summaryrefslogtreecommitdiff
path: root/libs/hwui/renderthread/VulkanManager.cpp
blob: f96b1f89792165795d6a75c8fd22e3e27b28f4f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "VulkanManager.h"

#include "Properties.h"
#include "RenderThread.h"
#include "renderstate/RenderState.h"
#include "utils/FatVector.h"

#include <GrBackendSurface.h>
#include <GrContext.h>
#include <GrTypes.h>
#include <GrTypes.h>
#include <vk/GrVkExtensions.h>
#include <vk/GrVkTypes.h>

namespace android {
namespace uirenderer {
namespace renderthread {

#define GET_PROC(F) m##F = (PFN_vk##F)vkGetInstanceProcAddr(VK_NULL_HANDLE, "vk" #F)
#define GET_INST_PROC(F) m##F = (PFN_vk##F)vkGetInstanceProcAddr(mInstance, "vk" #F)
#define GET_DEV_PROC(F) m##F = (PFN_vk##F)vkGetDeviceProcAddr(mDevice, "vk" #F)

VulkanManager::VulkanManager(RenderThread& thread) : mRenderThread(thread) {}

void VulkanManager::destroy() {
    mRenderThread.setGrContext(nullptr);

    // We don't need to explicitly free the command buffer since it automatically gets freed when we
    // delete the VkCommandPool below.
    mDummyCB = VK_NULL_HANDLE;

    if (VK_NULL_HANDLE != mCommandPool) {
        mDestroyCommandPool(mDevice, mCommandPool, nullptr);
        mCommandPool = VK_NULL_HANDLE;
    }

    if (mDevice != VK_NULL_HANDLE) {
        mDeviceWaitIdle(mDevice);
        mDestroyDevice(mDevice, nullptr);
    }

    if (mInstance != VK_NULL_HANDLE) {
        mDestroyInstance(mInstance, nullptr);
    }

    mGraphicsQueue = VK_NULL_HANDLE;
    mPresentQueue = VK_NULL_HANDLE;
    mDevice = VK_NULL_HANDLE;
    mPhysicalDevice = VK_NULL_HANDLE;
    mInstance = VK_NULL_HANDLE;
}

bool VulkanManager::setupDevice(GrVkExtensions& grExtensions, VkPhysicalDeviceFeatures2& features) {
    VkResult err;

    constexpr VkApplicationInfo app_info = {
        VK_STRUCTURE_TYPE_APPLICATION_INFO, // sType
        nullptr,                            // pNext
        "android framework",                // pApplicationName
        0,                                  // applicationVersion
        "android framework",                // pEngineName
        0,                                  // engineVerison
        VK_MAKE_VERSION(1, 1, 0),           // apiVersion
    };

    std::vector<const char*> instanceExtensions;
    {
        GET_PROC(EnumerateInstanceExtensionProperties);

        uint32_t extensionCount = 0;
        err = mEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
        if (VK_SUCCESS != err) {
            return false;
        }
        std::unique_ptr<VkExtensionProperties[]> extensions(
                new VkExtensionProperties[extensionCount]);
        err = mEnumerateInstanceExtensionProperties(nullptr, &extensionCount, extensions.get());
        if (VK_SUCCESS != err) {
            return false;
        }
        bool hasKHRSurfaceExtension = false;
        bool hasKHRAndroidSurfaceExtension = false;
        for (uint32_t i = 0; i < extensionCount; ++i) {
            instanceExtensions.push_back(extensions[i].extensionName);
            if (!strcmp(extensions[i].extensionName, VK_KHR_SURFACE_EXTENSION_NAME)) {
                hasKHRSurfaceExtension = true;
            }
            if (!strcmp(extensions[i].extensionName,VK_KHR_ANDROID_SURFACE_EXTENSION_NAME)) {
                hasKHRAndroidSurfaceExtension = true;
            }
        }
        if (!hasKHRSurfaceExtension || !hasKHRAndroidSurfaceExtension) {
            this->destroy();
            return false;
        }
    }

    const VkInstanceCreateInfo instance_create = {
        VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,    // sType
        nullptr,                                   // pNext
        0,                                         // flags
        &app_info,                                 // pApplicationInfo
        0,                                         // enabledLayerNameCount
        nullptr,                                   // ppEnabledLayerNames
        (uint32_t) instanceExtensions.size(),      // enabledExtensionNameCount
        instanceExtensions.data(),                 // ppEnabledExtensionNames
    };

    GET_PROC(CreateInstance);
    err = mCreateInstance(&instance_create, nullptr, &mInstance);
    if (err < 0) {
        this->destroy();
        return false;
    }

    GET_INST_PROC(DestroyInstance);
    GET_INST_PROC(EnumeratePhysicalDevices);
    GET_INST_PROC(GetPhysicalDeviceProperties);
    GET_INST_PROC(GetPhysicalDeviceQueueFamilyProperties);
    GET_INST_PROC(GetPhysicalDeviceFeatures2);
    GET_INST_PROC(CreateDevice);
    GET_INST_PROC(EnumerateDeviceExtensionProperties);
    GET_INST_PROC(CreateAndroidSurfaceKHR);
    GET_INST_PROC(DestroySurfaceKHR);
    GET_INST_PROC(GetPhysicalDeviceSurfaceSupportKHR);
    GET_INST_PROC(GetPhysicalDeviceSurfaceCapabilitiesKHR);
    GET_INST_PROC(GetPhysicalDeviceSurfaceFormatsKHR);
    GET_INST_PROC(GetPhysicalDeviceSurfacePresentModesKHR);

    uint32_t gpuCount;
    err = mEnumeratePhysicalDevices(mInstance, &gpuCount, nullptr);
    if (err) {
        this->destroy();
        return false;
    }
    if (!gpuCount) {
        this->destroy();
        return false;
    }
    // Just returning the first physical device instead of getting the whole array. Since there
    // should only be one device on android.
    gpuCount = 1;
    err = mEnumeratePhysicalDevices(mInstance, &gpuCount, &mPhysicalDevice);
    // VK_INCOMPLETE is returned when the count we provide is less than the total device count.
    if (err && VK_INCOMPLETE != err) {
        this->destroy();
        return false;
    }

