diff options
author | Haamed Gheibi <haamed@google.com> | 2022-02-04 13:47:26 -0800 |
---|---|---|
committer | Haamed Gheibi <haamed@google.com> | 2022-02-04 13:55:47 -0800 |
commit | f99b35c293439db0b7436b47b939eb8c7bf21b51 (patch) | |
tree | 6cd9b0719554809447c845616317cca5409b93ae /neuralnetworks/utils/adapter/aidl/src/Device.cpp | |
parent | a028272dee9220e6810cbdcfb2328c34f8afe4c2 (diff) | |
parent | 332dead340bb196c6ba3f6978e8fb53966c74bf7 (diff) |
Merge TP1A.220120.003
Change-Id: Ie5eba313ee102e452f5f96942ed2f3a7bb4e8f01
Diffstat (limited to 'neuralnetworks/utils/adapter/aidl/src/Device.cpp')
-rw-r--r-- | neuralnetworks/utils/adapter/aidl/src/Device.cpp | 304 |
1 files changed, 304 insertions, 0 deletions
diff --git a/neuralnetworks/utils/adapter/aidl/src/Device.cpp b/neuralnetworks/utils/adapter/aidl/src/Device.cpp new file mode 100644 index 0000000000..763be7f3fa --- /dev/null +++ b/neuralnetworks/utils/adapter/aidl/src/Device.cpp @@ -0,0 +1,304 @@ +/* + * Copyright (C) 2021 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "Device.h" + +#include "Adapter.h" +#include "Buffer.h" +#include "PreparedModel.h" + +#include <aidl/android/hardware/neuralnetworks/BnDevice.h> +#include <aidl/android/hardware/neuralnetworks/BufferDesc.h> +#include <aidl/android/hardware/neuralnetworks/BufferRole.h> +#include <aidl/android/hardware/neuralnetworks/DeviceBuffer.h> +#include <aidl/android/hardware/neuralnetworks/DeviceType.h> +#include <aidl/android/hardware/neuralnetworks/ErrorStatus.h> +#include <aidl/android/hardware/neuralnetworks/ExecutionPreference.h> +#include <aidl/android/hardware/neuralnetworks/Extension.h> +#include <aidl/android/hardware/neuralnetworks/IPreparedModelCallback.h> +#include <aidl/android/hardware/neuralnetworks/IPreparedModelParcel.h> +#include <aidl/android/hardware/neuralnetworks/Model.h> +#include <aidl/android/hardware/neuralnetworks/NumberOfCacheFiles.h> +#include <aidl/android/hardware/neuralnetworks/Priority.h> +#include <android-base/logging.h> +#include <android/binder_auto_utils.h> +#include <android/binder_interface_utils.h> +#include <nnapi/IDevice.h> +#include <nnapi/Result.h> +#include <nnapi/TypeUtils.h> +#include <nnapi/Types.h> +#include <nnapi/hal/aidl/Conversions.h> + +#include <chrono> +#include <memory> +#include <string> +#include <vector> + +namespace aidl::android::hardware::neuralnetworks::adapter { +namespace { + +template <typename Type> +auto convertInput(const Type& object) -> decltype(nn::convert(std::declval<Type>())) { + auto result = nn::convert(object); + if (!result.has_value()) { + result.error().code = nn::ErrorStatus::INVALID_ARGUMENT; + } + return result; +} + +nn::Duration makeDuration(int64_t durationNs) { + return nn::Duration(std::chrono::nanoseconds(durationNs)); +} + +nn::GeneralResult<nn::OptionalTimePoint> makeOptionalTimePoint(int64_t durationNs) { + if (durationNs < -1) { + return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid time point " << durationNs; + } + return durationNs < 0 ? nn::OptionalTimePoint{} : nn::TimePoint(makeDuration(durationNs)); +} + +nn::GeneralResult<nn::CacheToken> convertCacheToken(const std::vector<uint8_t>& token) { + nn::CacheToken nnToken; + if (token.size() != nnToken.size()) { + return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid token"; + } + std::copy(token.begin(), token.end(), nnToken.begin()); + return nnToken; +} + +nn::GeneralResult<nn::SharedPreparedModel> downcast(const IPreparedModelParcel& preparedModel) { + if (preparedModel.preparedModel == nullptr) { + return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "preparedModel is nullptr"; + } + if (preparedModel.preparedModel->isRemote()) { + return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Cannot convert remote models"; + } + + // This static_cast is safe because adapter::PreparedModel is the only class that implements + // the IPreparedModel interface in the adapter service code. + const auto* casted = static_cast<const PreparedModel*>(preparedModel.preparedModel.get()); + return casted->getUnderlyingPreparedModel(); +} + +nn::GeneralResult<std::vector<nn::SharedPreparedModel>> downcastAll( + const std::vector<IPreparedModelParcel>& preparedModels) { + std::vector<nn::SharedPreparedModel> canonical; + canonical.reserve(preparedModels.size()); + for (const auto& preparedModel : preparedModels) { + canonical.push_back(NN_TRY(downcast(preparedModel))); + } + return canonical; +} + +nn::GeneralResult<DeviceBuffer> allocate(const nn::IDevice& device, const BufferDesc& desc, + const std::vector<IPreparedModelParcel>& preparedModels, + const std::vector<BufferRole>& inputRoles, + const std::vector<BufferRole>& outputRoles) { + auto nnDesc = NN_TRY(convertInput(desc)); + auto nnPreparedModels = NN_TRY(downcastAll(preparedModels)); + auto nnInputRoles = NN_TRY(convertInput(inputRoles)); + auto nnOutputRoles = NN_TRY(convertInput(outputRoles)); + + auto buffer = NN_TRY(device.allocate(nnDesc, nnPreparedModels, nnInputRoles, nnOutputRoles)); + CHECK(buffer != nullptr); + + const nn::Request::MemoryDomainToken token = buffer->getToken(); + auto aidlBuffer = ndk::SharedRefBase::make<Buffer>(std::move(buffer)); + return DeviceBuffer{.buffer = std::move(aidlBuffer), .token = static_cast<int32_t>(token)}; +} + +nn::GeneralResult<std::vector<bool>> getSupportedOperations(const nn::IDevice& device, + const Model& model) { + const auto nnModel = NN_TRY(convertInput(model)); + return device.getSupportedOperations(nnModel); +} + +using PrepareModelResult = nn::GeneralResult<nn::SharedPreparedModel>; + +std::shared_ptr<PreparedModel> adaptPreparedModel(nn::SharedPreparedModel preparedModel) { + if (preparedModel == nullptr) { + return nullptr; + } + return ndk::SharedRefBase::make<PreparedModel>(std::move(preparedModel)); +} + +void notify(IPreparedModelCallback* callback, PrepareModelResult result) { + if (!result.has_value()) { + const auto& [message, status] = result.error(); + LOG(ERROR) << message; + const auto aidlCode = utils::convert(status).value_or(ErrorStatus::GENERAL_FAILURE); + callback->notify(aidlCode, nullptr); + } else { + auto preparedModel = std::move(result).value(); + auto aidlPreparedModel = adaptPreparedModel(std::move(preparedModel)); + callback->notify(ErrorStatus::NONE, std::move(aidlPreparedModel)); + } +} + +nn::GeneralResult<void> prepareModel(const nn::SharedDevice& device, const Executor& executor, + const Model& model, ExecutionPreference preference, + Priority priority, int64_t deadlineNs, + const std::vector<ndk::ScopedFileDescriptor>& modelCache, + const std::vector<ndk::ScopedFileDescriptor>& dataCache, + const std::vector<uint8_t>& token, + const std::shared_ptr<IPreparedModelCallback>& callback) { + if (callback.get() == nullptr) { + return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid callback"; + } + + auto nnModel = NN_TRY(convertInput(model)); + const auto nnPreference = NN_TRY(convertInput(preference)); + const auto nnPriority = NN_TRY(convertInput(priority)); + const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs)); + auto nnModelCache = NN_TRY(convertInput(modelCache)); + auto nnDataCache = NN_TRY(convertInput(dataCache)); + const auto nnToken = NN_TRY(convertCacheToken(token)); + + Task task = [device, nnModel = std::move(nnModel), nnPreference, nnPriority, nnDeadline, + nnModelCache = std::move(nnModelCache), nnDataCache = std::move(nnDataCache), + nnToken, callback] { + auto result = device->prepareModel(nnModel, nnPreference, nnPriority, nnDeadline, + nnModelCache, nnDataCache, nnToken); + notify(callback.get(), std::move(result)); + }; + executor(std::move(task), nnDeadline); + + return {}; +} + +nn::GeneralResult<void> prepareModelFromCache( + const nn::SharedDevice& device, const Executor& executor, int64_t deadlineNs, + const std::vector<ndk::ScopedFileDescriptor>& modelCache, + const std::vector<ndk::ScopedFileDescriptor>& dataCache, const std::vector<uint8_t>& token, + const std::shared_ptr<IPreparedModelCallback>& callback) { + if (callback.get() == nullptr) { + return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid callback"; + } + + const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs)); + auto nnModelCache = NN_TRY(convertInput(modelCache)); + auto nnDataCache = NN_TRY(convertInput(dataCache)); + const auto nnToken = NN_TRY(convertCacheToken(token)); + + auto task = [device, nnDeadline, nnModelCache = std::move(nnModelCache), + nnDataCache = std::move(nnDataCache), nnToken, callback] { + auto result = device->prepareModelFromCache(nnDeadline, nnModelCache, nnDataCache, nnToken); + notify(callback.get(), std::move(result)); + }; + executor(std::move(task), nnDeadline); + + return {}; +} + +} // namespace + +Device::Device(::android::nn::SharedDevice device, Executor executor) + : kDevice(std::move(device)), kExecutor(std::move(executor)) { + CHECK(kDevice != nullptr); + CHECK(kExecutor != nullptr); +} + +ndk::ScopedAStatus Device::allocate(const BufferDesc& desc, + const std::vector<IPreparedModelParcel>& preparedModels, + const std::vector<BufferRole>& inputRoles, + const std::vector<BufferRole>& outputRoles, + DeviceBuffer* buffer) { + auto result = adapter::allocate(*kDevice, desc, preparedModels, inputRoles, outputRoles); + if (!result.has_value()) { + const auto& [message, code] = result.error(); + const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE); + return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage( + static_cast<int32_t>(aidlCode), message.c_str()); + } + *buffer = std::move(result).value(); + return ndk::ScopedAStatus::ok(); +} + +ndk::ScopedAStatus Device::getCapabilities(Capabilities* capabilities) { + *capabilities = utils::convert(kDevice->getCapabilities()).value(); + return ndk::ScopedAStatus::ok(); +} + +ndk::ScopedAStatus Device::getNumberOfCacheFilesNeeded(NumberOfCacheFiles* numberOfCacheFiles) { + const auto [numModelCache, numDataCache] = kDevice->getNumberOfCacheFilesNeeded(); + *numberOfCacheFiles = NumberOfCacheFiles{.numModelCache = static_cast<int32_t>(numModelCache), + .numDataCache = static_cast<int32_t>(numDataCache)}; + return ndk::ScopedAStatus::ok(); +} + +ndk::ScopedAStatus Device::getSupportedExtensions(std::vector<Extension>* extensions) { + *extensions = utils::convert(kDevice->getSupportedExtensions()).value(); + return ndk::ScopedAStatus::ok(); +} + +ndk::ScopedAStatus Device::getSupportedOperations(const Model& model, + std::vector<bool>* supported) { + auto result = adapter::getSupportedOperations(*kDevice, model); + if (!result.has_value()) { + const auto& [message, code] = result.error(); + const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE); + return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage( + static_cast<int32_t>(aidlCode), message.c_str()); + } + *supported = std::move(result).value(); + return ndk::ScopedAStatus::ok(); +} + +ndk::ScopedAStatus Device::getType(DeviceType* deviceType) { + *deviceType = utils::convert(kDevice->getType()).value(); + return ndk::ScopedAStatus::ok(); +} + +ndk::ScopedAStatus Device::getVersionString(std::string* version) { + *version = kDevice->getVersionString(); + return ndk::ScopedAStatus::ok(); +} + +ndk::ScopedAStatus Device::prepareModel(const Model& model, ExecutionPreference preference, + Priority priority, int64_t deadlineNs, + const std::vector<ndk::ScopedFileDescriptor>& modelCache, + const std::vector<ndk::ScopedFileDescriptor>& dataCache, + const std::vector<uint8_t>& token, + const std::shared_ptr<IPreparedModelCallback>& callback) { + const auto result = adapter::prepareModel(kDevice, kExecutor, model, preference, priority, + deadlineNs, modelCache, dataCache, token, callback); + if (!result.has_value()) { + const auto& [message, code] = result.error(); + const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE); + callback->notify(aidlCode, nullptr); + return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage( + static_cast<int32_t>(aidlCode), message.c_str()); + } + return ndk::ScopedAStatus::ok(); +} + +ndk::ScopedAStatus Device::prepareModelFromCache( + int64_t deadlineNs, const std::vector<ndk::ScopedFileDescriptor>& modelCache, + const std::vector<ndk::ScopedFileDescriptor>& dataCache, const std::vector<uint8_t>& token, + const std::shared_ptr<IPreparedModelCallback>& callback) { + const auto result = adapter::prepareModelFromCache(kDevice, kExecutor, deadlineNs, modelCache, + dataCache, token, callback); + if (!result.has_value()) { + const auto& [message, code] = result.error(); + const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE); + callback->notify(aidlCode, nullptr); + return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage( + static_cast<int32_t>(aidlCode), message.c_str()); + } + return ndk::ScopedAStatus::ok(); +} + +} // namespace aidl::android::hardware::neuralnetworks::adapter |