summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJeff Brown <jeffbrown@google.com>2012-01-13 15:29:21 -0800
committerJeff Brown <jeffbrown@google.com>2012-01-17 17:07:10 -0800
commit5aa73ae58f049379a97bc86add541f27170c02a4 (patch)
treed76f786422c0a173127888d180d4257e70af3eea
parentc0cb3dc2c16883f19bf1caf652b2fcdb55a1a856 (diff)
Improve heuristics for orientation detection.
1. Except as otherwise indicated, orientation change happens once the predicted rotation has been stable for 40ms. Noise is suppressed by a low-pass filter with a 200ms time constant which seems to be about as small as is practical given the quality of the sensor data. 2. If the magnitude exceeds a threshold (excessive noise or freefall), resets the predicted orientation. Doesn't happen very often even when shaking the device. This heuristic mainly protects the detector from spurious tilt due to inaccurate determination of the gravity vector. 3. If the device was previously in a flat posture (on a table for at least 1000ms), then it must move out of that posture for at least 500ms before the next orientation change will happen. This heuristic suppresses most spurious rotations that happen while picking up the device. 4. If the device is tilted away from the user by 20 degrees within a span of 300ms, the device is said to be swinging and at least 300ms must elapse after the device stops swinging before the next orientation change will happen. This heuristic suppresses some but not all spurious rotations that happen while putting down a device. Unfortunately, this heuristic sometimes triggers a false positive when turning the device very rapidly due to accelerometer noise. The 300ms pause is a compromise so that occasional mispredicted swings don't significantly delay the rotation. Bug: 5796249 Change-Id: Id7b36c4c563e35b70d6a7ac36d04f3c3d6ea5811
-rwxr-xr-xcore/java/android/view/WindowOrientationListener.java386
-rwxr-xr-xtools/orientationplot/orientationplot.py116
2 files changed, 303 insertions, 199 deletions
diff --git a/core/java/android/view/WindowOrientationListener.java b/core/java/android/view/WindowOrientationListener.java
index c3c74a7c59c5..c28b22050519 100755
--- a/core/java/android/view/WindowOrientationListener.java
+++ b/core/java/android/view/WindowOrientationListener.java
@@ -21,6 +21,7 @@ import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
+import android.util.FloatMath;
import android.util.Log;
import android.util.Slog;
@@ -48,6 +49,8 @@ public abstract class WindowOrientationListener {
private static final boolean DEBUG = false;
private static final boolean localLOGV = DEBUG || false;
+ private static final boolean USE_GRAVITY_SENSOR = false;
+
private SensorManager mSensorManager;
private boolean mEnabled;
private int mRate;
@@ -79,7 +82,8 @@ public abstract class WindowOrientationListener {
private WindowOrientationListener(Context context, int rate) {
mSensorManager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);
mRate = rate;
- mSensor = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
+ mSensor = mSensorManager.getDefaultSensor(USE_GRAVITY_SENSOR
+ ? Sensor.TYPE_GRAVITY : Sensor.TYPE_ACCELEROMETER);
if (mSensor != null) {
// Create listener only if sensors do exist
mSensorEventListener = new SensorEventListenerImpl(this);
@@ -179,7 +183,7 @@ public abstract class WindowOrientationListener {
* cartesian space because the orientation calculations are sensitive to the
* absolute magnitude of the acceleration. In particular, there are singularities
* in the calculation as the magnitude approaches 0. By performing the low-pass
- * filtering early, we can eliminate high-frequency impulses systematically.
+ * filtering early, we can eliminate most spurious high-frequency impulses due to noise.
*
* - Convert the acceleromter vector from cartesian to spherical coordinates.
* Since we're dealing with rotation of the device, this is the sensible coordinate
@@ -204,11 +208,17 @@ public abstract class WindowOrientationListener {
* new orientation proposal.
*
* Details are explained inline.
+ *
+ * See http://en.wikipedia.org/wiki/Low-pass_filter#Discrete-time_realization for
+ * signal processing background.
*/
static final class SensorEventListenerImpl implements SensorEventListener {
// We work with all angles in degrees in this class.
private static final float RADIANS_TO_DEGREES = (float) (180 / Math.PI);
+ // Number of nanoseconds per millisecond.
+ private static final long NANOS_PER_MS = 1000000;
+
// Indices into SensorEvent.values for the accelerometer sensor.
private static final int ACCELEROMETER_DATA_X = 0;
private static final int ACCELEROMETER_DATA_Y = 1;
@@ -216,38 +226,41 @@ public abstract class WindowOrientationListener {
private final WindowOrientationListener mOrientationListener;
- /* State for first order low-pass filtering of accelerometer data.
- * See http://en.wikipedia.org/wiki/Low-pass_filter#Discrete-time_realization for
- * signal processing background.
- */
-
- private long mLastTimestamp = Long.MAX_VALUE; // in nanoseconds
- private float mLastFilteredX, mLastFilteredY, mLastFilteredZ;
-
- // The current proposal. We wait for the proposal to be stable for a
- // certain amount of time before accepting it.
- //
- // The basic idea is to ignore intermediate poses of the device while the
- // user is picking up, putting down or turning the device.
- private int mProposalRotation;
- private long mProposalAgeMS;
-
- // A historical trace of tilt and orientation angles. Used to determine whether
- // the device posture has settled down.