    VkPhysicalDeviceProperties physDeviceProperties;
    mGetPhysicalDeviceProperties(mPhysicalDevice, &physDeviceProperties);
    if (physDeviceProperties.apiVersion < VK_MAKE_VERSION(1, 1, 0)) {
        this->destroy();
        return false;
    }

    // query to get the initial queue props size
    uint32_t queueCount;
    mGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount, nullptr);
    if (!queueCount) {
        this->destroy();
        return false;
    }

    // now get the actual queue props
    std::unique_ptr<VkQueueFamilyProperties[]> queueProps(new VkQueueFamilyProperties[queueCount]);
    mGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount, queueProps.get());

    // iterate to find the graphics queue
    mGraphicsQueueIndex = queueCount;
    for (uint32_t i = 0; i < queueCount; i++) {
        if (queueProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
            mGraphicsQueueIndex = i;
            break;
        }
    }
    if (mGraphicsQueueIndex == queueCount) {
        this->destroy();
        return false;
    }

    // All physical devices and queue families on Android must be capable of
    // presentation with any native window. So just use the first one.
    mPresentQueueIndex = 0;

    std::vector<const char*> deviceExtensions;
    {
        uint32_t extensionCount = 0;
        err = mEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr, &extensionCount,
                nullptr);
        if (VK_SUCCESS != err) {
            this->destroy();
            return false;
        }
        std::unique_ptr<VkExtensionProperties[]> extensions(
                new VkExtensionProperties[extensionCount]);
        err = mEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr, &extensionCount,
                extensions.get());
        if (VK_SUCCESS != err) {
            this->destroy();
            return false;
        }
        bool hasKHRSwapchainExtension = false;
        for (uint32_t i = 0; i < extensionCount; ++i) {
            deviceExtensions.push_back(extensions[i].extensionName);
            if (!strcmp(extensions[i].extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME)) {
                hasKHRSwapchainExtension = true;
            }
        }
        if (!hasKHRSwapchainExtension) {
            this->destroy();
            return false;
        }
    }

    auto getProc = [] (const char* proc_name, VkInstance instance, VkDevice device) {
        if (device != VK_NULL_HANDLE) {
            return vkGetDeviceProcAddr(device, proc_name);
        }
        return vkGetInstanceProcAddr(instance, proc_name);
    };
    grExtensions.init(getProc, mInstance, mPhysicalDevice, instanceExtensions.size(),
            instanceExtensions.data(), deviceExtensions.size(), deviceExtensions.data());

    if (!grExtensions.hasExtension(VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, 1)) {
        this->destroy();
        return false;
    }

    memset(&features, 0, sizeof(VkPhysicalDeviceFeatures2));
    features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
    features.pNext = nullptr;

    // Setup all extension feature structs we may want to use.
    void** tailPNext = &features.pNext;

    if (grExtensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2)) {
        VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT* blend;
        blend = (VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT*) malloc(
                sizeof(VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT));
        LOG_ALWAYS_FATAL_IF(!blend);
        blend->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT;
        blend->pNext = nullptr;
        *tailPNext = blend;
        tailPNext = &blend->pNext;
    }

    // query to get the physical device features
    mGetPhysicalDeviceFeatures2(mPhysicalDevice, &features);
    // this looks like it would slow things down,
    // and we can't depend on it on all platforms
    features.features.robustBufferAccess = VK_FALSE;

    float queuePriorities[1] = { 0.0 };

    const VkDeviceQueueCreateInfo queueInfo[2] = {
        {
            VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, // sType
            nullptr,                                    // pNext
            0,                                          // VkDeviceQueueCreateFlags
            mGraphicsQueueIndex,                        // queueFamilyIndex
            1,                                          // queueCount
            queuePriorities,                            // pQueuePriorities
        },
        {
            VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, // sType
            nullptr,                                    // pNext
            0,                                          // VkDeviceQueueCreateFlags
            mPresentQueueIndex,                         // queueFamilyIndex
            1,                                          // queueCount
            queuePriorities,                            // pQueuePriorities
        }
    };
    uint32_t queueInfoCount = (mPresentQueueIndex != mGraphicsQueueIndex) ? 2 : 1;

    const VkDeviceCreateInfo deviceInfo = {
        VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,    // sType
        &features,                               // pNext
        0,                                       // VkDeviceCreateFlags
        queueInfoCount,                          // queueCreateInfoCount
        queueInfo,                               // pQueueCreateInfos
        0,                                       // layerCount
        nullptr,                                 // ppEnabledLayerNames
        (uint32_t) deviceExtensions.size(),      // extensionCount
        deviceExtensions.data(),                 // ppEnabledExtensionNames
        nullptr,                                 // ppEnabledFeatures
    };

    err = mCreateDevice(mPhysicalDevice, &deviceInfo, nullptr, &mDevice);
    if (err) {
        this->destroy();
        return false;
    }

