) {
for (const MemoryType memoryType : memoryTypeList) {
const TestConfig testConfig = {.executor = executor,
.measureTiming = measureTiming,
.outputType = outputType,
.memoryType = memoryType};
EvaluatePreparedModel(preparedModel, testModel, testConfig);
}
}
}
}
}
void Execute(const sp<IDevice>& device, const TestModel& testModel, bool testDynamicOutputShape) {
Model model = createModel(testModel);
if (testDynamicOutputShape) {
makeOutputDimensionsUnspecified(&model);
}
sp<IPreparedModel> preparedModel;
createPreparedModel(device, model, &preparedModel);
if (preparedModel == nullptr) return;
EvaluatePreparedModel(preparedModel, testModel, testDynamicOutputShape);
}
void GeneratedTestBase::SetUp() {
testing::TestWithParam<GeneratedTestParam>::SetUp();
ASSERT_NE(kDevice, nullptr);
const bool deviceIsResponsive = kDevice->ping().isOk();
ASSERT_TRUE(deviceIsResponsive);
}
std::vector<NamedModel> getNamedModels(const FilterFn& filter) {
return TestModelManager::get().getTestModels(filter);
}
std::vector<NamedModel> getNamedModels(const FilterNameFn& filter) {
return TestModelManager::get().getTestModels(filter);
}
std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info) {
const auto& [namedDevice, namedModel] = info.param;
return gtestCompliantName(getName(namedDevice) + "_" + getName(namedModel));
}
// Tag for the generated tests
class GeneratedTest : public GeneratedTestBase {};
// Tag for the dynamic output shape tests
class DynamicOutputShapeTest : public GeneratedTest {};
TEST_P(GeneratedTest, Test) {
Execute(kDevice, kTestModel, /*testDynamicOutputShape=*/false);
}
TEST_P(DynamicOutputShapeTest, Test) {
Execute(kDevice, kTestModel, /*testDynamicOutputShape=*/true);
}
INSTANTIATE_GENERATED_TEST(GeneratedTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
} // namespace android::hardware::neuralnetworks::V1_2::vts::functional
|