- private static final int HISTORY_SIZE = 20;
- private int mHistoryIndex; // index of most recent sample
- private int mHistoryLength; // length of historical trace
- private final long[] mHistoryTimestampMS = new long[HISTORY_SIZE];
- private final float[] mHistoryMagnitudes = new float[HISTORY_SIZE];
- private final int[] mHistoryTiltAngles = new int[HISTORY_SIZE];
- private final int[] mHistoryOrientationAngles = new int[HISTORY_SIZE];
+ // The minimum amount of time that a predicted rotation must be stable before it
+ // is accepted as a valid rotation proposal. This value can be quite small because
+ // the low-pass filter already suppresses most of the noise so we're really just
+ // looking for quick confirmation that the last few samples are in agreement as to
+ // the desired orientation.
+ private static final long PROPOSAL_SETTLE_TIME_NANOS = 40 * NANOS_PER_MS;
+
+ // The minimum amount of time that must have elapsed since the device last exited
+ // the flat state (time since it was picked up) before the proposed rotation
+ // can change.
+ private static final long PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS = 500 * NANOS_PER_MS;
+
+ // The mininum amount of time that must have elapsed since the device stopped
+ // swinging (time since device appeared to be in the process of being put down
+ // or put away into a pocket) before the proposed rotation can change.
+ private static final long PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS = 300 * NANOS_PER_MS;
+
+ // If the tilt angle remains greater than the specified angle for a minimum of
+ // the specified time, then the device is deemed to be lying flat
+ // (just chillin' on a table).
+ private static final float FLAT_ANGLE = 75;
+ private static final long FLAT_TIME_NANOS = 1000 * NANOS_PER_MS;
+
+ // If the tilt angle has increased by at least delta degrees within the specified amount
+ // of time, then the device is deemed to be swinging away from the user
+ // down towards flat (tilt = 90).
+ private static final float SWING_AWAY_ANGLE_DELTA = 20;
+ private static final long SWING_TIME_NANOS = 300 * NANOS_PER_MS;
// The maximum sample inter-arrival time in milliseconds.
// If the acceleration samples are further apart than this amount in time, we reset the
// state of the low-pass filter and orientation properties. This helps to handle
// boundary conditions when the device is turned on, wakes from suspend or there is
// a significant gap in samples.
- private static final float MAX_FILTER_DELTA_TIME_MS = 1000;
+ private static final long MAX_FILTER_DELTA_TIME_NANOS = 1000 * NANOS_PER_MS;
// The acceleration filter time constant.
//
@@ -267,8 +280,10 @@ public abstract class WindowOrientationListener {
//
// Filtering adds latency proportional the time constant (inversely proportional
// to the cutoff frequency) so we don't want to make the time constant too
- // large or we can lose responsiveness.
- private static final float FILTER_TIME_CONSTANT_MS = 100.0f;
+ // large or we can lose responsiveness. Likewise we don't want to make it too
+ // small or we do a poor job suppressing acceleration spikes.
+ // Empirically, 100ms seems to be too small and 500ms is too large.
+ private static final float FILTER_TIME_CONSTANT_MS = 200.0f;
/* State for orientation detection. */
@@ -286,9 +301,9 @@ public abstract class WindowOrientationListener {
//
// In both cases, we postpone choosing an orientation.
private static final float MIN_ACCELERATION_MAGNITUDE =
- SensorManager.STANDARD_GRAVITY * 0.5f;
+ SensorManager.STANDARD_GRAVITY * 0.3f;
private static final float MAX_ACCELERATION_MAGNITUDE =
- SensorManager.STANDARD_GRAVITY * 1.5f;
+ SensorManager.STANDARD_GRAVITY * 1.25f;
// Maximum absolute tilt angle at which to consider orientation data. Beyond this (i.e.
// when screen is facing the sky or ground), we completely ignore orientation data.
@@ -306,10 +321,10 @@ public abstract class WindowOrientationListener {
// The ideal tilt angle is 0 (when the device is vertical) so the limits establish
// how close to vertical the device must be in order to change orientation.
private static final int[][] TILT_TOLERANCE = new int[][] {
- /* ROTATION_0 */ { -20, 70 },
- /* ROTATION_90 */ { -20, 60 },
- /* ROTATION_180 */ { -20, 50 },
- /* ROTATION_270 */ { -20, 60 }
+ /* ROTATION_0 */ { -25, 70 },
+ /* ROTATION_90 */ { -25, 65 },
+ /* ROTATION_180 */ { -25, 60 },
+ /* ROTATION_270 */ { -25, 65 }
};
// The gap angle in degrees between adjacent orientation angles for hysteresis.
@@ -319,29 +334,38 @@ public abstract class WindowOrientationListener {
// orientation.
private static final int ADJACENT_ORIENTATION_ANGLE_GAP = 45;
- // The number of milliseconds for which the device posture must be stable
- // before we perform an orientation change. If the device appears to be rotating
- // (being picked up, put down) then we keep waiting until it settles.
- private static final int SETTLE_TIME_MS = 200;
+ // Timestamp and value of the last accelerometer sample.
+ private long mLastFilteredTimestampNanos;
+ private float mLastFilteredX, mLastFilteredY, mLastFilteredZ;
+
+ // The last proposed rotation, -1 if unknown.
+ private int mProposedRotation;
+
+ // Value of the current predicted rotation, -1 if unknown.