    GET_DEV_PROC(GetDeviceQueue);
    GET_DEV_PROC(DeviceWaitIdle);
    GET_DEV_PROC(DestroyDevice);
    GET_DEV_PROC(CreateSwapchainKHR);
    GET_DEV_PROC(DestroySwapchainKHR);
    GET_DEV_PROC(GetSwapchainImagesKHR);
    GET_DEV_PROC(AcquireNextImageKHR);
    GET_DEV_PROC(QueuePresentKHR);
    GET_DEV_PROC(CreateCommandPool);
    GET_DEV_PROC(DestroyCommandPool);
    GET_DEV_PROC(AllocateCommandBuffers);
    GET_DEV_PROC(FreeCommandBuffers);
    GET_DEV_PROC(ResetCommandBuffer);
    GET_DEV_PROC(BeginCommandBuffer);
    GET_DEV_PROC(EndCommandBuffer);
    GET_DEV_PROC(CmdPipelineBarrier);
    GET_DEV_PROC(GetDeviceQueue);
    GET_DEV_PROC(QueueSubmit);
    GET_DEV_PROC(QueueWaitIdle);
    GET_DEV_PROC(DeviceWaitIdle);
    GET_DEV_PROC(CreateSemaphore);
    GET_DEV_PROC(DestroySemaphore);
    GET_DEV_PROC(ImportSemaphoreFdKHR);
    GET_DEV_PROC(GetSemaphoreFdKHR);
    GET_DEV_PROC(CreateFence);
    GET_DEV_PROC(DestroyFence);
    GET_DEV_PROC(WaitForFences);
    GET_DEV_PROC(ResetFences);

    return true;
}

static void free_features_extensions_structs(const VkPhysicalDeviceFeatures2& features) {
    // All Vulkan structs that could be part of the features chain will start with the
    // structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
    // so we can get access to the pNext for the next struct.
    struct CommonVulkanHeader {
        VkStructureType sType;
        void*           pNext;
    };

    void* pNext = features.pNext;
    while (pNext) {
        void* current = pNext;
        pNext = static_cast<CommonVulkanHeader*>(current)->pNext;
        free(current);
    }
}

void VulkanManager::initialize() {
    if (mDevice != VK_NULL_HANDLE) {
        return;
    }

    GET_PROC(EnumerateInstanceVersion);
    uint32_t instanceVersion = 0;
    LOG_ALWAYS_FATAL_IF(mEnumerateInstanceVersion(&instanceVersion));
    LOG_ALWAYS_FATAL_IF(instanceVersion < VK_MAKE_VERSION(1, 1, 0));

    GrVkExtensions extensions;
    VkPhysicalDeviceFeatures2 features;
    LOG_ALWAYS_FATAL_IF(!this->setupDevice(extensions, features));

    mGetDeviceQueue(mDevice, mGraphicsQueueIndex, 0, &mGraphicsQueue);

    auto getProc = [] (const char* proc_name, VkInstance instance, VkDevice device) {
        if (device != VK_NULL_HANDLE) {
            return vkGetDeviceProcAddr(device, proc_name);
        }
        return vkGetInstanceProcAddr(instance, proc_name);
    };

    GrVkBackendContext backendContext;
    backendContext.fInstance = mInstance;
    backendContext.fPhysicalDevice = mPhysicalDevice;
    backendContext.fDevice = mDevice;
    backendContext.fQueue = mGraphicsQueue;
    backendContext.fGraphicsQueueIndex = mGraphicsQueueIndex;
    backendContext.fInstanceVersion = instanceVersion;
    backendContext.fVkExtensions = &extensions;
    backendContext.fDeviceFeatures2 = &features;
    backendContext.fGetProc = std::move(getProc);

    // create the command pool for the command buffers
    if (VK_NULL_HANDLE == mCommandPool) {
        VkCommandPoolCreateInfo commandPoolInfo;
        memset(&commandPoolInfo, 0, sizeof(VkCommandPoolCreateInfo));
        commandPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
        // this needs to be on the render queue
        commandPoolInfo.queueFamilyIndex = mGraphicsQueueIndex;
        commandPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
        SkDEBUGCODE(VkResult res =) mCreateCommandPool(mDevice, &commandPoolInfo, nullptr,
                &mCommandPool);
        SkASSERT(VK_SUCCESS == res);
    }
    LOG_ALWAYS_FATAL_IF(mCommandPool == VK_NULL_HANDLE);

    if (!setupDummyCommandBuffer()) {
        this->destroy();
        return;
    }
    LOG_ALWAYS_FATAL_IF(mDummyCB == VK_NULL_HANDLE);


    mGetDeviceQueue(mDevice, mPresentQueueIndex, 0, &mPresentQueue);

    GrContextOptions options;
    options.fDisableDistanceFieldPaths = true;
    // TODO: get a string describing the SPIR-V compiler version and use it here
    mRenderThread.cacheManager().configureContext(&options, nullptr, 0);
    sk_sp<GrContext> grContext(GrContext::MakeVulkan(backendContext, options));
    LOG_ALWAYS_FATAL_IF(!grContext.get());
    mRenderThread.setGrContext(grContext);

    free_features_extensions_structs(features);

    if (Properties::enablePartialUpdates && Properties::useBufferAge) {
        mSwapBehavior = SwapBehavior::BufferAge;
    }
}

// Returns the next BackbufferInfo to use for the next draw. The function will make sure all
// previous uses have finished before returning.
VulkanSurface::BackbufferInfo* VulkanManager::getAvailableBackbuffer(VulkanSurface* surface) {
    SkASSERT(surface->mBackbuffers);

    ++surface->mCurrentBackbufferIndex;
    if (surface->mCurrentBackbufferIndex > surface->mImageCount) {
        surface->mCurrentBackbufferIndex = 0;
    }

    VulkanSurface::BackbufferInfo* backbuffer =
            surface->mBackbuffers + surface->mCurrentBackbufferIndex;

    // Before we reuse a backbuffer, make sure its fences have all signaled so that we can safely
    // reuse its commands buffers.
    VkResult res = mWaitForFences(mDevice, 2, backbuffer->mUsageFences, true, UINT64_MAX);
    if (res != VK_SUCCESS) {
        return nullptr;
    }

    return backbuffer;
}

SkSurface* VulkanManager::getBackbufferSurface(VulkanSurface* surface) {
    VulkanSurface::BackbufferInfo* backbuffer = getAvailableBackbuffer(surface);
    SkASSERT(backbuffer);

    VkResult res;

    res = mResetFences(mDevice, 2, backbuffer->mUsageFences);
    SkASSERT(VK_SUCCESS == res);

