summaryrefslogtreecommitdiff
path: root/identity/support/include/cppbor/cppbor.h
diff options
context:
space:
mode:
Diffstat (limited to 'identity/support/include/cppbor/cppbor.h')
-rw-r--r--identity/support/include/cppbor/cppbor.h827
1 files changed, 827 insertions, 0 deletions
diff --git a/identity/support/include/cppbor/cppbor.h b/identity/support/include/cppbor/cppbor.h
new file mode 100644
index 0000000000..a755db13a2
--- /dev/null
+++ b/identity/support/include/cppbor/cppbor.h
@@ -0,0 +1,827 @@
+/*
+ * Copyright (c) 2019, The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#pragma once
+
+#include <cstdint>
+#include <functional>
+#include <iterator>
+#include <memory>
+#include <numeric>
+#include <string>
+#include <vector>
+
+namespace cppbor {
+
+enum MajorType : uint8_t {
+ UINT = 0 << 5,
+ NINT = 1 << 5,
+ BSTR = 2 << 5,
+ TSTR = 3 << 5,
+ ARRAY = 4 << 5,
+ MAP = 5 << 5,
+ SEMANTIC = 6 << 5,
+ SIMPLE = 7 << 5,
+};
+
+enum SimpleType {
+ BOOLEAN,
+ NULL_T, // Only two supported, as yet.
+};
+
+enum SpecialAddlInfoValues : uint8_t {
+ FALSE = 20,
+ TRUE = 21,
+ NULL_V = 22,
+ ONE_BYTE_LENGTH = 24,
+ TWO_BYTE_LENGTH = 25,
+ FOUR_BYTE_LENGTH = 26,
+ EIGHT_BYTE_LENGTH = 27,
+};
+
+class Item;
+class Uint;
+class Nint;
+class Int;
+class Tstr;
+class Bstr;
+class Simple;
+class Bool;
+class Array;
+class Map;
+class Null;
+class Semantic;
+
+/**
+ * Returns the size of a CBOR header that contains the additional info value addlInfo.
+ */
+size_t headerSize(uint64_t addlInfo);
+
+/**
+ * Encodes a CBOR header with the specified type and additional info into the range [pos, end).
+ * Returns a pointer to one past the last byte written, or nullptr if there isn't sufficient space
+ * to write the header.
+ */
+uint8_t* encodeHeader(MajorType type, uint64_t addlInfo, uint8_t* pos, const uint8_t* end);
+
+using EncodeCallback = std::function<void(uint8_t)>;
+
+/**
+ * Encodes a CBOR header with the specified type and additional info, passing each byte in turn to
+ * encodeCallback.
+ */
+void encodeHeader(MajorType type, uint64_t addlInfo, EncodeCallback encodeCallback);
+
+/**
+ * Encodes a CBOR header with the specified type and additional info, writing each byte to the
+ * provided OutputIterator.
+ */
+template <typename OutputIterator,
+ typename = std::enable_if_t<std::is_base_of_v<
+ std::output_iterator_tag,
+ typename std::iterator_traits<OutputIterator>::iterator_category>>>
+void encodeHeader(MajorType type, uint64_t addlInfo, OutputIterator iter) {
+ return encodeHeader(type, addlInfo, [&](uint8_t v) { *iter++ = v; });
+}
+
+/**
+ * Item represents a CBOR-encodeable data item. Item is an abstract interface with a set of virtual
+ * methods that allow encoding of the item or conversion to the appropriate derived type.
+ */
+class Item {
+ public:
+ virtual ~Item() {}
+
+ /**
+ * Returns the CBOR type of the item.
+ */
+ virtual MajorType type() const = 0;
+
+ // These methods safely downcast an Item to the appropriate subclass.
+ virtual const Int* asInt() const { return nullptr; }
+ virtual const Uint* asUint() const { return nullptr; }
+ virtual const Nint* asNint() const { return nullptr; }
+ virtual const Tstr* asTstr() const { return nullptr; }
+ virtual const Bstr* asBstr() const { return nullptr; }
+ virtual const Simple* asSimple() const { return nullptr; }
+ virtual const Map* asMap() const { return nullptr; }
+ virtual const Array* asArray() const { return nullptr; }
+ virtual const Semantic* asSemantic() const { return nullptr; }
+
+ /**
+ * Returns true if this is a "compound" item, i.e. one that contains one or more other items.
