1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Conversions.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/CommonUtils.h>
#include <algorithm>
#include <functional>
#include <iterator>
#include <type_traits>
#include <utility>
#include "Utils.h"
namespace android::nn {
namespace {
using hardware::hidl_vec;
template <typename Input>
using UnvalidatedConvertOutput =
std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;
template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvert(
const hidl_vec<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(nn::unvalidatedConvert(argument)));
}
return canonical;
}
template <typename Type>
GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& halObject) {
auto canonical = NN_TRY(nn::unvalidatedConvert(halObject));
NN_TRY(hal::V1_1::utils::compliantVersion(canonical));
return canonical;
}
} // anonymous namespace
GeneralResult<OperationType> unvalidatedConvert(const hal::V1_1::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
GeneralResult<Capabilities> unvalidatedConvert(const hal::V1_1::Capabilities& capabilities) {
const auto quantized8Performance =
NN_TRY(unvalidatedConvert(capabilities.quantized8Performance));
const auto float32Performance = NN_TRY(unvalidatedConvert(capabilities.float32Performance));
const auto relaxedFloat32toFloat16Performance =
NN_TRY(unvalidatedConvert(capabilities.relaxedFloat32toFloat16Performance));
auto table = hal::utils::makeQuantized8PerformanceConsistentWithP(float32Performance,
quantized8Performance);
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar = relaxedFloat32toFloat16Performance,
.relaxedFloat32toFloat16PerformanceTensor = relaxedFloat32toFloat16Performance,
.operandPerformance = std::move(table),
};
}
GeneralResult<Operation> unvalidatedConvert(const hal::V1_1::Operation& operation) {
return Operation{
.type = NN_TRY(unvalidatedConvert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
GeneralResult<Model> unvalidatedConvert(const hal::V1_1::Model& model) {
auto operations = NN_TRY(unvalidatedConvert(model.operations));
// Verify number of consumers.
const auto numberOfConsumers =
NN_TRY(countNumberOfConsumers(model.operands.size(), operations));
CHECK(model.operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < model.operands.size(); ++i) {
if (model.operands[i].numberOfConsumers != numberOfConsumers[i]) {
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
<< "Invalid numberOfConsumers for operand " << i << ", expected "
<< numberOfConsumers[i] << " but found " << model.operands[i].numberOfConsumers;
}
}
auto main = Model::Subgraph{
.operands = NN_TRY(unvalidatedConvert(model.operands)),
.operations = std::move(operations),
.inputIndexes = model.inputIndexes,
.outputIndexes = model.outputIndexes,
};
return Model{
.main = std::move(main),
.operandValues = NN_TRY(unvalidatedConvert(model.operandValues)),
.pools = NN_TRY(unvalidatedConvert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
};
}
GeneralResult<ExecutionPreference> unvalidatedConvert(
const hal::V1_1::ExecutionPreference& executionPreference) {
return static_cast<ExecutionPreference>(executionPreference);
}
GeneralResult<Capabilities> convert(const hal::V1_1::Capabilities& capabilities) {
return validatedConvert(capabilities);
}
GeneralResult<Model> convert(const hal::V1_1::Model& model) {
return validatedConvert(model);
}
GeneralResult<ExecutionPreference> convert(
const hal::V1_1::ExecutionPreference& executionPreference) {
return validatedConvert(executionPreference);
}
} // namespace android::nn
namespace android::hardware::neuralnetworks::V1_1::utils {
namespace {
using utils::unvalidatedConvert;
nn::GeneralResult<V1_0::PerformanceInfo> unvalidatedConvert(
const nn::Capabilities::PerformanceInfo& performanceInfo) {
return V1_0::utils::unvalidatedConvert(performanceInfo);
}
nn::GeneralResult<V1_0::Operand> unvalidatedConvert(const nn::Operand& operand) {
return V1_0::utils::unvalidatedConvert(operand);
}
nn::GeneralResult<hidl_vec<uint8_t>> unvalidatedConvert(
const nn::Model::OperandValues& operandValues) {
return V1_0::utils::unvalidatedConvert(operandValues);
}
nn::GeneralResult<hidl_memory> unvalidatedConvert(const nn::SharedMemory& memory) {
return V1_0::utils::unvalidatedConvert(memory);
}
template <typename Input>
using UnvalidatedConvertOutput =
std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;
template <typename Type>
nn::GeneralResult<hidl_vec<UnvalidatedConvertOutput<Type>>> unvalidatedConvert(
const std::vector<Type>& arguments) {
hidl_vec<UnvalidatedConvertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(unvalidatedConvert(arguments[i]));
}
return halObject;
}
template <typename Type>
nn::GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& canonical) {
NN_TRY(compliantVersion(canonical));
return unvalidatedConvert(canonical);
}
} // anonymous namespace
nn::GeneralResult<OperationType> unvalidatedConvert(const nn::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
nn::GeneralResult<Capabilities> unvalidatedConvert(const nn::Capabilities& capabilities) {
return Capabilities{
.float32Performance = NN_TRY(unvalidatedConvert(
capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_FLOAT32))),
.quantized8Performance = NN_TRY(unvalidatedConvert(
capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_QUANT8_ASYMM))),
.relaxedFloat32toFloat16Performance = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
};
}
nn::GeneralResult<Operation> unvalidatedConvert(const nn::Operation& operation) {
return Operation{
.type = NN_TRY(unvalidatedConvert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
nn::GeneralResult<Model> unvalidatedConvert(const nn::Model& model) {
if (!hal::utils::hasNoPointerData(model)) {
return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT)
<< "Mdoel cannot be unvalidatedConverted because it contains pointer-based memory";
}
auto operands = NN_TRY(unvalidatedConvert(model.main.operands));
// Update number of consumers.
const auto numberOfConsumers =
NN_TRY(countNumberOfConsumers(operands.size(), model.main.operations));
CHECK(operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < operands.size(); ++i) {
operands[i].numberOfConsumers = numberOfConsumers[i];
}
return Model{
.operands = std::move(operands),
.operations = NN_TRY(unvalidatedConvert(model.main.operations)),
.inputIndexes = model.main.inputIndexes,
.outputIndexes = model.main.outputIndexes,
.operandValues = NN_TRY(unvalidatedConvert(model.operandValues)),
.pools = NN_TRY(unvalidatedConvert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
};
}
nn::GeneralResult<ExecutionPreference> unvalidatedConvert(
const nn::ExecutionPreference& executionPreference) {
return static_cast<ExecutionPreference>(executionPreference);
}
nn::GeneralResult<Capabilities> convert(const nn::Capabilities& capabilities) {
return validatedConvert(capabilities);
}
nn::GeneralResult<Model> convert(const nn::Model& model) {
return validatedConvert(model);
}
nn::GeneralResult<ExecutionPreference> convert(const nn::ExecutionPreference& executionPreference) {
return validatedConvert(executionPreference);
}
nn::GeneralResult<V1_0::DeviceStatus> convert(const nn::DeviceStatus& deviceStatus) {
return V1_0::utils::convert(deviceStatus);
}
nn::GeneralResult<V1_0::Request> convert(const nn::Request& request) {
return V1_0::utils::convert(request);
}
nn::GeneralResult<V1_0::ErrorStatus> convert(const nn::ErrorStatus& status) {
return V1_0::utils::convert(status);
}
} // namespace android::hardware::neuralnetworks::V1_1::utils
|