    // The acquire will signal the attached mAcquireSemaphore. We use this to know the image has
    // finished presenting and that it is safe to begin sending new commands to the returned image.
    res = mAcquireNextImageKHR(mDevice, surface->mSwapchain, UINT64_MAX,
                               backbuffer->mAcquireSemaphore, VK_NULL_HANDLE,
                               &backbuffer->mImageIndex);

    if (VK_ERROR_SURFACE_LOST_KHR == res) {
        // need to figure out how to create a new vkSurface without the platformData*
        // maybe use attach somehow? but need a Window
        return nullptr;
    }
    if (VK_ERROR_OUT_OF_DATE_KHR == res) {
        // tear swapchain down and try again
        if (!createSwapchain(surface)) {
            return nullptr;
        }
        backbuffer = getAvailableBackbuffer(surface);
        res = mResetFences(mDevice, 2, backbuffer->mUsageFences);
        SkASSERT(VK_SUCCESS == res);

        // acquire the image
        res = mAcquireNextImageKHR(mDevice, surface->mSwapchain, UINT64_MAX,
                                   backbuffer->mAcquireSemaphore, VK_NULL_HANDLE,
                                   &backbuffer->mImageIndex);

        if (VK_SUCCESS != res) {
            return nullptr;
        }
    }

    // set up layout transfer from initial to color attachment
    VkImageLayout layout = surface->mImageInfos[backbuffer->mImageIndex].mImageLayout;
    SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout || VK_IMAGE_LAYOUT_PRESENT_SRC_KHR == layout);
    VkPipelineStageFlags srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
    VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
    VkAccessFlags srcAccessMask = 0;
    VkAccessFlags dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
                                  VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;

    VkImageMemoryBarrier imageMemoryBarrier = {
            VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,     // sType
            NULL,                                       // pNext
            srcAccessMask,                              // outputMask
            dstAccessMask,                              // inputMask
            layout,                                     // oldLayout
            VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,   // newLayout
            mPresentQueueIndex,                         // srcQueueFamilyIndex
            mGraphicsQueueIndex,       // dstQueueFamilyIndex
            surface->mImages[backbuffer->mImageIndex],  // image
            {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}     // subresourceRange
    };
    mResetCommandBuffer(backbuffer->mTransitionCmdBuffers[0], 0);

    VkCommandBufferBeginInfo info;
    memset(&info, 0, sizeof(VkCommandBufferBeginInfo));
    info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
    info.flags = 0;
    mBeginCommandBuffer(backbuffer->mTransitionCmdBuffers[0], &info);

    mCmdPipelineBarrier(backbuffer->mTransitionCmdBuffers[0], srcStageMask, dstStageMask, 0, 0,
                        nullptr, 0, nullptr, 1, &imageMemoryBarrier);

    mEndCommandBuffer(backbuffer->mTransitionCmdBuffers[0]);

    VkPipelineStageFlags waitDstStageFlags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
    // insert the layout transfer into the queue and wait on the acquire
    VkSubmitInfo submitInfo;
    memset(&submitInfo, 0, sizeof(VkSubmitInfo));
    submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submitInfo.waitSemaphoreCount = 1;
    // Wait to make sure aquire semaphore set above has signaled.
    submitInfo.pWaitSemaphores = &backbuffer->mAcquireSemaphore;
    submitInfo.pWaitDstStageMask = &waitDstStageFlags;
    submitInfo.commandBufferCount = 1;
    submitInfo.pCommandBuffers = &backbuffer->mTransitionCmdBuffers[0];
    submitInfo.signalSemaphoreCount = 0;

    // Attach first fence to submission here so we can track when the command buffer finishes.
    mQueueSubmit(mGraphicsQueue, 1, &submitInfo, backbuffer->mUsageFences[0]);

    // We need to notify Skia that we changed the layout of the wrapped VkImage
    sk_sp<SkSurface> skSurface = surface->mImageInfos[backbuffer->mImageIndex].mSurface;
    GrBackendRenderTarget backendRT = skSurface->getBackendRenderTarget(
            SkSurface::kFlushRead_BackendHandleAccess);
    if (!backendRT.isValid()) {
        SkASSERT(backendRT.isValid());
        return nullptr;
    }
    backendRT.setVkImageLayout(VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);

    surface->mBackbuffer = std::move(skSurface);
    return surface->mBackbuffer.get();
}

void VulkanManager::destroyBuffers(VulkanSurface* surface) {
    if (surface->mBackbuffers) {
        for (uint32_t i = 0; i < surface->mImageCount + 1; ++i) {
            mWaitForFences(mDevice, 2, surface->mBackbuffers[i].mUsageFences, true, UINT64_MAX);
            surface->mBackbuffers[i].mImageIndex = -1;
            mDestroySemaphore(mDevice, surface->mBackbuffers[i].mAcquireSemaphore, nullptr);
            mDestroySemaphore(mDevice, surface->mBackbuffers[i].mRenderSemaphore, nullptr);
            mFreeCommandBuffers(mDevice, mCommandPool, 2,
                    surface->mBackbuffers[i].mTransitionCmdBuffers);
            mDestroyFence(mDevice, surface->mBackbuffers[i].mUsageFences[0], 0);
            mDestroyFence(mDevice, surface->mBackbuffers[i].mUsageFences[1], 0);
        }
    }

    delete[] surface->mBackbuffers;
    surface->mBackbuffers = nullptr;
    delete[] surface->mImageInfos;
    surface->mImageInfos = nullptr;
    delete[] surface->mImages;
    surface->mImages = nullptr;
}

void VulkanManager::destroySurface(VulkanSurface* surface) {
    // Make sure all submit commands have finished before starting to destroy objects.
    if (VK_NULL_HANDLE != mPresentQueue) {
        mQueueWaitIdle(mPresentQueue);
    }
    mDeviceWaitIdle(mDevice);

    destroyBuffers(surface);

    if (VK_NULL_HANDLE != surface->mSwapchain) {
        mDestroySwapchainKHR(mDevice, surface->mSwapchain, nullptr);
        surface->mSwapchain = VK_NULL_HANDLE;
    }

    if (VK_NULL_HANDLE != surface->mVkSurface) {
        mDestroySurfaceKHR(mInstance, surface->mVkSurface, nullptr);
        surface->mVkSurface = VK_NULL_HANDLE;
    }
    delete surface;
}

void VulkanManager::createBuffers(VulkanSurface* surface, VkFormat format, VkExtent2D extent) {
    mGetSwapchainImagesKHR(mDevice, surface->mSwapchain, &surface->mImageCount, nullptr);
    SkASSERT(surface->mImageCount);
    surface->mImages = new VkImage[surface->mImageCount];
    mGetSwapchainImagesKHR(mDevice, surface->mSwapchain, &surface->mImageCount, surface->mImages);

