1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ExecutionBurstController"
#include "ExecutionBurstController.h"
#include "ExecutionBurstUtils.h"
#include <android-base/logging.h>
#include <android-base/thread_annotations.h>
#include <nnapi/IBurst.h>
#include <nnapi/IPreparedModel.h>
#include <nnapi/Result.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/HandleError.h>
#include <nnapi/hal/ProtectCallback.h>
#include <nnapi/hal/TransferValue.h>
#include <algorithm>
#include <cstring>
#include <limits>
#include <memory>
#include <string>
#include <thread>
#include <tuple>
#include <utility>
#include <vector>
#include "Callbacks.h"
#include "Conversions.h"
#include "Tracing.h"
#include "Utils.h"
namespace android::hardware::neuralnetworks::V1_2::utils {
namespace {
nn::GeneralResult<sp<IBurstContext>> executionBurstResultCallback(
V1_0::ErrorStatus status, const sp<IBurstContext>& burstContext) {
HANDLE_HAL_STATUS(status) << "IPreparedModel::configureExecutionBurst failed with status "
<< toString(status);
if (burstContext == nullptr) {
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
<< "IPreparedModel::configureExecutionBurst returned nullptr for burst";
}
return burstContext;
}
nn::GeneralResult<hidl_vec<hidl_memory>> getMemoriesHelper(
const hidl_vec<int32_t>& slots,
const std::shared_ptr<ExecutionBurstController::MemoryCache>& memoryCache) {
hidl_vec<hidl_memory> memories(slots.size());
for (size_t i = 0; i < slots.size(); ++i) {
const int32_t slot = slots[i];
const auto memory = NN_TRY(memoryCache->getMemory(slot));
memories[i] = NN_TRY(V1_0::utils::unvalidatedConvert(memory));
if (!memories[i].valid()) {
return NN_ERROR() << "memory at slot " << slot << " is invalid";
}
}
return memories;
}
} // namespace
// MemoryCache methods
ExecutionBurstController::MemoryCache::MemoryCache() {
constexpr size_t kPreallocatedCount = 1024;
std::vector<int32_t> freeSlotsSpace;
freeSlotsSpace.reserve(kPreallocatedCount);
mFreeSlots = std::stack<int32_t, std::vector<int32_t>>(std::move(freeSlotsSpace));
mMemoryCache.reserve(kPreallocatedCount);
mCacheCleaner.reserve(kPreallocatedCount);
}
void ExecutionBurstController::MemoryCache::setBurstContext(sp<IBurstContext> burstContext) {
std::lock_guard guard(mMutex);
mBurstContext = std::move(burstContext);
}
std::pair<int32_t, ExecutionBurstController::MemoryCache::SharedCleanup>
ExecutionBurstController::MemoryCache::cacheMemory(const nn::SharedMemory& memory) {
std::unique_lock lock(mMutex);
base::ScopedLockAssertion lockAssert(mMutex);
// Use existing cache entry if (1) the Memory object is in the cache and (2) the cache entry is
// not currently being freed.
auto iter = mMemoryIdToSlot.find(memory);
while (iter != mMemoryIdToSlot.end()) {
const int32_t slot = iter->second;
if (auto cleaner = mCacheCleaner.at(slot).lock()) {
return std::make_pair(slot, std::move(cleaner));
}
// If the code reaches this point, the Memory object was in the cache, but is currently
// being destroyed. This code waits until the cache entry has been freed, then loops to
// ensure the cache entry has been freed or has been made present by another thread.
mCond.wait(lock);
iter = mMemoryIdToSlot.find(memory);
}
// Allocate a new cache entry.
const int32_t slot = allocateSlotLocked();
mMemoryIdToSlot[memory] = slot;
mMemoryCache[slot] = memory;
// Create reference-counted self-cleaning cache object.
