diff options
Diffstat (limited to 'neuralnetworks/utils/adapter/hidl/src/Burst.cpp')
-rw-r--r-- | neuralnetworks/utils/adapter/hidl/src/Burst.cpp | 259 |
1 files changed, 259 insertions, 0 deletions
diff --git a/neuralnetworks/utils/adapter/hidl/src/Burst.cpp b/neuralnetworks/utils/adapter/hidl/src/Burst.cpp new file mode 100644 index 0000000000..8b2e1dd465 --- /dev/null +++ b/neuralnetworks/utils/adapter/hidl/src/Burst.cpp @@ -0,0 +1,259 @@ +/* + * Copyright (C) 2019 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "Burst.h" + +#include <android-base/logging.h> +#include <nnapi/IBurst.h> +#include <nnapi/Result.h> +#include <nnapi/TypeUtils.h> +#include <nnapi/Types.h> +#include <nnapi/Validation.h> +#include <nnapi/hal/1.0/Conversions.h> +#include <nnapi/hal/1.0/HandleError.h> +#include <nnapi/hal/1.0/ProtectCallback.h> +#include <nnapi/hal/1.2/BurstUtils.h> +#include <nnapi/hal/1.2/Conversions.h> +#include <nnapi/hal/TransferValue.h> + +#include <algorithm> +#include <cstring> +#include <limits> +#include <map> +#include <memory> +#include <tuple> +#include <utility> +#include <vector> + +#include "Tracing.h" + +namespace android::hardware::neuralnetworks::adapter { +namespace { + +constexpr V1_2::Timing kTiming = {std::numeric_limits<uint64_t>::max(), + std::numeric_limits<uint64_t>::max()}; + +nn::GeneralResult<std::vector<nn::SharedMemory>> getMemoriesCallback( + V1_0::ErrorStatus status, const hidl_vec<hidl_memory>& memories) { + HANDLE_STATUS_HIDL(status) << "getting burst memories failed with " << toString(status); + std::vector<nn::SharedMemory> canonicalMemories; + canonicalMemories.reserve(memories.size()); + for (const auto& memory : memories) { + canonicalMemories.push_back(NN_TRY(nn::convert(memory))); + } + return canonicalMemories; +} + +} // anonymous namespace + +Burst::MemoryCache::MemoryCache(nn::SharedBurst burstExecutor, + sp<V1_2::IBurstCallback> burstCallback) + : kBurstExecutor(std::move(burstExecutor)), kBurstCallback(std::move(burstCallback)) { + CHECK(kBurstExecutor != nullptr); + CHECK(kBurstCallback != nullptr); +} + +nn::GeneralResult<std::vector<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>>> +Burst::MemoryCache::getCacheEntries(const std::vector<int32_t>& slots) { + std::lock_guard guard(mMutex); + NN_TRY(ensureCacheEntriesArePresentLocked(slots)); + + std::vector<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>> results; + results.reserve(slots.size()); + for (int32_t slot : slots) { + results.push_back(NN_TRY(getCacheEntryLocked(slot))); + } + + return results; +} + +nn::GeneralResult<void> Burst::MemoryCache::ensureCacheEntriesArePresentLocked( + const std::vector<int32_t>& slots) { + const auto slotIsKnown = [this](int32_t slot) + REQUIRES(mMutex) { return mCache.count(slot) > 0; }; + + // find unique unknown slots + std::vector<int32_t> unknownSlots = slots; + std::sort(unknownSlots.begin(), unknownSlots.end()); + auto unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlots.end()); + unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown); + unknownSlots.erase(unknownSlotsEnd, unknownSlots.end()); + + // quick-exit if all slots are known + if (unknownSlots.empty()) { + return {}; + } + + auto cb = neuralnetworks::utils::CallbackValue(getMemoriesCallback); + + const auto ret = kBurstCallback->getMemories(unknownSlots, cb); + HANDLE_TRANSPORT_FAILURE(ret); + + auto returnedMemories = NN_TRY(cb.take()); + + if (returnedMemories.size() != unknownSlots.size()) { + return NN_ERROR() << "Burst::MemoryCache::ensureCacheEntriesArePresentLocked: Error " + "retrieving memories -- count mismatch between requested memories (" + << unknownSlots.size() << ") and returned memories (" + << returnedMemories.size() << ")"; + } + + // add memories to unknown slots + for (size_t i = 0; i < unknownSlots.size(); ++i) { + addCacheEntryLocked(unknownSlots[i], std::move(returnedMemories[i])); + } + + return {}; +} + +nn::GeneralResult<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>> +Burst::MemoryCache::getCacheEntryLocked(int32_t slot) { + if (const auto iter = mCache.find(slot); iter != mCache.end()) { + return iter->second; + } + return NN_ERROR() << "Burst::MemoryCache::getCacheEntryLocked failed because slot " << slot + << " is not present in the cache"; +} + +void Burst::MemoryCache::addCacheEntryLocked(int32_t slot, nn::SharedMemory memory) { + auto hold = kBurstExecutor->cacheMemory(memory); + mCache.emplace(slot, std::make_pair(std::move(memory), std::move(hold))); +} + +void Burst::MemoryCache::removeCacheEntry(int32_t slot) { + std::lock_guard