+ */
+ virtual bool isCompound() const { return false; }
+
+ bool operator==(const Item& other) const&;
+ bool operator!=(const Item& other) const& { return !(*this == other); }
+
+ /**
+ * Returns the number of bytes required to encode this Item into CBOR. Note that if this is a
+ * complex Item, calling this method will require walking the whole tree.
+ */
+ virtual size_t encodedSize() const = 0;
+
+ /**
+ * Encodes the Item into buffer referenced by range [*pos, end). Returns a pointer to one past
+ * the last position written. Returns nullptr if there isn't enough space to encode.
+ */
+ virtual uint8_t* encode(uint8_t* pos, const uint8_t* end) const = 0;
+
+ /**
+ * Encodes the Item by passing each encoded byte to encodeCallback.
+ */
+ virtual void encode(EncodeCallback encodeCallback) const = 0;
+
+ /**
+ * Clones the Item
+ */
+ virtual std::unique_ptr<Item> clone() const = 0;
+
+ /**
+ * Encodes the Item into the provided OutputIterator.
+ */
+ template <typename OutputIterator,
+ typename = typename std::iterator_traits<OutputIterator>::iterator_category>
+ void encode(OutputIterator i) const {
+ return encode([&](uint8_t v) { *i++ = v; });
+ }
+
+ /**
+ * Encodes the Item into a new std::vector<uint8_t>.
+ */
+ std::vector<uint8_t> encode() const {
+ std::vector<uint8_t> retval;
+ retval.reserve(encodedSize());
+ encode(std::back_inserter(retval));
+ return retval;
+ }
+
+ /**
+ * Encodes the Item into a new std::string.
+ */
+ std::string toString() const {
+ std::string retval;
+ retval.reserve(encodedSize());
+ encode([&](uint8_t v) { retval.push_back(v); });
+ return retval;
+ }
+
+ /**
+ * Encodes only the header of the Item.
+ */
+ inline uint8_t* encodeHeader(uint64_t addlInfo, uint8_t* pos, const uint8_t* end) const {
+ return ::cppbor::encodeHeader(type(), addlInfo, pos, end);
+ }
+
+ /**
+ * Encodes only the header of the Item.
+ */
+ inline void encodeHeader(uint64_t addlInfo, EncodeCallback encodeCallback) const {
+ ::cppbor::encodeHeader(type(), addlInfo, encodeCallback);
+ }
+};
+
+/**
+ * Int is an abstraction that allows Uint and Nint objects to be manipulated without caring about
+ * the sign.
+ */
+class Int : public Item {
+ public:
+ bool operator==(const Int& other) const& { return value() == other.value(); }
+
+ virtual int64_t value() const = 0;
+
+ const Int* asInt() const override { return this; }
+};
+
+/**
+ * Uint is a concrete Item that implements CBOR major type 0.
+ */
+class Uint : public Int {
+ public:
+ static constexpr MajorType kMajorType = UINT;
+
+ explicit Uint(uint64_t v) : mValue(v) {}
+
+ bool operator==(const Uint& other) const& { return mValue == other.mValue; }
+
+ MajorType type() const override { return kMajorType; }
+ const Uint* asUint() const override { return this; }
+
+ size_t encodedSize() const override { return headerSize(mValue); }
+
+ int64_t value() const override { return mValue; }
+ uint64_t unsignedValue() const { return mValue; }
+
+ using Item::encode;
+ uint8_t* encode(uint8_t* pos, const uint8_t* end) const override {
+ return encodeHeader(mValue, pos, end);
+ }
+ void encode(EncodeCallback encodeCallback) const override {
+ encodeHeader(mValue, encodeCallback);
+ }
+
+ virtual std::unique_ptr<Item> clone() const override { return std::make_unique<Uint>(mValue); }
+
+ private:
+ uint64_t mValue;
+};
+
+/**
+ * Nint is a concrete Item that implements CBOR major type 1.
+
+ * Note that it is incapable of expressing the full range of major type 1 values, becaue it can only
+ * express values that fall into the range [std::numeric_limits<int64_t>::min(), -1]. It cannot
+ * express values in the range [std::numeric_limits<int64_t>::min() - 1,
+ * -std::numeric_limits<uint64_t>::max()].