+ private int mPredictedRotation;
+
+ // Timestamp of when the predicted rotation most recently changed.
+ private long mPredictedRotationTimestampNanos;
- // The maximum change in magnitude that can occur during the settle time.
- // Tuning this constant particularly helps to filter out situations where the
- // device is being picked up or put down by the user.
- private static final float SETTLE_MAGNITUDE_MAX_DELTA =
- SensorManager.STANDARD_GRAVITY * 0.2f;
+ // Timestamp when the device last appeared to be flat for sure (the flat delay elapsed).
+ private long mFlatTimestampNanos;
- // The maximum change in tilt angle that can occur during the settle time.
- private static final int SETTLE_TILT_ANGLE_MAX_DELTA = 5;
+ // Timestamp when the device last appeared to be swinging.
+ private long mSwingTimestampNanos;
- // The maximum change in orientation angle that can occur during the settle time.
- private static final int SETTLE_ORIENTATION_ANGLE_MAX_DELTA = 5;
+ // History of observed tilt angles.
+ private static final int TILT_HISTORY_SIZE = 40;
+ private float[] mTiltHistory = new float[TILT_HISTORY_SIZE];
+ private long[] mTiltHistoryTimestampNanos = new long[TILT_HISTORY_SIZE];
+ private int mTiltHistoryIndex;
public SensorEventListenerImpl(WindowOrientationListener orientationListener) {
mOrientationListener = orientationListener;
+ reset();
}
public int getProposedRotation() {
- return mProposalAgeMS >= SETTLE_TIME_MS ? mProposalRotation : -1;
+ return mProposedRotation;
}
@Override
@@ -359,8 +383,9 @@ public abstract class WindowOrientationListener {
float z = event.values[ACCELEROMETER_DATA_Z];
if (log) {
- Slog.v(TAG, "Raw acceleration vector: " +
- "x=" + x + ", y=" + y + ", z=" + z);
+ Slog.v(TAG, "Raw acceleration vector: "
+ + "x=" + x + ", y=" + y + ", z=" + z
+ + ", magnitude=" + FloatMath.sqrt(x * x + y * y + z * z));
}
// Apply a low-pass filter to the acceleration up vector in cartesian space.
@@ -368,14 +393,16 @@ public abstract class WindowOrientationListener {
// or when we see values of (0, 0, 0) which indicates that we polled the
// accelerometer too soon after turning it on and we don't have any data yet.
final long now = event.timestamp;
- final float timeDeltaMS = (now - mLastTimestamp) * 0.000001f;
- boolean skipSample;
- if (timeDeltaMS <= 0 || timeDeltaMS > MAX_FILTER_DELTA_TIME_MS
+ final long then = mLastFilteredTimestampNanos;
+ final float timeDeltaMS = (now - then) * 0.000001f;
+ final boolean skipSample;
+ if (now < then
+ || now > then + MAX_FILTER_DELTA_TIME_NANOS
|| (x == 0 && y == 0 && z == 0)) {
if (log) {
Slog.v(TAG, "Resetting orientation listener.");
}
- clearProposal();
+ reset();
skipSample = true;
} else {
final float alpha = timeDeltaMS / (FILTER_TIME_CONSTANT_MS + timeDeltaMS);
@@ -383,27 +410,28 @@ public abstract class WindowOrientationListener {
y = alpha * (y - mLastFilteredY) + mLastFilteredY;
z = alpha * (z - mLastFilteredZ) + mLastFilteredZ;
if (log) {
- Slog.v(TAG, "Filtered acceleration vector: " +
- "x=" + x + ", y=" + y + ", z=" + z);
+ Slog.v(TAG, "Filtered acceleration vector: "
+ + "x=" + x + ", y=" + y + ", z=" + z
+ + ", magnitude=" + FloatMath.sqrt(x * x + y * y + z * z));
}
skipSample = false;
}
- mLastTimestamp = now;
+ mLastFilteredTimestampNanos = now;
mLastFilteredX = x;
mLastFilteredY = y;
mLastFilteredZ = z;
- final int oldProposedRotation = getProposedRotation();
+ boolean isFlat = false;
+ boolean isSwinging = false;
if (!skipSample) {
// Calculate the magnitude of the acceleration vector.
- final float magnitude = (float) Math.sqrt(x * x + y * y + z * z);
+ final float magnitude = FloatMath.sqrt(x * x + y * y + z * z);
if (magnitude < MIN_ACCELERATION_MAGNITUDE
|| magnitude > MAX_ACCELERATION_MAGNITUDE) {
if (log) {
- Slog.v(TAG, "Ignoring sensor data, magnitude out of range: "
- + "magnitude=" + magnitude);
+ Slog.v(TAG, "Ignoring sensor data, magnitude out of range.");
}
- clearProposal();
+ clearPredictedRotation();
} else {
// Calculate the tilt angle.
// This is the angle between the up vector and the x-y plane (the plane of
@@ -414,14 +442,25 @@ public abstract class WindowOrientationListener {
final int tiltAngle = (int) Math.round(
Math.asin(z / magnitude) * RADIANS_TO_DEGREES);
+ // Determine whether the device appears to be flat or swinging.