guard(mMutex); + mCache.erase(slot); +} + +// Burst methods + +nn::GeneralResult<sp<Burst>> Burst::create( + const sp<V1_2::IBurstCallback>& callback, + const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel, + const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel, nn::SharedBurst burstExecutor, + std::chrono::microseconds pollingTimeWindow) { + // check inputs + if (callback == nullptr || burstExecutor == nullptr) { + return NN_ERROR() << "Burst::create passed a nullptr"; + } + + // create FMQ objects + auto requestChannelReceiver = + NN_TRY(V1_2::utils::RequestChannelReceiver::create(requestChannel, pollingTimeWindow)); + auto resultChannelSender = NN_TRY(V1_2::utils::ResultChannelSender::create(resultChannel)); + + // check FMQ objects + CHECK(requestChannelReceiver != nullptr); + CHECK(resultChannelSender != nullptr); + + // make and return context + return sp<Burst>::make(PrivateConstructorTag{}, callback, std::move(requestChannelReceiver), + std::move(resultChannelSender), std::move(burstExecutor)); +} + +Burst::Burst(PrivateConstructorTag /*tag*/, const sp<V1_2::IBurstCallback>& callback, + std::unique_ptr<V1_2::utils::RequestChannelReceiver> requestChannel, + std::unique_ptr<V1_2::utils::ResultChannelSender> resultChannel, + nn::SharedBurst burstExecutor) + : mCallback(callback), + mRequestChannelReceiver(std::move(requestChannel)), + mResultChannelSender(std::move(resultChannel)), + mBurstExecutor(std::move(burstExecutor)), + mMemoryCache(mBurstExecutor, mCallback) { + // TODO: highly document the threading behavior of this class + mWorker = std::thread([this] { task(); }); +} + +Burst::~Burst() { + // set teardown flag + mTeardown = true; + mRequestChannelReceiver->invalidate(); + + // wait for task thread to end + mWorker.join(); +} + +Return<void> Burst::freeMemory(int32_t slot) { + mMemoryCache.removeCacheEntry(slot); + return Void(); +} + +void Burst::task() { + // loop until the burst object is being destroyed + while (!mTeardown) { + // receive request + auto arguments = mRequestChannelReceiver->getBlocking(); + + // if the request packet was not properly received, return a generic error and skip the + // execution + // + // if the burst is being torn down, skip the execution so the "task" function can end + if (!arguments.has_value()) { + if (!mTeardown) { + mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kTiming); + } + continue; + } + + // unpack the arguments; types are Request, std::vector<int32_t>, and V1_2::MeasureTiming, + // respectively + const auto [requestWithoutPools, slotsOfPools, measure] = std::move(arguments).value(); + + auto result = execute(requestWithoutPools, slotsOfPools, measure); + + // return result + if (result.has_value()) { + const auto& [outputShapes, timing] = result.value(); + mResultChannelSender->send(V1_0::ErrorStatus::NONE, outputShapes, timing); + } else { + const auto& [message, code, outputShapes] = result.error(); + LOG(ERROR) << "IBurst::execute failed with " << code << ": " << message; + mResultChannelSender->send(V1_2::utils::convert(code).value(), + V1_2::utils::convert(outputShapes).value(), kTiming); + } + } +} + +nn::ExecutionResult<std::pair<hidl_vec<V1_2::OutputShape>, V1_2::Timing>> Burst::execute( + const V1_0::Request& requestWithoutPools, const std::vector<int32_t>& slotsOfPools, + V1_2::MeasureTiming measure) { + NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, + "Burst getting memory, executing, and returning results"); + + // ensure executor with cache has required memory + const auto cacheEntries = NN_TRY(mMemoryCache.getCacheEntries(slotsOfPools)); + + // convert request, populating its pools + // This code performs an unvalidated convert because the request object without its pools is + // invalid because it is incomplete. Instead, the validation is performed after the memory pools + // have been added to the request. + auto canonicalRequest = NN_TRY(nn::unvalidatedConvert(requestWithoutPools)); + CHECK(canonicalRequest.pools.empty()); + std::transform(cacheEntries.begin(), cacheEntries.end(), + std::back_inserter(canonicalRequest.pools), + [](const auto& cacheEntry) { return cacheEntry.first; }); + NN_TRY(validate(canonicalRequest)); + + nn::MeasureTiming canonicalMeasure = NN_TRY(nn::convert(measure)); + + const auto [outputShapes, timing] = + NN_TRY(mBurstExecutor->execute(canonicalRequest, canonicalMeasure, {}, {})); + + return std::make_pair(NN_TRY(V1_2::utils::convert(outputShapes)), + NN_TRY(V1_2::utils::convert(timing))); +} + +} // namespace android::hardware::neuralnetworks::adapter |