+ */
+class Nint : public Int {
+ public:
+ static constexpr MajorType kMajorType = NINT;
+
+ explicit Nint(int64_t v);
+
+ bool operator==(const Nint& other) const& { return mValue == other.mValue; }
+
+ MajorType type() const override { return kMajorType; }
+ const Nint* asNint() const override { return this; }
+ size_t encodedSize() const override { return headerSize(addlInfo()); }
+
+ int64_t value() const override { return mValue; }
+
+ using Item::encode;
+ uint8_t* encode(uint8_t* pos, const uint8_t* end) const override {
+ return encodeHeader(addlInfo(), pos, end);
+ }
+ void encode(EncodeCallback encodeCallback) const override {
+ encodeHeader(addlInfo(), encodeCallback);
+ }
+
+ virtual std::unique_ptr<Item> clone() const override { return std::make_unique<Nint>(mValue); }
+
+ private:
+ uint64_t addlInfo() const { return -1ll - mValue; }
+
+ int64_t mValue;
+};
+
+/**
+ * Bstr is a concrete Item that implements major type 2.
+ */
+class Bstr : public Item {
+ public:
+ static constexpr MajorType kMajorType = BSTR;
+
+ // Construct from a vector
+ explicit Bstr(std::vector<uint8_t> v) : mValue(std::move(v)) {}
+
+ // Construct from a string
+ explicit Bstr(const std::string& v)
+ : mValue(reinterpret_cast<const uint8_t*>(v.data()),
+ reinterpret_cast<const uint8_t*>(v.data()) + v.size()) {}
+
+ // Construct from a pointer/size pair
+ explicit Bstr(const std::pair<const uint8_t*, size_t>& buf)
+ : mValue(buf.first, buf.first + buf.second) {}
+
+ // Construct from a pair of iterators
+ template <typename I1, typename I2,
+ typename = typename std::iterator_traits<I1>::iterator_category,
+ typename = typename std::iterator_traits<I2>::iterator_category>
+ explicit Bstr(const std::pair<I1, I2>& pair) : mValue(pair.first, pair.second) {}
+
+ // Construct from an iterator range.
+ template <typename I1, typename I2,
+ typename = typename std::iterator_traits<I1>::iterator_category,
+ typename = typename std::iterator_traits<I2>::iterator_category>
+ Bstr(I1 begin, I2 end) : mValue(begin, end) {}
+
+ bool operator==(const Bstr& other) const& { return mValue == other.mValue; }
+
+ MajorType type() const override { return kMajorType; }
+ const Bstr* asBstr() const override { return this; }
+ size_t encodedSize() const override { return headerSize(mValue.size()) + mValue.size(); }
+ using Item::encode;
+ uint8_t* encode(uint8_t* pos, const uint8_t* end) const override;
+ void encode(EncodeCallback encodeCallback) const override {
+ encodeHeader(mValue.size(), encodeCallback);
+ encodeValue(encodeCallback);
+ }
+
+ const std::vector<uint8_t>& value() const { return mValue; }
+
+ virtual std::unique_ptr<Item> clone() const override { return std::make_unique<Bstr>(mValue); }
+
+ private:
+ void encodeValue(EncodeCallback encodeCallback) const;
+
+ std::vector<uint8_t> mValue;
+};
+
+/**
+ * Bstr is a concrete Item that implements major type 3.
