diff options
author | Xin Li <delphij@google.com> | 2020-08-31 21:21:38 -0700 |
---|---|---|
committer | Xin Li <delphij@google.com> | 2020-08-31 21:21:38 -0700 |
commit | 628590d7ec80e10a3fc24b1c18a1afb55cca10a8 (patch) | |
tree | 4b1c3f52d86d7fb53afbe9e9438468588fa489f8 /startop/scripts/app_startup/lib/data_frame.py | |
parent | b11b8ec3aec8bb42f2c07e1c5ac7942da293baa8 (diff) | |
parent | d2d3a20624d968199353ccf6ddbae6f3ac39c9af (diff) |
Merge Android R (rvc-dev-plus-aosp-without-vendor@6692709)
Bug: 166295507
Merged-In: I3d92a6de21a938f6b352ec26dc23420c0fe02b27
Change-Id: Ifdb80563ef042738778ebb8a7581a97c4e3d96e2
Diffstat (limited to 'startop/scripts/app_startup/lib/data_frame.py')
-rw-r--r-- | startop/scripts/app_startup/lib/data_frame.py | 201 |
1 files changed, 201 insertions, 0 deletions
diff --git a/startop/scripts/app_startup/lib/data_frame.py b/startop/scripts/app_startup/lib/data_frame.py new file mode 100644 index 000000000000..20a2308637f2 --- /dev/null +++ b/startop/scripts/app_startup/lib/data_frame.py @@ -0,0 +1,201 @@ +import itertools +from typing import Dict, List + +class DataFrame: + """Table-like class for storing a 2D cells table with named columns.""" + def __init__(self, data: Dict[str, List[object]] = {}): + """ + Create a new DataFrame from a dictionary (keys = headers, + values = columns). + """ + self._headers = [i for i in data.keys()] + self._rows = [] + + row_num = 0 + + def get_data_row(idx): + r = {} + for header, header_data in data.items(): + + if not len(header_data) > idx: + continue + + r[header] = header_data[idx] + + return r + + while True: + row_dict = get_data_row(row_num) + if len(row_dict) == 0: + break + + self._append_row(row_dict.keys(), row_dict.values()) + row_num = row_num + 1 + + def concat_rows(self, other: 'DataFrame') -> None: + """ + In-place concatenate rows of other into the rows of the + current DataFrame. + + None is added in pre-existing cells if new headers + are introduced. + """ + other_datas = other._data_only() + + other_headers = other.headers + + for d in other_datas: + self._append_row(other_headers, d) + + def _append_row(self, headers: List[str], data: List[object]): + new_row = {k:v for k,v in zip(headers, data)} + self._rows.append(new_row) + + for header in headers: + if not header in self._headers: + self._headers.append(header) + + def __repr__(self): +# return repr(self._rows) + repr = "" + + header_list = self._headers_only() + + row_format = u"" + for header in header_list: + row_format = row_format + u"{:>%d}" %(len(header) + 1) + + repr = row_format.format(*header_list) + "\n" + + for v in self._data_only(): + repr = repr + row_format.format(*v) + "\n" + + return repr + + def __eq__(self, other): + if isinstance(other, self.__class__): + return self.headers == other.headers and self.data_table == other.data_table + else: + print("wrong instance", other.__class__) + return False + + @property + def headers(self) -> List[str]: + return [i for i in self._headers_only()] + + @property + def data_table(self) -> List[List[object]]: + return list(self._data_only()) + + @property + def data_table_transposed(self) -> List[List[object]]: + return list(self._transposed_data()) + + @property + def data_row_len(self) -> int: + return len(self._rows) + + def data_row_at(self, idx) -> List[object]: + """ + Return a single data row at the specified index (0th based). + + Accepts negative indices, e.g. -1 is last row. + """ + row_dict = self._rows[idx] + l = [] + + for h in self._headers_only(): + l.append(row_dict.get(h)) # Adds None in blank spots. + + return l + + def copy(self) -> 'DataFrame': + """ + Shallow copy of this DataFrame. + """ + return self.repeat(count=0) + + def repeat(self, count: int) -> 'DataFrame': + """ + Returns a new DataFrame where each row of this dataframe is repeated count times. + A repeat of a row is adjacent to other repeats of that same row. + """ + df = DataFrame() + df._headers = self._headers.copy() + + rows = [] + for row in self._rows: + for i in range(count): + rows.append(row.copy()) + + df._rows = rows + + return df + + def merge_data_columns(self, other: 'DataFrame'): + """ + Merge self and another DataFrame by adding the data from other column-wise. + For any headers that are the same, data from 'other' is preferred. + """ + for h in other._headers: + if not h in self._headers: + self._headers.append(h) + + append_rows = [] + + for self_dict, other_dict in itertools.zip_longest(self._rows, other._rows): + if not self_dict: + d = {} + append_rows.append(d) + else: + d = self_dict + + d_other = other_dict + if d_other: + for k,v in d_other.items(): + d[k] = v + + for r in append_rows: + self._rows.append(r) + + def data_row_reduce(self, fnc) -> 'DataFrame': + """ + Reduces the data row-wise by applying the fnc to each row (column-wise). + Empty cells are skipped. + + fnc(Iterable[object]) -> object + fnc is applied over every non-empty cell in that column (descending row-wise). + + Example: + DataFrame({'a':[1,2,3]}).data_row_reduce(sum) == DataFrame({'a':[6]}) + + Returns a new single-row DataFrame. + """ + df = DataFrame() + df._headers = self._headers.copy() + + def yield_by_column(header_key): + for row_dict in self._rows: + val = row_dict.get(header_key) + if val: + yield val + + new_row_dict = {} + for h in df._headers: + cell_value = fnc(yield_by_column(h)) + new_row_dict[h] = cell_value + + df._rows = [new_row_dict] + return df + + def _headers_only(self): + return self._headers + + def _data_only(self): + row_len = len(self._rows) + + for i in range(row_len): + yield self.data_row_at(i) + + def _transposed_data(self): + return zip(*self._data_only())
\ No newline at end of file |