    SkSurfaceProps props(0, kUnknown_SkPixelGeometry);

    // set up initial image layouts and create surfaces
    surface->mImageInfos = new VulkanSurface::ImageInfo[surface->mImageCount];
    for (uint32_t i = 0; i < surface->mImageCount; ++i) {
        GrVkImageInfo info;
        info.fImage = surface->mImages[i];
        info.fAlloc = GrVkAlloc();
        info.fImageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
        info.fImageTiling = VK_IMAGE_TILING_OPTIMAL;
        info.fFormat = format;
        info.fLevelCount = 1;

        GrBackendRenderTarget backendRT(extent.width, extent.height, 0, 0, info);

        VulkanSurface::ImageInfo& imageInfo = surface->mImageInfos[i];
        imageInfo.mSurface = SkSurface::MakeFromBackendRenderTarget(
                mRenderThread.getGrContext(), backendRT, kTopLeft_GrSurfaceOrigin,
                surface->mColorMode == ColorMode::WideColorGamut ? kRGBA_F16_SkColorType
                : kRGBA_8888_SkColorType, nullptr, &props);
    }

    SkASSERT(mCommandPool != VK_NULL_HANDLE);

    // set up the backbuffers
    VkSemaphoreCreateInfo semaphoreInfo;
    memset(&semaphoreInfo, 0, sizeof(VkSemaphoreCreateInfo));
    semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
    semaphoreInfo.pNext = nullptr;
    semaphoreInfo.flags = 0;
    VkCommandBufferAllocateInfo commandBuffersInfo;
    memset(&commandBuffersInfo, 0, sizeof(VkCommandBufferAllocateInfo));
    commandBuffersInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
    commandBuffersInfo.pNext = nullptr;
    commandBuffersInfo.commandPool = mCommandPool;
    commandBuffersInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
    commandBuffersInfo.commandBufferCount = 2;
    VkFenceCreateInfo fenceInfo;
    memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo));
    fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
    fenceInfo.pNext = nullptr;
    fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;

    // we create one additional backbuffer structure here, because we want to
    // give the command buffers they contain a chance to finish before we cycle back
    surface->mBackbuffers = new VulkanSurface::BackbufferInfo[surface->mImageCount + 1];
    for (uint32_t i = 0; i < surface->mImageCount + 1; ++i) {
        SkDEBUGCODE(VkResult res);
        surface->mBackbuffers[i].mImageIndex = -1;
        SkDEBUGCODE(res =) mCreateSemaphore(mDevice, &semaphoreInfo, nullptr,
                                            &surface->mBackbuffers[i].mAcquireSemaphore);
        SkDEBUGCODE(res =) mCreateSemaphore(mDevice, &semaphoreInfo, nullptr,
                                            &surface->mBackbuffers[i].mRenderSemaphore);
        SkDEBUGCODE(res =) mAllocateCommandBuffers(mDevice, &commandBuffersInfo,
                                                   surface->mBackbuffers[i].mTransitionCmdBuffers);
        SkDEBUGCODE(res =) mCreateFence(mDevice, &fenceInfo, nullptr,
                                        &surface->mBackbuffers[i].mUsageFences[0]);
        SkDEBUGCODE(res =) mCreateFence(mDevice, &fenceInfo, nullptr,
                                        &surface->mBackbuffers[i].mUsageFences[1]);
        SkASSERT(VK_SUCCESS == res);
    }
    surface->mCurrentBackbufferIndex = surface->mImageCount;
}

bool VulkanManager::createSwapchain(VulkanSurface* surface) {
    // check for capabilities
    VkSurfaceCapabilitiesKHR caps;
    VkResult res = mGetPhysicalDeviceSurfaceCapabilitiesKHR(mPhysicalDevice,
                                                            surface->mVkSurface, &caps);
    if (VK_SUCCESS != res) {
        return false;
    }

    uint32_t surfaceFormatCount;
    res = mGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, surface->mVkSurface,
                                              &surfaceFormatCount, nullptr);
    if (VK_SUCCESS != res) {
        return false;
    }

    FatVector<VkSurfaceFormatKHR, 4> surfaceFormats(surfaceFormatCount);
    res = mGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, surface->mVkSurface,
                                              &surfaceFormatCount, surfaceFormats.data());
    if (VK_SUCCESS != res) {
        return false;
    }

    uint32_t presentModeCount;
    res = mGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice,
                                                   surface->mVkSurface, &presentModeCount, nullptr);
    if (VK_SUCCESS != res) {
        return false;
    }

    FatVector<VkPresentModeKHR, VK_PRESENT_MODE_RANGE_SIZE_KHR> presentModes(presentModeCount);
    res = mGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice,
                                                   surface->mVkSurface, &presentModeCount,
                                                   presentModes.data());
    if (VK_SUCCESS != res) {
        return false;
    }

    VkExtent2D extent = caps.currentExtent;
    // clamp width; to handle currentExtent of -1 and  protect us from broken hints
    if (extent.width < caps.minImageExtent.width) {
        extent.width = caps.minImageExtent.width;
    }
    SkASSERT(extent.width <= caps.maxImageExtent.width);
    // clamp height
    if (extent.height < caps.minImageExtent.height) {
        extent.height = caps.minImageExtent.height;
    }
    SkASSERT(extent.height <= caps.maxImageExtent.height);

    uint32_t imageCount = caps.minImageCount + 2;
    if (caps.maxImageCount > 0 && imageCount > caps.maxImageCount) {
        // Application must settle for fewer images than desired:
        imageCount = caps.maxImageCount;
    }