+ */
+class Tstr : public Item {
+ public:
+ static constexpr MajorType kMajorType = TSTR;
+
+ // Construct from a string
+ explicit Tstr(std::string v) : mValue(std::move(v)) {}
+
+ // Construct from a string_view
+ explicit Tstr(const std::string_view& v) : mValue(v) {}
+
+ // Construct from a C string
+ explicit Tstr(const char* v) : mValue(std::string(v)) {}
+
+ // Construct from a pair of iterators
+ template <typename I1, typename I2,
+ typename = typename std::iterator_traits<I1>::iterator_category,
+ typename = typename std::iterator_traits<I2>::iterator_category>
+ explicit Tstr(const std::pair<I1, I2>& pair) : mValue(pair.first, pair.second) {}
+
+ // Construct from an iterator range
+ template <typename I1, typename I2,
+ typename = typename std::iterator_traits<I1>::iterator_category,
+ typename = typename std::iterator_traits<I2>::iterator_category>
+ Tstr(I1 begin, I2 end) : mValue(begin, end) {}
+
+ bool operator==(const Tstr& other) const& { return mValue == other.mValue; }
+
+ MajorType type() const override { return kMajorType; }
+ const Tstr* asTstr() const override { return this; }
+ size_t encodedSize() const override { return headerSize(mValue.size()) + mValue.size(); }
+ using Item::encode;
+ uint8_t* encode(uint8_t* pos, const uint8_t* end) const override;
+ void encode(EncodeCallback encodeCallback) const override {
+ encodeHeader(mValue.size(), encodeCallback);
+ encodeValue(encodeCallback);
+ }
+
+ const std::string& value() const { return mValue; }
+
+ virtual std::unique_ptr<Item> clone() const override { return std::make_unique<Tstr>(mValue); }
+
+ private:
+ void encodeValue(EncodeCallback encodeCallback) const;
+
+ std::string mValue;
+};
+
+/**
+ * CompoundItem is an abstract Item that provides common functionality for Items that contain other
+ * items, i.e. Arrays (CBOR type 4) and Maps (CBOR type 5).
+ */
+class CompoundItem : public Item {
+ public:
+ bool operator==(const CompoundItem& other) const&;
+
+ virtual size_t size() const { return mEntries.size(); }
+
+ bool isCompound() const override { return true; }
+
+ size_t encodedSize() const override {
+ return std::accumulate(mEntries.begin(), mEntries.end(), headerSize(size()),
+ [](size_t sum, auto& entry) { return sum + entry->encodedSize(); });
+ }
+
+ using Item::encode; // Make base versions visible.
+ uint8_t* encode(uint8_t* pos, const uint8_t* end) const override;
+ void encode(EncodeCallback encodeCallback) const override;
+
+ virtual uint64_t addlInfo() const = 0;
+
+ protected:
+ std::vector<std::unique_ptr<Item>> mEntries;
+};
+
+/*
+ * Array is a concrete Item that implements CBOR major type 4.
+ *
+ * Note that Arrays are not copyable. This is because copying them is expensive and making them
+ * move-only ensures that they're never copied accidentally. If you actually want to copy an Array,
+ * use the clone() method.
+ */
+class Array : public CompoundItem {
+ public:
+ static constexpr MajorType kMajorType = ARRAY;
+
+ Array() = default;
+ Array(const Array& other) = delete;
+ Array(Array&&) = default;
+ Array& operator=(const Array&) = delete;
+ Array& operator=(Array&&) = default;
+
+ /**
+ * Construct an Array from a variable number of arguments of different types. See
+ * details::makeItem below for details on what types may be provided. In general, this accepts
+ * all of the types you'd expect and doest the things you'd expect (integral values are addes as
+ * Uint or Nint, std::string and char* are added as Tstr, bools are added as Bool, etc.).
+ */
+ template <typename... Args, typename Enable>
+ Array(Args&&... args);
+
+ /**
+ * Append a single element to the Array, of any compatible type.
+ */
+ template <typename T>
+ Array& add(T&& v) &;
+ template <typename T>
+ Array&& add(T&& v) &&;
+
+ const std::unique_ptr<Item>& operator[](size_t index) const { return mEntries[index]; }
+ std::unique_ptr<Item>& operator[](size_t index) { return mEntries[index]; }
+
+ MajorType type() const override { return kMajorType; }
+ const Array* asArray() const override { return this; }
+
+ virtual std::unique_ptr<Item> clone() const override;
+
+ uint64_t addlInfo() const override { return size(); }
+};
+
+/*
+ * Map is a concrete Item that implements CBOR major type 5.
+ *
+ * Note that Maps are not copyable. This is because copying them is expensive and making them
+ * move-only ensures that they're never copied accidentally. If you actually want to copy a
+ * Map, use the clone() method.
+ */
+class Map : public CompoundItem {
+ public:
+ static constexpr MajorType kMajorType = MAP;
+
+ Map() = default;
+ Map(const Map& other) = delete;
+ Map(Map&&) = default;
+ Map& operator=(const Map& other) = delete;
+ Map& operator=(Map&&) = default;
+
+ /**
+ * Construct a Map from a variable number of arguments of different types. An even number of
+ * arguments must be provided (this is verified statically). See details::makeItem below for
+ * details on what types may be provided. In general, this accepts all of the types you'd
+ * expect and doest the things you'd expect (integral values are addes as Uint or Nint,
+ * std::string and char* are added as Tstr, bools are added as Bool, etc.).