+ if (isFlat(now)) {
+ isFlat = true;
+ mFlatTimestampNanos = now;
+ }
+ if (isSwinging(now, tiltAngle)) {
+ isSwinging = true;
+ mSwingTimestampNanos = now;
+ }
+ addTiltHistoryEntry(now, tiltAngle);
+
// If the tilt angle is too close to horizontal then we cannot determine
// the orientation angle of the screen.
if (Math.abs(tiltAngle) > MAX_TILT) {
if (log) {
Slog.v(TAG, "Ignoring sensor data, tilt angle too high: "
- + "magnitude=" + magnitude + ", tiltAngle=" + tiltAngle);
+ + "tiltAngle=" + tiltAngle);
}
- clearProposal();
+ clearPredictedRotation();
} else {
// Calculate the orientation angle.
// This is the angle between the x-y projection of the up vector onto
@@ -439,89 +478,93 @@ public abstract class WindowOrientationListener {
nearestRotation = 0;
}
- // Determine the proposed orientation.
- // The confidence of the proposal is 1.0 when it is ideal and it
- // decays exponentially as the proposal moves further from the ideal
- // angle, tilt and magnitude of the proposed orientation.
- if (!isTiltAngleAcceptable(nearestRotation, tiltAngle)
- || !isOrientationAngleAcceptable(nearestRotation,
+ // Determine the predicted orientation.
+ if (isTiltAngleAcceptable(nearestRotation, tiltAngle)
+ && isOrientationAngleAcceptable(nearestRotation,
orientationAngle)) {
+ updatePredictedRotation(now, nearestRotation);
if (log) {
- Slog.v(TAG, "Ignoring sensor data, no proposal: "
- + "magnitude=" + magnitude + ", tiltAngle=" + tiltAngle
- + ", orientationAngle=" + orientationAngle);
+ Slog.v(TAG, "Predicted: "
+ + "tiltAngle=" + tiltAngle
+ + ", orientationAngle=" + orientationAngle
+ + ", predictedRotation=" + mPredictedRotation
+ + ", predictedRotationAgeMS="
+ + ((now - mPredictedRotationTimestampNanos)
+ * 0.000001f));
}
- clearProposal();
} else {
if (log) {
- Slog.v(TAG, "Proposal: "
- + "magnitude=" + magnitude
- + ", tiltAngle=" + tiltAngle
- + ", orientationAngle=" + orientationAngle
- + ", proposalRotation=" + mProposalRotation);
+ Slog.v(TAG, "Ignoring sensor data, no predicted rotation: "
+ + "tiltAngle=" + tiltAngle
+ + ", orientationAngle=" + orientationAngle);
}
- updateProposal(nearestRotation, now / 1000000L,
- magnitude, tiltAngle, orientationAngle);
+ clearPredictedRotation();
}
}
}
}
+ // Determine new proposed rotation.
+ final int oldProposedRotation = mProposedRotation;
+ if (mPredictedRotation < 0 || isPredictedRotationAcceptable(now)) {
+ mProposedRotation = mPredictedRotation;
+ }
+
// Write final statistics about where we are in the orientation detection process.
- final int proposedRotation = getProposedRotation();
if (log) {
- final float proposalConfidence = Math.min(
- mProposalAgeMS * 1.0f / SETTLE_TIME_MS, 1.0f);
Slog.v(TAG, "Result: currentRotation=" + mOrientationListener.mCurrentRotation
- + ", proposedRotation=" + proposedRotation
+ + ", proposedRotation=" + mProposedRotation
+ + ", predictedRotation=" + mPredictedRotation
+ ", timeDeltaMS=" + timeDeltaMS
- + ", proposalRotation=" + mProposalRotation
- + ", proposalAgeMS=" + mProposalAgeMS
- + ", proposalConfidence=" + proposalConfidence);
+ + ", isFlat=" + isFlat
+ + ", isSwinging=" + isSwinging
+ + ", timeUntilSettledMS=" + remainingMS(now,
+ mPredictedRotationTimestampNanos + PROPOSAL_SETTLE_TIME_NANOS)
+ + ", timeUntilFlatDelayExpiredMS=" + remainingMS(now,
+ mFlatTimestampNanos + PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS)
+ + ", timeUntilSwingDelayExpiredMS=" + remainingMS(now,
+ mSwingTimestampNanos + PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS));
}
// Tell the listener.
- if (proposedRotation != oldProposedRotation && proposedRotation >= 0) {
+ if (mProposedRotation != oldProposedRotation && mProposedRotation >= 0) {
if (log) {
- Slog.v(TAG, "Proposed rotation changed! proposedRotation=" + proposedRotation
+ Slog.v(TAG, "Proposed rotation changed! proposedRotation=" + mProposedRotation
+ ", oldProposedRotation=" + oldProposedRotation);
}
- mOrientationListener.onProposedRotationChanged(proposedRotation);
+ mOrientationListener.onProposedRotationChanged(mProposedRotation);
}
}
/**
- * Returns true if the tilt angle is acceptable for a proposed
- * orientation transition.
+ * Returns true if the tilt angle is acceptable for a given predicted rotation.
*/
- private boolean isTiltAngleAcceptable(int proposedRotation,
- int tiltAngle) {
- return tiltAngle >= TILT_TOLERANCE[proposedRotation][0]
- && tiltAngle <= TILT_TOLERANCE[proposedRotation][1];
+ private boolean isTiltAngleAcceptable(int rotation, int tiltAngle) {
+ return tiltAngle >= TILT_TOLERANCE[rotation][0]
+ && tiltAngle <= TILT_TOLERANCE[rotation][1];
}
/**
- * Returns true if the orientation angle is acceptable for a proposed
- * orientation transition.