auto self = weak_from_this();
Task cleanup = [memory, memoryCache = std::move(self)] {
if (const auto lock = memoryCache.lock()) {
lock->freeMemory(memory);
}
};
auto cleaner = std::make_shared<const Cleanup>(std::move(cleanup));
mCacheCleaner[slot] = cleaner;
return std::make_pair(slot, std::move(cleaner));
}
nn::GeneralResult<nn::SharedMemory> ExecutionBurstController::MemoryCache::getMemory(int32_t slot) {
std::lock_guard guard(mMutex);
if (slot < 0 || static_cast<size_t>(slot) >= mMemoryCache.size()) {
return NN_ERROR() << "Invalid slot: " << slot << " vs " << mMemoryCache.size();
}
return mMemoryCache[slot];
}
void ExecutionBurstController::MemoryCache::freeMemory(const nn::SharedMemory& memory) {
{
std::lock_guard guard(mMutex);
const int32_t slot = mMemoryIdToSlot.at(memory);
if (mBurstContext) {
mBurstContext->freeMemory(slot);
}
mMemoryIdToSlot.erase(memory);
mMemoryCache[slot] = {};
mCacheCleaner[slot].reset();
mFreeSlots.push(slot);
}
mCond.notify_all();
}
int32_t ExecutionBurstController::MemoryCache::allocateSlotLocked() {
constexpr size_t kMaxNumberOfSlots = std::numeric_limits<int32_t>::max();
// If there is a free slot, use it.
if (!mFreeSlots.empty()) {
const int32_t slot = mFreeSlots.top();
mFreeSlots.pop();
return slot;
}
// Use a slot for the first time.
CHECK_LT(mMemoryCache.size(), kMaxNumberOfSlots) << "Exceeded maximum number of slots!";
const int32_t slot = static_cast<int32_t>(mMemoryCache.size());
mMemoryCache.emplace_back();
mCacheCleaner.emplace_back();
return slot;
}
// ExecutionBurstCallback methods
ExecutionBurstController::ExecutionBurstCallback::ExecutionBurstCallback(
const std::shared_ptr<MemoryCache>& memoryCache)
: kMemoryCache(memoryCache) {
CHECK(memoryCache != nullptr);
}
Return<void> ExecutionBurstController::ExecutionBurstCallback::getMemories(
const hidl_vec<int32_t>& slots, getMemories_cb cb) {
const auto memoryCache = kMemoryCache.lock();
if (memoryCache == nullptr) {
LOG(ERROR) << "ExecutionBurstController::ExecutionBurstCallback::getMemories called after "
"the MemoryCache has been freed";
cb(V1_0::ErrorStatus::GENERAL_FAILURE, {});
return Void();
}
const auto maybeMemories = getMemoriesHelper(slots, memoryCache);
if (!maybeMemories.has_value()) {
const auto& [message, code] = maybeMemories.error();
LOG(ERROR) << "ExecutionBurstController::ExecutionBurstCallback::getMemories failed with "
<< code << ": " << message;
cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {});
return Void();
}
cb(V1_0::ErrorStatus::NONE, maybeMemories.value());
return Void();
}
// ExecutionBurstController methods
nn::GeneralResult<std::shared_ptr<const ExecutionBurstController>> ExecutionBurstController::create(
const sp<V1_2::IPreparedModel>& preparedModel, FallbackFunction fallback,
std::chrono::microseconds pollingTimeWindow) {
// check inputs
if (preparedModel == nullptr) {
return NN_ERROR() << "ExecutionBurstController::create passed a nullptr";
}
// create FMQ objects
auto [requestChannelSender, requestChannelDescriptor] =
NN_TRY(RequestChannelSender::create(kExecutionBurstChannelLength));
auto [resultChannelReceiver, resultChannelDescriptor] =
NN_TRY(ResultChannelReceiver::create(kExecutionBurstChannelLength, pollingTimeWindow));
// check FMQ objects
CHECK(requestChannelSender != nullptr);
CHECK(requestChannelDescriptor != nullptr);
CHECK(resultChannelReceiver != nullptr);
CHECK(resultChannelDescriptor != nullptr);
// create memory cache
auto memoryCache = std::make_shared<MemoryCache>();
// create callback object
auto burstCallback = sp<ExecutionBurstCallback>::make(memoryCache);
auto cb = hal::utils::CallbackValue(executionBurstResultCallback);
// configure burst
const Return<void> ret = preparedModel->configureExecutionBurst(
burstCallback, *requestChannelDescriptor, *resultChannelDescriptor, cb);
HANDLE_TRANSPORT_FAILURE(ret);
auto burstContext = NN_TRY(cb.take());
memoryCache->setBurstContext(burstContext);
// create death handler object
auto deathHandler = NN_TRY(neuralnetworks::utils::DeathHandler::create(burstContext));
