summaryrefslogtreecommitdiff
path: root/neuralnetworks/utils/adapter/aidl/src/PreparedModel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'neuralnetworks/utils/adapter/aidl/src/PreparedModel.cpp')
-rw-r--r--neuralnetworks/utils/adapter/aidl/src/PreparedModel.cpp324
1 files changed, 324 insertions, 0 deletions
diff --git a/neuralnetworks/utils/adapter/aidl/src/PreparedModel.cpp b/neuralnetworks/utils/adapter/aidl/src/PreparedModel.cpp
new file mode 100644
index 0000000000..5cab62c625
--- /dev/null
+++ b/neuralnetworks/utils/adapter/aidl/src/PreparedModel.cpp
@@ -0,0 +1,324 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "PreparedModel.h"
+
+#include "Burst.h"
+#include "Execution.h"
+
+#include <aidl/android/hardware/neuralnetworks/BnFencedExecutionCallback.h>
+#include <aidl/android/hardware/neuralnetworks/BnPreparedModel.h>
+#include <aidl/android/hardware/neuralnetworks/ExecutionResult.h>
+#include <aidl/android/hardware/neuralnetworks/FencedExecutionResult.h>
+#include <aidl/android/hardware/neuralnetworks/IBurst.h>
+#include <aidl/android/hardware/neuralnetworks/Request.h>
+#include <android-base/logging.h>
+#include <android/binder_auto_utils.h>
+#include <nnapi/IExecution.h>
+#include <nnapi/IPreparedModel.h>
+#include <nnapi/Result.h>
+#include <nnapi/SharedMemory.h>
+#include <nnapi/Types.h>
+#include <nnapi/Validation.h>
+#include <nnapi/hal/aidl/Conversions.h>
+#include <nnapi/hal/aidl/Utils.h>
+
+#include <memory>
+#include <utility>
+#include <vector>
+
+namespace aidl::android::hardware::neuralnetworks::adapter {
+namespace {
+
+class FencedExecutionCallback : public BnFencedExecutionCallback {
+ public:
+ FencedExecutionCallback(nn::ExecuteFencedInfoCallback callback)
+ : kCallback(std::move(callback)) {}
+
+ ndk::ScopedAStatus getExecutionInfo(Timing* timingLaunched, Timing* timingFenced,
+ ErrorStatus* errorStatus) override {
+ const auto result = kCallback();
+ if (result.ok()) {
+ const auto& [nnTimingLaunched, nnTimingFenced] = result.value();
+ *timingLaunched = utils::convert(nnTimingLaunched).value();
+ *timingFenced = utils::convert(nnTimingFenced).value();
+ *errorStatus = ErrorStatus::NONE;
+ } else {
+ constexpr auto kNoTiming = Timing{.timeOnDeviceNs = -1, .timeInDriverNs = -1};
+ const auto& [message, code] = result.error();
+ LOG(ERROR) << "getExecutionInfo failed with " << code << ": " << message;
+ const auto aidlStatus = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
+ *timingLaunched = kNoTiming;
+ *timingFenced = kNoTiming;
+ *errorStatus = aidlStatus;
+ }
+ return ndk::ScopedAStatus::ok();
+ }
+
+ private:
+ const nn::ExecuteFencedInfoCallback kCallback;
+};
+
+template <typename Type>
+auto convertInput(const Type& object) -> decltype(nn::convert(std::declval<Type>())) {
+ auto result = nn::convert(object);
+ if (!result.has_value()) {
+ result.error().code = nn::ErrorStatus::INVALID_ARGUMENT;
+ }
+ return result;
+}
+
+nn::GeneralResult<std::vector<nn::SyncFence>> convertSyncFences(
+ const std::vector<ndk::ScopedFileDescriptor>& waitFor) {
+ auto handles = NN_TRY(convertInput(waitFor));
+
+ constexpr auto valid = [](const nn::SharedHandle& handle) {
+ return handle != nullptr && handle->ok();
+ };
+ if (!std::all_of(handles.begin(), handles.end(), valid)) {
+ return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid sync fence";
+ }
+
+ std::vector<nn::SyncFence> syncFences;
+ syncFences.reserve(waitFor.size());
+ for (auto& handle : handles) {
+ syncFences.push_back(nn::SyncFence::create(std::move(handle)).value());
+ }
+ return syncFences;
+}
+
+nn::Duration makeDuration(int64_t durationNs) {
+ return nn::Duration(std::chrono::nanoseconds(durationNs));
+}
+
+nn::GeneralResult<nn::OptionalDuration> makeOptionalDuration(int64_t durationNs) {
+ if (durationNs < -1) {
+ return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid duration " << durationNs;
+ }
+ return durationNs < 0 ? nn::OptionalDuration{} : makeDuration(durationNs);
+}
+
+nn::GeneralResult<nn::OptionalTimePoint> makeOptionalTimePoint(int64_t durationNs) {
+ if (durationNs < -1) {
+ return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid time point " << durationNs;
+ }
+ return durationNs < 0 ? nn::OptionalTimePoint{} : nn::TimePoint(makeDuration(durationNs));
+}
+
+nn::ExecutionResult<ExecutionResult> executeSynchronously(const nn::IPreparedModel& preparedModel,
+ const Request& request,
+ bool measureTiming, int64_t deadlineNs,