+ * Returns true if the orientation angle is acceptable for a given predicted rotation.
*
* This function takes into account the gap between adjacent orientations
* for hysteresis.
*/
- private boolean isOrientationAngleAcceptable(int proposedRotation, int orientationAngle) {
+ private boolean isOrientationAngleAcceptable(int rotation, int orientationAngle) {
// If there is no current rotation, then there is no gap.
// The gap is used only to introduce hysteresis among advertised orientation
// changes to avoid flapping.
final int currentRotation = mOrientationListener.mCurrentRotation;
if (currentRotation >= 0) {
- // If the proposed rotation is the same or is counter-clockwise adjacent,
- // then we set a lower bound on the orientation angle.
+ // If the specified rotation is the same or is counter-clockwise adjacent
+ // to the current rotation, then we set a lower bound on the orientation angle.
// For example, if currentRotation is ROTATION_0 and proposed is ROTATION_90,
// then we want to check orientationAngle > 45 + GAP / 2.
- if (proposedRotation == currentRotation
- || proposedRotation == (currentRotation + 1) % 4) {
- int lowerBound = proposedRotation * 90 - 45
+ if (rotation == currentRotation
+ || rotation == (currentRotation + 1) % 4) {
+ int lowerBound = rotation * 90 - 45
+ ADJACENT_ORIENTATION_ANGLE_GAP / 2;
- if (proposedRotation == 0) {
+ if (rotation == 0) {
if (orientationAngle >= 315 && orientationAngle < lowerBound + 360) {
return false;
}
@@ -532,15 +575,15 @@ public abstract class WindowOrientationListener {
}
}
- // If the proposed rotation is the same or is clockwise adjacent,
+ // If the specified rotation is the same or is clockwise adjacent,
// then we set an upper bound on the orientation angle.
- // For example, if currentRotation is ROTATION_0 and proposed is ROTATION_270,
+ // For example, if currentRotation is ROTATION_0 and rotation is ROTATION_270,
// then we want to check orientationAngle < 315 - GAP / 2.
- if (proposedRotation == currentRotation
- || proposedRotation == (currentRotation + 3) % 4) {
- int upperBound = proposedRotation * 90 + 45
+ if (rotation == currentRotation
+ || rotation == (currentRotation + 3) % 4) {
+ int upperBound = rotation * 90 + 45
- ADJACENT_ORIENTATION_ANGLE_GAP / 2;
- if (proposedRotation == 0) {
+ if (rotation == 0) {
if (orientationAngle <= 45 && orientationAngle > upperBound) {
return false;
}
@@ -554,58 +597,97 @@ public abstract class WindowOrientationListener {
return true;
}
- private void clearProposal() {
- mProposalRotation = -1;
- mProposalAgeMS = 0;
- }
+ /**
+ * Returns true if the predicted rotation is ready to be advertised as a
+ * proposed rotation.
+ */
+ private boolean isPredictedRotationAcceptable(long now) {
+ // The predicted rotation must have settled long enough.
+ if (now < mPredictedRotationTimestampNanos + PROPOSAL_SETTLE_TIME_NANOS) {
+ return false;
+ }
+
+ // The last flat state (time since picked up) must have been sufficiently long ago.
+ if (now < mFlatTimestampNanos + PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS) {
+ return false;
+ }
- private void updateProposal(int rotation, long timestampMS,
- float magnitude, int tiltAngle, int orientationAngle) {
- if (mProposalRotation != rotation) {
- mProposalRotation = rotation;
- mHistoryIndex = 0;
- mHistoryLength = 0;
+ // The last swing state (time since last movement to put down) must have been
+ // sufficiently long ago.
+ if (now < mSwingTimestampNanos + PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS) {
+ return false;
}
- final int index = mHistoryIndex;
- mHistoryTimestampMS[index] = timestampMS;
- mHistoryMagnitudes[index] = magnitude;
- mHistoryTiltAngles[index] = tiltAngle;
- mHistoryOrientationAngles[index] = orientationAngle;
- mHistoryIndex = (index + 1) % HISTORY_SIZE;
- if (mHistoryLength < HISTORY_SIZE) {
- mHistoryLength += 1;
+ // Looks good!