    // Currently Skia requires the images to be color attchments and support all transfer
    // operations.
    VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
                                   VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
                                   VK_IMAGE_USAGE_TRANSFER_DST_BIT;
    SkASSERT((caps.supportedUsageFlags & usageFlags) == usageFlags);
    SkASSERT(caps.supportedTransforms & caps.currentTransform);
    SkASSERT(caps.supportedCompositeAlpha &
             (VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR | VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR));
    VkCompositeAlphaFlagBitsKHR composite_alpha =
            (caps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR)
                    ? VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR
                    : VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;

    VkFormat surfaceFormat = VK_FORMAT_R8G8B8A8_UNORM;
    VkColorSpaceKHR colorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR;
    if (surface->mColorMode == ColorMode::WideColorGamut) {
        surfaceFormat = VK_FORMAT_R16G16B16A16_SFLOAT;
        colorSpace = VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT;
    }
    bool foundSurfaceFormat = false;
    for (uint32_t i = 0; i < surfaceFormatCount; ++i) {
        if (surfaceFormat == surfaceFormats[i].format
                && colorSpace == surfaceFormats[i].colorSpace) {
            foundSurfaceFormat = true;
            break;
        }
    }

    if (!foundSurfaceFormat) {
        return false;
    }

    // FIFO is always available and will match what we do on GL so just pick that here.
    VkPresentModeKHR mode = VK_PRESENT_MODE_FIFO_KHR;

    VkSwapchainCreateInfoKHR swapchainCreateInfo;
    memset(&swapchainCreateInfo, 0, sizeof(VkSwapchainCreateInfoKHR));
    swapchainCreateInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
    swapchainCreateInfo.surface = surface->mVkSurface;
    swapchainCreateInfo.minImageCount = imageCount;
    swapchainCreateInfo.imageFormat = surfaceFormat;
    swapchainCreateInfo.imageColorSpace = colorSpace;
    swapchainCreateInfo.imageExtent = extent;
    swapchainCreateInfo.imageArrayLayers = 1;
    swapchainCreateInfo.imageUsage = usageFlags;

    uint32_t queueFamilies[] = {mGraphicsQueueIndex, mPresentQueueIndex};
    if (mGraphicsQueueIndex != mPresentQueueIndex) {
        swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
        swapchainCreateInfo.queueFamilyIndexCount = 2;
        swapchainCreateInfo.pQueueFamilyIndices = queueFamilies;
    } else {
        swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
        swapchainCreateInfo.queueFamilyIndexCount = 0;
        swapchainCreateInfo.pQueueFamilyIndices = nullptr;
    }

    swapchainCreateInfo.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
    swapchainCreateInfo.compositeAlpha = composite_alpha;
    swapchainCreateInfo.presentMode = mode;
    swapchainCreateInfo.clipped = true;
    swapchainCreateInfo.oldSwapchain = surface->mSwapchain;

    res = mCreateSwapchainKHR(mDevice, &swapchainCreateInfo, nullptr, &surface->mSwapchain);
    if (VK_SUCCESS != res) {
        return false;
    }

    // destroy the old swapchain
    if (swapchainCreateInfo.oldSwapchain != VK_NULL_HANDLE) {
        mDeviceWaitIdle(mDevice);

        destroyBuffers(surface);

        mDestroySwapchainKHR(mDevice, swapchainCreateInfo.oldSwapchain, nullptr);
    }

    createBuffers(surface, surfaceFormat, extent);

    return true;
}

VulkanSurface* VulkanManager::createSurface(ANativeWindow* window, ColorMode colorMode) {
    initialize();

    if (!window) {
        return nullptr;
    }

    VulkanSurface* surface = new VulkanSurface(colorMode);

    VkAndroidSurfaceCreateInfoKHR surfaceCreateInfo;
    memset(&surfaceCreateInfo, 0, sizeof(VkAndroidSurfaceCreateInfoKHR));
    surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR;
    surfaceCreateInfo.pNext = nullptr;
    surfaceCreateInfo.flags = 0;
    surfaceCreateInfo.window = window;

    VkResult res = mCreateAndroidSurfaceKHR(mInstance, &surfaceCreateInfo, nullptr,
            &surface->mVkSurface);
    if (VK_SUCCESS != res) {
        delete surface;
        return nullptr;
    }

    SkDEBUGCODE(VkBool32 supported; res = mGetPhysicalDeviceSurfaceSupportKHR(
            mPhysicalDevice, mPresentQueueIndex, surface->mVkSurface, &supported);
    // All physical devices and queue families on Android must be capable of
    // presentation with any native window.
    SkASSERT(VK_SUCCESS == res && supported););

    if (!createSwapchain(surface)) {
        destroySurface(surface);
        return nullptr;
    }

    return surface;
}

// Helper to know which src stage flags we need to set when transitioning to the present layout
static VkPipelineStageFlags layoutToPipelineSrcStageFlags(const VkImageLayout layout) {
    if (VK_IMAGE_LAYOUT_GENERAL == layout) {
        return VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
    } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout ||
               VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) {
        return VK_PIPELINE_STAGE_TRANSFER_BIT;
    } else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) {
        return VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
    } else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout ||
               VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL == layout) {
        return VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
    } else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) {
        return VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
    } else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) {
        return VK_PIPELINE_STAGE_HOST_BIT;
    }

    SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout);
    return VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
}