+ */
+ template <typename... Args, typename Enable>
+ Map(Args&&... args);
+
+ /**
+ * Append a key/value pair to the Map, of any compatible types.
+ */
+ template <typename Key, typename Value>
+ Map& add(Key&& key, Value&& value) &;
+ template <typename Key, typename Value>
+ Map&& add(Key&& key, Value&& value) &&;
+
+ size_t size() const override {
+ assertInvariant();
+ return mEntries.size() / 2;
+ }
+
+ template <typename Key, typename Enable>
+ std::pair<std::unique_ptr<Item>&, bool> get(Key key);
+
+ std::pair<const std::unique_ptr<Item>&, const std::unique_ptr<Item>&> operator[](
+ size_t index) const {
+ assertInvariant();
+ return {mEntries[index * 2], mEntries[index * 2 + 1]};
+ }
+
+ std::pair<std::unique_ptr<Item>&, std::unique_ptr<Item>&> operator[](size_t index) {
+ assertInvariant();
+ return {mEntries[index * 2], mEntries[index * 2 + 1]};
+ }
+
+ MajorType type() const override { return kMajorType; }
+ const Map* asMap() const override { return this; }
+
+ virtual std::unique_ptr<Item> clone() const override;
+
+ uint64_t addlInfo() const override { return size(); }
+
+ private:
+ void assertInvariant() const;
+};
+
+class Semantic : public CompoundItem {
+ public:
+ static constexpr MajorType kMajorType = SEMANTIC;
+
+ template <typename T>
+ explicit Semantic(uint64_t value, T&& child);
+
+ Semantic(const Semantic& other) = delete;
+ Semantic(Semantic&&) = default;
+ Semantic& operator=(const Semantic& other) = delete;
+ Semantic& operator=(Semantic&&) = default;
+
+ size_t size() const override {
+ assertInvariant();
+ return 1;
+ }
+
+ size_t encodedSize() const override {
+ return std::accumulate(mEntries.begin(), mEntries.end(), headerSize(mValue),
+ [](size_t sum, auto& entry) { return sum + entry->encodedSize(); });
+ }
+
+ MajorType type() const override { return kMajorType; }
+ const Semantic* asSemantic() const override { return this; }
+
+ const std::unique_ptr<Item>& child() const {
+ assertInvariant();
+ return mEntries[0];
+ }
+
+ std::unique_ptr<Item>& child() {
+ assertInvariant();
+ return mEntries[0];
+ }
+
+ uint64_t value() const { return mValue; }
+
+ uint64_t addlInfo() const override { return value(); }
+
+ virtual std::unique_ptr<Item> clone() const override {
+ assertInvariant();
+ return std::make_unique<Semantic>(mValue, mEntries[0]->clone());
+ }
+
+ protected:
+ Semantic() = default;
+ Semantic(uint64_t value) : mValue(value) {}
+ uint64_t mValue;
+
+ private:
+ void assertInvariant() const;
+};
+
+/**
+ * Simple is abstract Item that implements CBOR major type 7. It is intended to be subclassed to
+ * create concrete Simple types. At present only Bool is provided.
+ */
+class Simple : public Item {
+ public:
+ static constexpr MajorType kMajorType = SIMPLE;
+
+ bool operator==(const Simple& other) const&;
+
+ virtual SimpleType simpleType() const = 0;
+ MajorType type() const override { return kMajorType; }
+
+ const Simple* asSimple() const override { return this; }
+
+ virtual const Bool* asBool() const { return nullptr; };
+ virtual const Null* asNull() const { return nullptr; };
+};
+
+/**
+ * Bool is a concrete type that implements CBOR major type 7, with additional item values for TRUE
+ * and FALSE.
