summaryrefslogtreecommitdiff
path: root/libs/ui/tests/FlattenableHelpers_test.cpp
blob: 44e20b504dc319919b6e8979d0c609957d0f1352 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/*
 * Copyright 2020 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "FlattenableHelpersTest"

#include <ui/FlattenableHelpers.h>

#include <gtest/gtest.h>
#include <utils/Flattenable.h>
#include <cstdint>
#include <memory>
#include <optional>
#include <string>
#include <vector>

namespace android {

namespace {

struct TestLightFlattenable : LightFlattenable<TestLightFlattenable> {
    std::unique_ptr<int32_t> ptr;

    bool isFixedSize() const { return true; }
    size_t getFlattenedSize() const { return sizeof(int32_t); }

    status_t flatten(void* buffer, size_t size) const {
        FlattenableUtils::write(buffer, size, *ptr);
        return OK;
    }

    status_t unflatten(void const* buffer, size_t size) {
        int32_t value;
        FlattenableUtils::read(buffer, size, value);
        ptr = std::make_unique<int32_t>(value);
        return OK;
    }
};

class FlattenableHelpersTest : public testing::Test {
public:
    template <class T>
    void testWriteThenRead(const T& value, size_t bufferSize) {
        std::vector<int8_t> buffer(bufferSize);
        auto rawBuffer = reinterpret_cast<void*>(buffer.data());
        size_t size = buffer.size();
        ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, value));

        auto rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
        size = buffer.size();
        T valueRead;
        ASSERT_EQ(OK, FlattenableHelpers::unflatten(&rawReadBuffer, &size, &valueRead));
        EXPECT_EQ(value, valueRead);
    }

    template <class T>
    void testTriviallyCopyable(const T& value) {
        testWriteThenRead(value, sizeof(T));
    }

    template <class T>
    void testWriteThenRead(const T& value) {
        testWriteThenRead(value, FlattenableHelpers::getFlattenedSize(value));
    }
};

TEST_F(FlattenableHelpersTest, TriviallyCopyable) {
    testTriviallyCopyable(42);
    testTriviallyCopyable(1LL << 63);
    testTriviallyCopyable(false);
    testTriviallyCopyable(true);
    testTriviallyCopyable(std::optional<int>());
    testTriviallyCopyable(std::optional<int>(4));
}

TEST_F(FlattenableHelpersTest, String) {
    testWriteThenRead(std::string("Android"));
    testWriteThenRead(std::string());
}

TEST_F(FlattenableHelpersTest, Vector) {
    testWriteThenRead(std::vector<int>({1, 2, 3}));
    testWriteThenRead(std::vector<int>());
}

TEST_F(FlattenableHelpersTest, OptionalOfLightFlattenable) {
    std::vector<size_t> buffer;
    constexpr int kInternalValue = 16;
    {
        std::optional<TestLightFlattenable> value =
                TestLightFlattenable{.ptr = std::make_unique<int32_t>(kInternalValue)};
        buffer.assign(FlattenableHelpers::getFlattenedSize(value), 0);
        void* rawBuffer = reinterpret_cast<void*>(buffer.data());
        size_t size = buffer.size();
        ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, value));
    }

    const void* rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
    size_t size = buffer.size();
    std::optional<TestLightFlattenable> valueRead;
    ASSERT_EQ(OK, FlattenableHelpers::unflatten(&rawReadBuffer, &size, &valueRead));
    ASSERT_TRUE(valueRead.has_value());
    EXPECT_EQ(kInternalValue, *valueRead->ptr);
}

TEST_F(FlattenableHelpersTest, NullOptionalOfLightFlattenable) {
    std::vector<size_t> buffer;
    {
        std::optional<TestLightFlattenable> value;
        buffer.assign(FlattenableHelpers::getFlattenedSize(value), 0);
        void* rawBuffer = reinterpret_cast<void*>(buffer.data());
        size_t size = buffer.size();
        ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, value));
    }

    const void* rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
    size_t size = buffer.size();
    std::optional<TestLightFlattenable> valueRead;
    ASSERT_EQ(OK, FlattenableHelpers::unflatten(&rawReadBuffer, &size, &valueRead));
    ASSERT_FALSE(valueRead.has_value());
}

// If a struct is both trivially copyable and light flattenable we should treat it
// as LigthFlattenable.
TEST_F(FlattenableHelpersTest, TriviallyCopyableAndLightFlattenableIsFlattenedAsLightFlattenable) {
    static constexpr int32_t kSizeTag = 1234567;
    static constexpr int32_t kFlattenTag = 987654;
    static constexpr int32_t kUnflattenTag = 5926582;

    struct LightFlattenableAndTriviallyCopyable
          : LightFlattenable<LightFlattenableAndTriviallyCopyable> {
        int32_t value;

        bool isFixedSize() const { return true; }
        size_t getFlattenedSize() const { return kSizeTag; }

        status_t flatten(void* buffer, size_t size) const {
            FlattenableUtils::write(buffer, size, kFlattenTag);
            return OK;
        }

        status_t unflatten(void const*, size_t) {
            value = kUnflattenTag;
            return OK;
        }
    };

    {
        // Verify that getFlattenedSize uses the LightFlattenable overload
        LightFlattenableAndTriviallyCopyable foo;
        EXPECT_EQ(kSizeTag, FlattenableHelpers::getFlattenedSize(foo));
    }

    {
        // Verify that flatten uses the LightFlattenable overload
        std::vector<int8_t> buffer(sizeof(int32_t));
        auto rawBuffer = reinterpret_cast<void*>(buffer.data());
        size_t size = buffer.size();
        LightFlattenableAndTriviallyCopyable foo;
        ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, foo));

        auto rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
        int32_t value;
        FlattenableHelpers::unflatten(&rawReadBuffer, &size, &value);
        EXPECT_EQ(kFlattenTag, value);
    }

    {
        // Verify that unflatten uses the LightFlattenable overload
        std::vector<int8_t> buffer(sizeof(int32_t));
        auto rawBuffer = reinterpret_cast<void*>(buffer.data());
        size_t size = buffer.size();
        int32_t value = 4;
        ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, value));

        auto rawReadBuffer = reinterpret_cast<const void*>(buffer.data());

        LightFlattenableAndTriviallyCopyable foo;
        FlattenableHelpers::unflatten(&rawReadBuffer, &size, &foo);
        EXPECT_EQ(kUnflattenTag, foo.value);
    }
}

} // namespace
} // namespace android