// Helper to know which src access mask we need to set when transitioning to the present layout
static VkAccessFlags layoutToSrcAccessMask(const VkImageLayout layout) {
    VkAccessFlags flags = 0;
    if (VK_IMAGE_LAYOUT_GENERAL == layout) {
        flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
                VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT |
                VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_HOST_WRITE_BIT |
                VK_ACCESS_HOST_READ_BIT;
    } else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) {
        flags = VK_ACCESS_HOST_WRITE_BIT;
    } else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) {
        flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
    } else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout) {
        flags = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
    } else if (VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) {
        flags = VK_ACCESS_TRANSFER_WRITE_BIT;
    } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout) {
        flags = VK_ACCESS_TRANSFER_READ_BIT;
    } else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) {
        flags = VK_ACCESS_SHADER_READ_BIT;
    }
    return flags;
}

void VulkanManager::swapBuffers(VulkanSurface* surface) {
    if (CC_UNLIKELY(Properties::waitForGpuCompletion)) {
        ATRACE_NAME("Finishing GPU work");
        mDeviceWaitIdle(mDevice);
    }

    SkASSERT(surface->mBackbuffers);
    VulkanSurface::BackbufferInfo* backbuffer =
            surface->mBackbuffers + surface->mCurrentBackbufferIndex;

    SkSurface* skSurface = surface->mImageInfos[backbuffer->mImageIndex].mSurface.get();
    GrBackendRenderTarget backendRT = skSurface->getBackendRenderTarget(
            SkSurface::kFlushRead_BackendHandleAccess);
    SkASSERT(backendRT.isValid());

    GrVkImageInfo imageInfo;
    SkAssertResult(backendRT.getVkImageInfo(&imageInfo));

    // Check to make sure we never change the actually wrapped image
    SkASSERT(imageInfo.fImage == surface->mImages[backbuffer->mImageIndex]);

    // We need to transition the image to VK_IMAGE_LAYOUT_PRESENT_SRC_KHR and make sure that all
    // previous work is complete for before presenting. So we first add the necessary barrier here.
    VkImageLayout layout = imageInfo.fImageLayout;
    VkPipelineStageFlags srcStageMask = layoutToPipelineSrcStageFlags(layout);
    VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
    VkAccessFlags srcAccessMask = layoutToSrcAccessMask(layout);
    VkAccessFlags dstAccessMask = 0;

    VkImageMemoryBarrier imageMemoryBarrier = {
            VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,     // sType
            NULL,                                       // pNext
            srcAccessMask,                              // outputMask
            dstAccessMask,                              // inputMask
            layout,                                     // oldLayout
            VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,            // newLayout
            mGraphicsQueueIndex,                        // srcQueueFamilyIndex
            mPresentQueueIndex,                         // dstQueueFamilyIndex
            surface->mImages[backbuffer->mImageIndex],  // image
            {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}     // subresourceRange
    };

    mResetCommandBuffer(backbuffer->mTransitionCmdBuffers[1], 0);
    VkCommandBufferBeginInfo info;
    memset(&info, 0, sizeof(VkCommandBufferBeginInfo));
    info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
    info.flags = 0;
    mBeginCommandBuffer(backbuffer->mTransitionCmdBuffers[1], &info);
    mCmdPipelineBarrier(backbuffer->mTransitionCmdBuffers[1], srcStageMask, dstStageMask, 0, 0,
                        nullptr, 0, nullptr, 1, &imageMemoryBarrier);
    mEndCommandBuffer(backbuffer->mTransitionCmdBuffers[1]);

    surface->mImageInfos[backbuffer->mImageIndex].mImageLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

    // insert the layout transfer into the queue and wait on the acquire
    VkSubmitInfo submitInfo;
    memset(&submitInfo, 0, sizeof(VkSubmitInfo));
    submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submitInfo.waitSemaphoreCount = 0;
    submitInfo.pWaitDstStageMask = 0;
    submitInfo.commandBufferCount = 1;
    submitInfo.pCommandBuffers = &backbuffer->mTransitionCmdBuffers[1];
    submitInfo.signalSemaphoreCount = 1;
    // When this command buffer finishes we will signal this semaphore so that we know it is now
    // safe to present the image to the screen.
    submitInfo.pSignalSemaphores = &backbuffer->mRenderSemaphore;

    // Attach second fence to submission here so we can track when the command buffer finishes.
    mQueueSubmit(mGraphicsQueue, 1, &submitInfo, backbuffer->mUsageFences[1]);

    // Submit present operation to present queue. We use a semaphore here to make sure all rendering
    // to the image is complete and that the layout has been change to present on the graphics
    // queue.
    const VkPresentInfoKHR presentInfo = {
            VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,  // sType
            NULL,                                // pNext
            1,                                   // waitSemaphoreCount
            &backbuffer->mRenderSemaphore,       // pWaitSemaphores
            1,                                   // swapchainCount
            &surface->mSwapchain,                // pSwapchains
            &backbuffer->mImageIndex,            // pImageIndices
            NULL                                 // pResults
    };

    mQueuePresentKHR(mPresentQueue, &presentInfo);

    surface->mBackbuffer.reset();
    surface->mImageInfos[backbuffer->mImageIndex].mLastUsed = surface->mCurrentTime;
    surface->mImageInfos[backbuffer->mImageIndex].mInvalid = false;
    surface->mCurrentTime++;
}

int VulkanManager::getAge(VulkanSurface* surface) {
    SkASSERT(surface->mBackbuffers);
    VulkanSurface::BackbufferInfo* backbuffer =
            surface->mBackbuffers + surface->mCurrentBackbufferIndex;
    if (mSwapBehavior == SwapBehavior::Discard ||
        surface->mImageInfos[backbuffer->mImageIndex].mInvalid) {
        return 0;
    }
    uint16_t lastUsed = surface->mImageInfos[backbuffer->mImageIndex].mLastUsed;
    return surface->mCurrentTime - lastUsed;
}

bool VulkanManager::setupDummyCommandBuffer() {
    if (mDummyCB != VK_NULL_HANDLE) {
        return true;
    }

    VkCommandBufferAllocateInfo commandBuffersInfo;
    memset(&commandBuffersInfo, 0, sizeof(VkCommandBufferAllocateInfo));
    commandBuffersInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
    commandBuffersInfo.pNext = nullptr;
    commandBuffersInfo.commandPool = mCommandPool;
    commandBuffersInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
    commandBuffersInfo.commandBufferCount = 1;