+ */
+class Bool : public Simple {
+ public:
+ static constexpr SimpleType kSimpleType = BOOLEAN;
+
+ explicit Bool(bool v) : mValue(v) {}
+
+ bool operator==(const Bool& other) const& { return mValue == other.mValue; }
+
+ SimpleType simpleType() const override { return kSimpleType; }
+ const Bool* asBool() const override { return this; }
+
+ size_t encodedSize() const override { return 1; }
+
+ using Item::encode;
+ uint8_t* encode(uint8_t* pos, const uint8_t* end) const override {
+ return encodeHeader(mValue ? TRUE : FALSE, pos, end);
+ }
+ void encode(EncodeCallback encodeCallback) const override {
+ encodeHeader(mValue ? TRUE : FALSE, encodeCallback);
+ }
+
+ bool value() const { return mValue; }
+
+ virtual std::unique_ptr<Item> clone() const override { return std::make_unique<Bool>(mValue); }
+
+ private:
+ bool mValue;
+};
+
+/**
+ * Null is a concrete type that implements CBOR major type 7, with additional item value for NULL
+ */
+class Null : public Simple {
+ public:
+ static constexpr SimpleType kSimpleType = NULL_T;
+
+ explicit Null() {}
+
+ SimpleType simpleType() const override { return kSimpleType; }
+ const Null* asNull() const override { return this; }
+
+ size_t encodedSize() const override { return 1; }
+
+ using Item::encode;
+ uint8_t* encode(uint8_t* pos, const uint8_t* end) const override {
+ return encodeHeader(NULL_V, pos, end);
+ }
+ void encode(EncodeCallback encodeCallback) const override {
+ encodeHeader(NULL_V, encodeCallback);
+ }
+
+ virtual std::unique_ptr<Item> clone() const override { return std::make_unique<Null>(); }
+};
+
+template <typename T>
+std::unique_ptr<T> downcastItem(std::unique_ptr<Item>&& v) {
+ static_assert(std::is_base_of_v<Item, T> && !std::is_abstract_v<T>,
+ "returned type is not an Item or is an abstract class");
+ if (v && T::kMajorType == v->type()) {
+ if constexpr (std::is_base_of_v<Simple, T>) {
+ if (T::kSimpleType != v->asSimple()->simpleType()) {
+ return nullptr;
+ }
+ }
+ return std::unique_ptr<T>(static_cast<T*>(v.release()));
+ } else {
+ return nullptr;
+ }
+}
+
+/**
+ * Details. Mostly you shouldn't have to look below, except perhaps at the docstring for makeItem.
+ */
+namespace details {
+
+template <typename T, typename V, typename Enable = void>
+struct is_iterator_pair_over : public std::false_type {};
+
+template <typename I1, typename I2, typename V>
+struct is_iterator_pair_over<
+ std::pair<I1, I2>, V,
+ typename std::enable_if_t<std::is_same_v<V, typename std::iterator_traits<I1>::value_type>>>
+ : public std::true_type {};
+
+template <typename T, typename V, typename Enable = void>
+struct is_unique_ptr_of_subclass_of_v : public std::false_type {};
+
+template <typename T, typename P>
+struct is_unique_ptr_of_subclass_of_v<T, std::unique_ptr<P>,
+ typename std::enable_if_t<std::is_base_of_v<T, P>>>
+ : public std::true_type {};
+
+/* check if type is one of std::string (1), std::string_view (2), null-terminated char* (3) or pair
+ * of iterators (4)*/
+template <typename T, typename Enable = void>
+struct is_text_type_v : public std::false_type {};
+
+template <typename T>
+struct is_text_type_v<
+ T, typename std::enable_if_t<
+ /* case 1 */ //
+ std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>, std::string>
+ /* case 2 */ //
+ || std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>, std::string_view>
+ /* case 3 */ //
+ || std::is_same_v<std::remove_cv_t<std::decay_t<T>>, char*> //
+ || std::is_same_v<std::remove_cv_t<std::decay_t<T>>, const char*>
+ /* case 4 */
+ || details::is_iterator_pair_over<T, char>::value>> : public std::true_type {};
+
+/**
+ * Construct a unique_ptr<Item> from many argument types. Accepts:
+ *
+ * (a) booleans;
+ * (b) integers, all sizes and signs;
+ * (c) text strings, as defined by is_text_type_v above;
+ * (d) byte strings, as std::vector<uint8_t>(d1), pair of iterators (d2) or pair<uint8_t*, size_T>
+ * (d3); and
+ * (e) Item subclass instances, including Array and Map. Items may be provided by naked pointer
+ * (e1), unique_ptr (e2), reference (e3) or value (e3). If provided by reference or value, will
+ * be moved if possible. If provided by pointer, ownership is taken.