+ int64_t loopTimeoutDurationNs) {
+ const auto nnRequest = NN_TRY(convertInput(request));
+ const auto nnMeasureTiming = measureTiming ? nn::MeasureTiming::YES : nn::MeasureTiming::NO;
+ const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs));
+ const auto nnLoopTimeoutDuration = NN_TRY(makeOptionalDuration(loopTimeoutDurationNs));
+
+ const auto result =
+ preparedModel.execute(nnRequest, nnMeasureTiming, nnDeadline, nnLoopTimeoutDuration);
+
+ if (!result.ok() && result.error().code == nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
+ const auto& [message, code, outputShapes] = result.error();
+ LOG(ERROR) << "executeSynchronously failed with " << code << ": " << message;
+ return ExecutionResult{.outputSufficientSize = false,
+ .outputShapes = utils::convert(outputShapes).value(),
+ .timing = {.timeInDriverNs = -1, .timeOnDeviceNs = -1}};
+ }
+
+ const auto& [outputShapes, timing] = NN_TRY(result);
+ return ExecutionResult{.outputSufficientSize = true,
+ .outputShapes = utils::convert(outputShapes).value(),
+ .timing = utils::convert(timing).value()};
+}
+
+nn::GeneralResult<FencedExecutionResult> executeFenced(
+ const nn::IPreparedModel& preparedModel, const Request& request,
+ const std::vector<ndk::ScopedFileDescriptor>& waitFor, bool measureTiming,
+ int64_t deadlineNs, int64_t loopTimeoutDurationNs, int64_t durationNs) {
+ const auto nnRequest = NN_TRY(convertInput(request));
+ const auto nnWaitFor = NN_TRY(convertSyncFences(waitFor));
+ const auto nnMeasureTiming = measureTiming ? nn::MeasureTiming::YES : nn::MeasureTiming::NO;
+ const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs));
+ const auto nnLoopTimeoutDuration = NN_TRY(makeOptionalDuration(loopTimeoutDurationNs));
+ const auto nnDuration = NN_TRY(makeOptionalDuration(durationNs));
+
+ auto [syncFence, executeFencedInfoCallback] = NN_TRY(preparedModel.executeFenced(
+ nnRequest, nnWaitFor, nnMeasureTiming, nnDeadline, nnLoopTimeoutDuration, nnDuration));
+
+ ndk::ScopedFileDescriptor fileDescriptor;
+ if (syncFence.hasFd()) {
+ auto uniqueFd = NN_TRY(nn::dupFd(syncFence.getFd()));
+ fileDescriptor = ndk::ScopedFileDescriptor(uniqueFd.release());
+ }
+
+ return FencedExecutionResult{.callback = ndk::SharedRefBase::make<FencedExecutionCallback>(
+ std::move(executeFencedInfoCallback)),
+ .syncFence = std::move(fileDescriptor)};
+}
+
+nn::GeneralResult<nn::SharedExecution> createReusableExecution(
+ const nn::IPreparedModel& preparedModel, const Request& request, bool measureTiming,
+ int64_t loopTimeoutDurationNs) {
+ const auto nnRequest = NN_TRY(convertInput(request));
+ const auto nnMeasureTiming = measureTiming ? nn::MeasureTiming::YES : nn::MeasureTiming::NO;
+ const auto nnLoopTimeoutDuration = NN_TRY(makeOptionalDuration(loopTimeoutDurationNs));
+ return preparedModel.createReusableExecution(nnRequest, nnMeasureTiming, nnLoopTimeoutDuration);
+}
+
+nn::ExecutionResult<ExecutionResult> executeSynchronously(const nn::IExecution& execution,
+ int64_t deadlineNs) {
+ const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs));
+
+ const auto result = execution.compute(nnDeadline);
+
+ if (!result.ok() && result.error().code == nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
+ const auto& [message, code, outputShapes] = result.error();
+ LOG(ERROR) << "executeSynchronously failed with " << code << ": " << message;
+ return ExecutionResult{.outputSufficientSize = false,
+ .outputShapes = utils::convert(outputShapes).value(),
+ .timing = {.timeInDriverNs = -1, .timeOnDeviceNs = -1}};
+ }
+
+ const auto& [outputShapes, timing] = NN_TRY(result);
+ return ExecutionResult{.outputSufficientSize = true,
+ .outputShapes = utils::convert(outputShapes).value(),
+ .timing = utils::convert(timing).value()};
+}
+
+nn::GeneralResult<FencedExecutionResult> executeFenced(
+ const nn::IExecution& execution, const std::vector<ndk::ScopedFileDescriptor>& waitFor,
+ int64_t deadlineNs, int64_t durationNs) {
+ const auto nnWaitFor = NN_TRY(convertSyncFences(waitFor));
+ const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs));
+ const auto nnDuration = NN_TRY(makeOptionalDuration(durationNs));
+
+ auto [syncFence, executeFencedInfoCallback] =
+ NN_TRY(execution.computeFenced(nnWaitFor, nnDeadline, nnDuration));
+
+ ndk::ScopedFileDescriptor fileDescriptor;
+ if (syncFence.hasFd()) {
+ auto uniqueFd = NN_TRY(nn::dupFd(syncFence.getFd()));
+ fileDescriptor = ndk::ScopedFileDescriptor(uniqueFd.release());