    VkResult err = mAllocateCommandBuffers(mDevice, &commandBuffersInfo, &mDummyCB);
    if (err != VK_SUCCESS) {
        // It is probably unnecessary to set this back to VK_NULL_HANDLE, but we set it anyways to
        // make sure the driver didn't set a value and then return a failure.
        mDummyCB = VK_NULL_HANDLE;
        return false;
    }

    VkCommandBufferBeginInfo beginInfo;
    memset(&beginInfo, 0, sizeof(VkCommandBufferBeginInfo));
    beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
    beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;

    mBeginCommandBuffer(mDummyCB, &beginInfo);
    mEndCommandBuffer(mDummyCB);
    return true;
}

status_t VulkanManager::fenceWait(sp<Fence>& fence) {
    if (!hasVkContext()) {
        ALOGE("VulkanManager::fenceWait: VkDevice not initialized");
        return INVALID_OPERATION;
    }

    // Block GPU on the fence.
    int fenceFd = fence->dup();
    if (fenceFd == -1) {
        ALOGE("VulkanManager::fenceWait: error dup'ing fence fd: %d", errno);
        return -errno;
    }

    VkSemaphoreCreateInfo semaphoreInfo;
    semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
    semaphoreInfo.pNext = nullptr;
    semaphoreInfo.flags = 0;
    VkSemaphore semaphore;
    VkResult err = mCreateSemaphore(mDevice, &semaphoreInfo, nullptr, &semaphore);
    if (VK_SUCCESS != err) {
        ALOGE("Failed to create import semaphore, err: %d", err);
        return UNKNOWN_ERROR;
    }
    VkImportSemaphoreFdInfoKHR importInfo;
    importInfo.sType = VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR;
    importInfo.pNext = nullptr;
    importInfo.semaphore = semaphore;
    importInfo.flags = VK_SEMAPHORE_IMPORT_TEMPORARY_BIT;
    importInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
    importInfo.fd = fenceFd;

    err = mImportSemaphoreFdKHR(mDevice, &importInfo);
    if (VK_SUCCESS != err) {
        ALOGE("Failed to import semaphore, err: %d", err);
        return UNKNOWN_ERROR;
    }

    LOG_ALWAYS_FATAL_IF(mDummyCB == VK_NULL_HANDLE);

    VkPipelineStageFlags waitDstStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;

    VkSubmitInfo submitInfo;
    memset(&submitInfo, 0, sizeof(VkSubmitInfo));
    submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submitInfo.waitSemaphoreCount = 1;
    // Wait to make sure aquire semaphore set above has signaled.
    submitInfo.pWaitSemaphores = &semaphore;
    submitInfo.pWaitDstStageMask = &waitDstStageFlags;
    submitInfo.commandBufferCount = 1;
    submitInfo.pCommandBuffers = &mDummyCB;
    submitInfo.signalSemaphoreCount = 0;

    mQueueSubmit(mGraphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);

    // On Android when we import a semaphore, it is imported using temporary permanence. That
    // means as soon as we queue the semaphore for a wait it reverts to its previous permanent
    // state before importing. This means it will now be in an idle state with no pending
    // signal or wait operations, so it is safe to immediately delete it.
    mDestroySemaphore(mDevice, semaphore, nullptr);
    return OK;
}

status_t VulkanManager::createReleaseFence(sp<Fence>& nativeFence) {
    if (!hasVkContext()) {
        ALOGE("VulkanManager::createReleaseFence: VkDevice not initialized");
        return INVALID_OPERATION;
    }

    VkExportSemaphoreCreateInfo exportInfo;
    exportInfo.sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO;
    exportInfo.pNext = nullptr;
    exportInfo.handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;

    VkSemaphoreCreateInfo semaphoreInfo;
    semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
    semaphoreInfo.pNext = &exportInfo;
    semaphoreInfo.flags = 0;
    VkSemaphore semaphore;
    VkResult err = mCreateSemaphore(mDevice, &semaphoreInfo, nullptr, &semaphore);
    if (VK_SUCCESS != err) {
        ALOGE("VulkanManager::createReleaseFence: Failed to create semaphore");
        return INVALID_OPERATION;
    }

    LOG_ALWAYS_FATAL_IF(mDummyCB == VK_NULL_HANDLE);

    VkSubmitInfo submitInfo;
    memset(&submitInfo, 0, sizeof(VkSubmitInfo));
    submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submitInfo.waitSemaphoreCount = 0;
    submitInfo.pWaitSemaphores = nullptr;
    submitInfo.pWaitDstStageMask = nullptr;
    submitInfo.commandBufferCount = 1;
    submitInfo.pCommandBuffers = &mDummyCB;
    submitInfo.signalSemaphoreCount = 1;
    submitInfo.pSignalSemaphores = &semaphore;

    mQueueSubmit(mGraphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);

    VkSemaphoreGetFdInfoKHR getFdInfo;
    getFdInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR;
    getFdInfo.pNext = nullptr;
    getFdInfo.semaphore = semaphore;
    getFdInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;

    int fenceFd = 0;

    err = mGetSemaphoreFdKHR(mDevice, &getFdInfo, &fenceFd);
    if (VK_SUCCESS != err) {
        ALOGE("VulkanManager::createReleaseFence: Failed to get semaphore Fd");
        return INVALID_OPERATION;
    }
    nativeFence = new Fence(fenceFd);

    // Exporting a semaphore with copy transference via vkGetSemahporeFdKHR, has the same effect of
    // destroying the semaphore and creating a new one with the same handle, and the payloads
    // ownership is move to the Fd we created. Thus the semahpore is in a state that we can delete
    // it and we don't need to wait on the command buffer we submitted to finish.
    mDestroySemaphore(mDevice, semaphore, nullptr);

    return OK;
}

} /* namespace renderthread */
} /* namespace uirenderer */
} /* namespace android */