+ * (f) null pointer;
+ */
+template <typename T>
+std::unique_ptr<Item> makeItem(T v) {
+ Item* p = nullptr;
+ if constexpr (/* case a */ std::is_same_v<T, bool>) {
+ p = new Bool(v);
+ } else if constexpr (/* case b */ std::is_integral_v<T>) { // b
+ if (v < 0) {
+ p = new Nint(v);
+ } else {
+ p = new Uint(static_cast<uint64_t>(v));
+ }
+ } else if constexpr (/* case c */ //
+ details::is_text_type_v<T>::value) {
+ p = new Tstr(v);
+ } else if constexpr (/* case d1 */ //
+ std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>,
+ std::vector<uint8_t>>
+ /* case d2 */ //
+ || details::is_iterator_pair_over<T, uint8_t>::value
+ /* case d3 */ //
+ || std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>,
+ std::pair<uint8_t*, size_t>>) {
+ p = new Bstr(v);
+ } else if constexpr (/* case e1 */ //
+ std::is_pointer_v<T> &&
+ std::is_base_of_v<Item, std::remove_pointer_t<T>>) {
+ p = v;
+ } else if constexpr (/* case e2 */ //
+ details::is_unique_ptr_of_subclass_of_v<Item, T>::value) {
+ p = v.release();
+ } else if constexpr (/* case e3 */ //
+ std::is_base_of_v<Item, T>) {
+ p = new T(std::move(v));
+ } else if constexpr (/* case f */ std::is_null_pointer_v<T>) {
+ p = new Null();
+ } else {
+ // It's odd that this can't be static_assert(false), since it shouldn't be evaluated if one
+ // of the above ifs matches. But static_assert(false) always triggers.
+ static_assert(std::is_same_v<T, bool>, "makeItem called with unsupported type");
+ }
+ return std::unique_ptr<Item>(p);
+}
+
+} // namespace details
+
+template <typename... Args,
+ /* Prevent use as copy ctor */ typename = std::enable_if_t<
+ (sizeof...(Args)) != 1 ||
+ !(std::is_same_v<Array, std::remove_cv_t<std::remove_reference_t<Args>>> || ...)>>
+Array::Array(Args&&... args) {
+ mEntries.reserve(sizeof...(args));
+ (mEntries.push_back(details::makeItem(std::forward<Args>(args))), ...);
+}
+
+template <typename T>
+Array& Array::add(T&& v) & {
+ mEntries.push_back(details::makeItem(std::forward<T>(v)));
+ return *this;
+}
+
+template <typename T>
+Array&& Array::add(T&& v) && {
+ mEntries.push_back(details::makeItem(std::forward<T>(v)));
+ return std::move(*this);
+}
+
+template <typename... Args,
+ /* Prevent use as copy ctor */ typename = std::enable_if_t<(sizeof...(Args)) != 1>>
+Map::Map(Args&&... args) {
+ static_assert((sizeof...(Args)) % 2 == 0, "Map must have an even number of entries");
+ mEntries.reserve(sizeof...(args));
+ (mEntries.push_back(details::makeItem(std::forward<Args>(args))), ...);
+}
+
+template <typename Key, typename Value>
+Map& Map::add(Key&& key, Value&& value) & {
+ mEntries.push_back(details::makeItem(std::forward<Key>(key)));
+ mEntries.push_back(details::makeItem(std::forward<Value>(value)));
+ return *this;
+}
+
+template <typename Key, typename Value>
+Map&& Map::add(Key&& key, Value&& value) && {
+ this->add(std::forward<Key>(key), std::forward<Value>(value));
+ return std::move(*this);
+}
+
+template <typename Key, typename = std::enable_if_t<std::is_integral_v<Key> ||
+ details::is_text_type_v<Key>::value>>
+std::pair<std::unique_ptr<Item>&, bool> Map::get(Key key) {
+ assertInvariant();
+ auto keyItem = details::makeItem(key);
+ for (size_t i = 0; i < mEntries.size(); i += 2) {
+ if (*keyItem == *mEntries[i]) {
+ return {mEntries[i + 1], true};
+ }
+ }
+ return {keyItem, false};
+}
+
+template <typename T>
+Semantic::Semantic(uint64_t value, T&& child) : mValue(value) {
+ mEntries.reserve(1);
+ mEntries.push_back(details::makeItem(std::forward<T>(child)));
+}
+
+} // namespace cppbor