+ }
+
+ return FencedExecutionResult{.callback = ndk::SharedRefBase::make<FencedExecutionCallback>(
+ std::move(executeFencedInfoCallback)),
+ .syncFence = std::move(fileDescriptor)};
+}
+
+} // namespace
+
+PreparedModel::PreparedModel(nn::SharedPreparedModel preparedModel)
+ : kPreparedModel(std::move(preparedModel)) {
+ CHECK(kPreparedModel != nullptr);
+}
+
+ndk::ScopedAStatus PreparedModel::executeSynchronously(const Request& request, bool measureTiming,
+ int64_t deadlineNs,
+ int64_t loopTimeoutDurationNs,
+ ExecutionResult* executionResult) {
+ auto result = adapter::executeSynchronously(*kPreparedModel, request, measureTiming, deadlineNs,
+ loopTimeoutDurationNs);
+ if (!result.has_value()) {
+ const auto& [message, code, _] = result.error();
+ const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
+ return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
+ static_cast<int32_t>(aidlCode), message.c_str());
+ }
+ *executionResult = std::move(result).value();
+ return ndk::ScopedAStatus::ok();
+}
+
+ndk::ScopedAStatus PreparedModel::executeFenced(
+ const Request& request, const std::vector<ndk::ScopedFileDescriptor>& waitFor,
+ bool measureTiming, int64_t deadlineNs, int64_t loopTimeoutDurationNs, int64_t durationNs,
+ FencedExecutionResult* executionResult) {
+ auto result = adapter::executeFenced(*kPreparedModel, request, waitFor, measureTiming,
+ deadlineNs, loopTimeoutDurationNs, durationNs);
+ if (!result.has_value()) {
+ const auto& [message, code] = result.error();
+ const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
+ return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
+ static_cast<int32_t>(aidlCode), message.c_str());
+ }
+ *executionResult = std::move(result).value();
+ return ndk::ScopedAStatus::ok();
+}
+
+ndk::ScopedAStatus PreparedModel::configureExecutionBurst(std::shared_ptr<IBurst>* burst) {
+ auto result = kPreparedModel->configureExecutionBurst();
+ if (!result.has_value()) {
+ const auto& [message, code] = result.error();
+ const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
+ return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
+ static_cast<int32_t>(aidlCode), message.c_str());
+ }
+ *burst = ndk::SharedRefBase::make<Burst>(std::move(result).value());
+ return ndk::ScopedAStatus::ok();
+}
+
+nn::SharedPreparedModel PreparedModel::getUnderlyingPreparedModel() const {
+ return kPreparedModel;
+}
+
+ndk::ScopedAStatus PreparedModel::createReusableExecution(const Request& request,
+ bool measureTiming,
+ int64_t loopTimeoutDurationNs,
+ std::shared_ptr<IExecution>* execution) {
+ auto result = adapter::createReusableExecution(*kPreparedModel, request, measureTiming,
+ loopTimeoutDurationNs);
+ if (!result.has_value()) {
+ const auto& [message, code] = result.error();
+ const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
+ return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
+ static_cast<int32_t>(aidlCode), message.c_str());
+ }
+ *execution = ndk::SharedRefBase::make<Execution>(std::move(result).value());
+ return ndk::ScopedAStatus::ok();
+}
+
+Execution::Execution(nn::SharedExecution execution) : kExecution(std::move(execution)) {
+ CHECK(kExecution != nullptr);
+}
+
+ndk::ScopedAStatus Execution::executeSynchronously(int64_t deadlineNs,
+ ExecutionResult* executionResult) {
+ auto result = adapter::executeSynchronously(*kExecution, deadlineNs);
+ if (!result.has_value()) {
+ const auto& [message, code, _] = result.error();
+ const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
+ return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
+ static_cast<int32_t>(aidlCode), message.c_str());
+ }
+ *executionResult = std::move(result).value();
+ return ndk::ScopedAStatus::ok();
+}
+
+ndk::ScopedAStatus Execution::executeFenced(const std::vector<ndk::ScopedFileDescriptor>& waitFor,
+ int64_t deadlineNs, int64_t durationNs,
+ FencedExecutionResult* executionResult) {
+ auto result = adapter::executeFenced(*kExecution, waitFor, deadlineNs, durationNs);
+ if (!result.has_value()) {
+ const auto& [message, code] = result.error();
+ const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
+ return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
+ static_cast<int32_t>(aidlCode), message.c_str());
+ }
+ *executionResult = std::move(result).value();
+ return ndk::ScopedAStatus::ok();
+}
+
+} // namespace aidl::android::hardware::neuralnetworks::adapter