+ return true;
+ }
+
+ private void reset() {
+ mLastFilteredTimestampNanos = Long.MIN_VALUE;
+ mProposedRotation = -1;
+ mFlatTimestampNanos = Long.MIN_VALUE;
+ mSwingTimestampNanos = Long.MIN_VALUE;
+ clearPredictedRotation();
+ clearTiltHistory();
+ }
+
+ private void clearPredictedRotation() {
+ mPredictedRotation = -1;
+ mPredictedRotationTimestampNanos = Long.MIN_VALUE;
+ }
+
+ private void updatePredictedRotation(long now, int rotation) {
+ if (mPredictedRotation != rotation) {
+ mPredictedRotation = rotation;
+ mPredictedRotationTimestampNanos = now;
}
+ }
- long age = 0;
- for (int i = 1; i < mHistoryLength; i++) {
- final int olderIndex = (index + HISTORY_SIZE - i) % HISTORY_SIZE;
- if (Math.abs(mHistoryMagnitudes[olderIndex] - magnitude)
- > SETTLE_MAGNITUDE_MAX_DELTA) {
+ private void clearTiltHistory() {
+ mTiltHistoryTimestampNanos[0] = Long.MIN_VALUE;
+ mTiltHistoryIndex = 1;
+ }
+
+ private void addTiltHistoryEntry(long now, float tilt) {
+ mTiltHistory[mTiltHistoryIndex] = tilt;
+ mTiltHistoryTimestampNanos[mTiltHistoryIndex] = now;
+ mTiltHistoryIndex = (mTiltHistoryIndex + 1) % TILT_HISTORY_SIZE;
+ mTiltHistoryTimestampNanos[mTiltHistoryIndex] = Long.MIN_VALUE;
+ }
+
+ private boolean isFlat(long now) {
+ for (int i = mTiltHistoryIndex; (i = nextTiltHistoryIndex(i)) >= 0; ) {
+ if (mTiltHistory[i] < FLAT_ANGLE) {
break;
}
- if (angleAbsoluteDelta(mHistoryTiltAngles[olderIndex],
- tiltAngle) > SETTLE_TILT_ANGLE_MAX_DELTA) {
- break;
+ if (mTiltHistoryTimestampNanos[i] + FLAT_TIME_NANOS <= now) {
+ // Tilt has remained greater than FLAT_TILT_ANGLE for FLAT_TIME_NANOS.
+ return true;
}
- if (angleAbsoluteDelta(mHistoryOrientationAngles[olderIndex],
- orientationAngle) > SETTLE_ORIENTATION_ANGLE_MAX_DELTA) {
+ }
+ return false;
+ }
+
+ private boolean isSwinging(long now, float tilt) {
+ for (int i = mTiltHistoryIndex; (i = nextTiltHistoryIndex(i)) >= 0; ) {
+ if (mTiltHistoryTimestampNanos[i] + SWING_TIME_NANOS < now) {
break;
}
- age = timestampMS - mHistoryTimestampMS[olderIndex];
- if (age >= SETTLE_TIME_MS) {
- break;
+ if (mTiltHistory[i] + SWING_AWAY_ANGLE_DELTA <= tilt) {
+ // Tilted away by SWING_AWAY_ANGLE_DELTA within SWING_TIME_NANOS.
+ return true;
}
}
- mProposalAgeMS = age;
+ return false;
}
- private static int angleAbsoluteDelta(int a, int b) {
- int delta = Math.abs(a - b);
- if (delta > 180) {
- delta = 360 - delta;
- }
- return delta;
+ private int nextTiltHistoryIndex(int index) {
+ index = (index == 0 ? TILT_HISTORY_SIZE : index) - 1;
+ return mTiltHistoryTimestampNanos[index] != Long.MIN_VALUE ? index : -1;
+ }
+
+ private static float remainingMS(long now, long until) {
+ return now >= until ? 0 : (until - now) * 0.000001f;
}
}
}
diff --git a/tools/orientationplot/orientationplot.py b/tools/orientationplot/orientationplot.py
index 3a44cb2cbfd8..f4e6b453c9df 100755
--- a/tools/orientationplot/orientationplot.py
+++ b/tools/orientationplot/orientationplot.py
@@ -82,6 +82,7 @@ class Plotter:
self.raw_acceleration_x = self._make_timeseries()
self.raw_acceleration_y = self._make_timeseries()
self.raw_acceleration_z = self._make_timeseries()
+ self.raw_acceleration_magnitude = self._make_timeseries()
self.raw_acceleration_axes = self._add_timeseries_axes(
1, 'Raw Acceleration', 'm/s^2', [-20, 20],
yticks=range(-15, 16, 5))
@@ -91,6 +92,8 @@ class Plotter:
self.raw_acceleration_axes, 'y', 'green')
self.raw_acceleration_line_z = self._add_timeseries_line(
self.raw_acceleration_axes, 'z', 'blue')
+ self.raw_acceleration_line_magnitude = self._add_timeseries_line(
+ self.raw_acceleration_axes, 'magnitude', 'orange', linewidth=2)
self._add_timeseries_legend(self.raw_acceleration_axes)
shared_axis = self.raw_acceleration_axes
@@ -98,7 +101,7 @@ class Plotter:
self.filtered_acceleration_x = self._make_timeseries()
self.filtered_acceleration_y = self._make_timeseries()
self.filtered_acceleration_z = self._make_timeseries()