deathHandler.protectCallbackForLifetimeOfDeathHandler(requestChannelSender.get());
deathHandler.protectCallbackForLifetimeOfDeathHandler(resultChannelReceiver.get());
// make and return controller
return std::make_shared<const ExecutionBurstController>(
PrivateConstructorTag{}, std::move(fallback), std::move(requestChannelSender),
std::move(resultChannelReceiver), std::move(burstCallback), std::move(burstContext),
std::move(memoryCache), std::move(deathHandler));
}
ExecutionBurstController::ExecutionBurstController(
PrivateConstructorTag /*tag*/, FallbackFunction fallback,
std::unique_ptr<RequestChannelSender> requestChannelSender,
std::unique_ptr<ResultChannelReceiver> resultChannelReceiver,
sp<ExecutionBurstCallback> callback, sp<IBurstContext> burstContext,
std::shared_ptr<MemoryCache> memoryCache, neuralnetworks::utils::DeathHandler deathHandler)
: kFallback(std::move(fallback)),
mRequestChannelSender(std::move(requestChannelSender)),
mResultChannelReceiver(std::move(resultChannelReceiver)),
mBurstCallback(std::move(callback)),
mBurstContext(std::move(burstContext)),
mMemoryCache(std::move(memoryCache)),
kDeathHandler(std::move(deathHandler)) {}
ExecutionBurstController::OptionalCacheHold ExecutionBurstController::cacheMemory(
const nn::SharedMemory& memory) const {
auto [slot, hold] = mMemoryCache->cacheMemory(memory);
return hold;
}
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>
ExecutionBurstController::execute(const nn::Request& request, nn::MeasureTiming measure) const {
// This is the first point when we know an execution is occurring, so begin to collect
// systraces. Note that the first point we can begin collecting systraces in
// ExecutionBurstServer is when the RequestChannelReceiver realizes there is data in the FMQ, so
// ExecutionBurstServer collects systraces at different points in the code.
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstController::execute");
// if the request is valid but of a higher version than what's supported in burst execution,
// fall back to another execution path
if (const auto version = NN_TRY(hal::utils::makeExecutionFailure(nn::validate(request)));
version > nn::Version::ANDROID_Q) {
// fallback to another execution path if the packet could not be sent
if (kFallback) {
return kFallback(request, measure);
}
return NN_ERROR() << "Request object has features not supported by IBurst::execute";
}
// clear pools field of request, as they will be provided via slots
const auto requestWithoutPools =
nn::Request{.inputs = request.inputs, .outputs = request.outputs, .pools = {}};
auto hidlRequest = NN_TRY(
hal::utils::makeExecutionFailure(V1_0::utils::unvalidatedConvert(requestWithoutPools)));
const auto hidlMeasure = NN_TRY(hal::utils::makeExecutionFailure(convert(measure)));
// Ensure that at most one execution is in flight at any given time.
const bool alreadyInFlight = mExecutionInFlight.test_and_set();
if (alreadyInFlight) {
return NN_ERROR() << "IBurst already has an execution in flight";
}
const auto guard = base::make_scope_guard([this] { mExecutionInFlight.clear(); });
std::vector<int32_t> slots;
std::vector<OptionalCacheHold> holds;
slots.reserve(request.pools.size());
holds.reserve(request.pools.size());
for (const auto& memoryPool : request.pools) {
auto [slot, hold] = mMemoryCache->cacheMemory(std::get<nn::SharedMemory>(memoryPool));
slots.push_back(slot);
holds.push_back(std::move(hold));
}
// send request packet
const auto sendStatus = mRequestChannelSender->send(hidlRequest, hidlMeasure, slots);
if (!sendStatus.ok()) {
// fallback to another execution path if the packet could not be sent
if (kFallback) {
return kFallback(request, measure);
}
return NN_ERROR() << "Error sending FMQ packet: " << sendStatus.error();
}
// get result packet
const auto [status, outputShapes, timing] =
NN_TRY(hal::utils::makeExecutionFailure(mResultChannelReceiver->getBlocking()));
return executionCallback(status, outputShapes, timing);
}
} // namespace android::hardware::neuralnetworks::V1_2::utils
|