- self.magnitude = self._make_timeseries()
+ self.filtered_acceleration_magnitude = self._make_timeseries()
self.filtered_acceleration_axes = self._add_timeseries_axes(
2, 'Filtered Acceleration', 'm/s^2', [-20, 20],
sharex=shared_axis,
@@ -109,7 +112,7 @@ class Plotter:
self.filtered_acceleration_axes, 'y', 'green')
self.filtered_acceleration_line_z = self._add_timeseries_line(
self.filtered_acceleration_axes, 'z', 'blue')
- self.magnitude_line = self._add_timeseries_line(
+ self.filtered_acceleration_line_magnitude = self._add_timeseries_line(
self.filtered_acceleration_axes, 'magnitude', 'orange', linewidth=2)
self._add_timeseries_legend(self.filtered_acceleration_axes)
@@ -133,32 +136,46 @@ class Plotter:
self.current_rotation = self._make_timeseries()
self.proposed_rotation = self._make_timeseries()
- self.proposal_rotation = self._make_timeseries()
+ self.predicted_rotation = self._make_timeseries()
self.orientation_axes = self._add_timeseries_axes(
- 5, 'Current / Proposed Orientation and Confidence', 'rotation', [-1, 4],
+ 5, 'Current / Proposed Orientation', 'rotation', [-1, 4],
sharex=shared_axis,
yticks=range(0, 4))
self.current_rotation_line = self._add_timeseries_line(
self.orientation_axes, 'current', 'black', linewidth=2)
- self.proposal_rotation_line = self._add_timeseries_line(
- self.orientation_axes, 'proposal', 'purple', linewidth=3)
+ self.predicted_rotation_line = self._add_timeseries_line(
+ self.orientation_axes, 'predicted', 'purple', linewidth=3)
self.proposed_rotation_line = self._add_timeseries_line(
self.orientation_axes, 'proposed', 'green', linewidth=3)
self._add_timeseries_legend(self.orientation_axes)
- self.proposal_confidence = [[self._make_timeseries(), self._make_timeseries()]
- for i in range(0, 4)]
- self.proposal_confidence_polys = []
+ self.time_until_settled = self._make_timeseries()
+ self.time_until_flat_delay_expired = self._make_timeseries()
+ self.time_until_swing_delay_expired = self._make_timeseries()
+ self.stability_axes = self._add_timeseries_axes(
+ 6, 'Proposal Stability', 'ms', [-10, 600],
+ sharex=shared_axis,
+ yticks=range(0, 600, 100))
+ self.time_until_settled_line = self._add_timeseries_line(
+ self.stability_axes, 'time until settled', 'black', linewidth=2)
+ self.time_until_flat_delay_expired_line = self._add_timeseries_line(
+ self.stability_axes, 'time until flat delay expired', 'green')
+ self.time_until_swing_delay_expired_line = self._add_timeseries_line(
+ self.stability_axes, 'time until swing delay expired', 'blue')
+ self._add_timeseries_legend(self.stability_axes)
self.sample_latency = self._make_timeseries()
self.sample_latency_axes = self._add_timeseries_axes(
- 6, 'Accelerometer Sampling Latency', 'ms', [-10, 500],
+ 7, 'Accelerometer Sampling Latency', 'ms', [-10, 500],
sharex=shared_axis,
yticks=range(0, 500, 100))
self.sample_latency_line = self._add_timeseries_line(
self.sample_latency_axes, 'latency', 'black')
self._add_timeseries_legend(self.sample_latency_axes)
+ self.fig.canvas.mpl_connect('button_press_event', self._on_click)
+ self.paused = False
+
self.timer = self.fig.canvas.new_timer(interval=100)
self.timer.add_callback(lambda: self.update())
self.timer.start()
@@ -166,13 +183,22 @@ class Plotter:
self.timebase = None
self._reset_parse_state()
+ # Handle a click event to pause or restart the timer.
+ def _on_click(self, ev):
+ if not self.paused:
+ self.paused = True
+ self.timer.stop()
+ else:
+ self.paused = False
+ self.timer.start()
+
# Initialize a time series.
def _make_timeseries(self):
return [[], []]
# Add a subplot to the figure for a time series.
def _add_timeseries_axes(self, index, title, ylabel, ylim, yticks, sharex=None):
- num_graphs = 6
+ num_graphs = 7
height = 0.9 / num_graphs
top = 0.95 - height * index
axes = self.fig.add_axes([0.1, top, 0.8, height],
@@ -214,16 +240,19 @@ class Plotter:
self.parse_raw_acceleration_x = None
self.parse_raw_acceleration_y = None
self.parse_raw_acceleration_z = None
+ self.parse_raw_acceleration_magnitude = None
self.parse_filtered_acceleration_x = None
self.parse_filtered_acceleration_y = None
self.parse_filtered_acceleration_z = None
- self.parse_magnitude = None
+ self.parse_filtered_acceleration_magnitude = None
self.parse_tilt_angle = None
self.parse_orientation_angle = None
self.parse_current_rotation = None
self.parse_proposed_rotation = None
- self.parse_proposal_rotation = None
- self.parse_proposal_confidence = None
+ self.parse_predicted_rotation = None
+ self.parse_time_until_settled = None
+ self.parse_time_until_flat_delay_expired = None
+ self.parse_time_until_swing_delay_expired = None
self.parse_sample_latency = None
# Update samples.
@@ -252,14 +281,13 @@ class Plotter:
self.parse_raw_acceleration_x = self._get_following_number(line, 'x=')
self.parse_raw_acceleration_y = self._get_following_number(line, 'y=')
self.parse_raw_acceleration_z = self._get_following_number(line, 'z=')
+ self.parse_raw_acceleration_magnitude = self._get_following_number(line, 'magnitude=')
if line.find('Filtered acceleration vector:') != -1:
self.parse_filtered_acceleration_x = self._get_following_number(line, 'x=')
self.parse_filtered_acceleration_y = self._get_following_number(line, 'y=')
self.parse_filtered_acceleration_z = self._get_following_number(line, 'z=')
-
- if line.find('magnitude=') != -1:
- self.parse_magnitude = self._get_following_number(line, 'magnitude=')
+ self.parse_filtered_acceleration_magnitude = self._get_following_number(line, 'magnitude=')
if line.find('tiltAngle=') != -1:
self.parse_tilt_angle = self._get_following_number(line, 'tiltAngle=')
@@ -270,17 +298,20 @@ class Plotter:
if line.find('Result:') != -1:
self.parse_current_rotation = self._get_following_number(line, 'currentRotation=')
self.parse_proposed_rotation = self._get_following_number(line, 'proposedRotation=')
- self.parse_proposal_rotation = self._get_following_number(line, 'proposalRotation=')
- self.parse_proposal_confidence = self._get_following_number(line, 'proposalConfidence=')
+ self.parse_predicted_rotation = self._get_following_number(line, 'predictedRotation=')
self.parse_sample_latency = self._get_following_number(line, 'timeDeltaMS=')
+ self.parse_time_until_settled = self._get_following_number(line, 'timeUntilSettledMS=')
+ self.parse_time_until_flat_delay_expired = self._get_following_number(line, 'timeUntilFlatDelayExpiredMS=')
+ self.parse_time_until_swing_delay_expired = self._get_following_number(line, 'timeUntilSwingDelayExpiredMS=')
self._append(self.raw_acceleration_x, timeindex, self.parse_raw_acceleration_x)
self._append(self.raw_acceleration_y, timeindex, self.parse_raw_acceleration_y)
self._append(self.raw_acceleration_z, timeindex, self.parse_raw_acceleration_z)
+ self._append(self.raw_acceleration_magnitude, timeindex, self.parse_raw_acceleration_magnitude)
self._append(self.filtered_acceleration_x, timeindex, self.parse_filtered_acceleration_x)
self._append(self.filtered_acceleration_y, timeindex, self.parse_filtered_acceleration_y)
self._append(self.filtered_acceleration_z, timeindex, self.parse_filtered_acceleration_z)
- self._append(self.magnitude, timeindex, self.parse_magnitude)
+ self._append(self.filtered_acceleration_magnitude, timeindex, self.parse_filtered_acceleration_magnitude)
self._append(self.tilt_angle, timeindex, self.parse_tilt_angle)
self._append(self.orientation_angle, timeindex, self.parse_orientation_angle)
self._append(self.current_rotation, timeindex, self.parse_current_rotation)
@@ -288,17 +319,13 @@ class Plotter:
self._append(self.proposed_rotation, timeindex, self.parse_proposed_rotation)
else:
self._append(self.proposed_rotation, timeindex, None)
- if self.parse_proposal_rotation >= 0:
- self._append(self.proposal_rotation, timeindex, self.parse_proposal_rotation)
+ if self.parse_predicted_rotation >= 0:
+ self._append(self.predicted_rotation, timeindex, self.parse_predicted_rotation)
else:
- self._append(self.proposal_rotation, timeindex, None)
- for i in range(0, 4):
- self._append(self.proposal_confidence[i][0], timeindex, i)
- if i == self.parse_proposal_rotation:
- self._append(self.proposal_confidence[i][1], timeindex,
- i + self.parse_proposal_confidence)
- else:
- self._append(self.proposal_confidence[i][1], timeindex, i)
+ self._append(self.predicted_rotation, timeindex, None)
+ self._append(self.time_until_settled, timeindex, self.parse_time_until_settled)
+ self._append(self.time_until_flat_delay_expired, timeindex, self.parse_time_until_flat_delay_expired)
+ self._append(self.time_until_swing_delay_expired, timeindex, self.parse_time_until_swing_delay_expired)
self._append(self.sample_latency, timeindex, self.parse_sample_latency)
self._reset_parse_state()
@@ -309,45 +336,40 @@ class Plotter:
self._scroll(self.raw_acceleration_x, bottom)
self._scroll(self.raw_acceleration_y, bottom)
self._scroll(self.raw_acceleration_z, bottom)
+ self._scroll(self.raw_acceleration_magnitude, bottom)
self._scroll(self.filtered_acceleration_x, bottom)
self._scroll(self.filtered_acceleration_y, bottom)
self._scroll(self.filtered_acceleration_z, bottom)
- self._scroll(self.magnitude, bottom)
+ self._scroll(self.filtered_acceleration_magnitude, bottom)
self._scroll(self.tilt_angle, bottom)
self._scroll(self.orientation_angle, bottom)
self._scroll(self.current_rotation, bottom)
self._scroll(self.proposed_rotation, bottom)
- self._scroll(self.proposal_rotation, bottom)
- for i in range(0, 4):
- self._scroll(self.proposal_confidence[i][0], bottom)
- self._scroll(self.proposal_confidence[i][1], bottom)
+ self._scroll(self.predicted_rotation, bottom)
+ self._scroll(self.time_until_settled, bottom)
+ self._scroll(self.time_until_flat_delay_expired, bottom)
+ self._scroll(self.time_until_swing_delay_expired, bottom)
self._scroll(self.sample_latency, bottom)
# Redraw the plots.
self.raw_acceleration_line_x.set_data(self.raw_acceleration_x)
self.raw_acceleration_line_y.set_data(self.raw_acceleration_y)
self.raw_acceleration_line_z.set_data(self.raw_acceleration_z)
+ self.raw_acceleration_line_magnitude.set_data(self.raw_acceleration_magnitude)
self.filtered_acceleration_line_x.set_data(self.filtered_acceleration_x)
self.filtered_acceleration_line_y.set_data(self.filtered_acceleration_y)
self.filtered_acceleration_line_z.set_data(self.filtered_acceleration_z)
- self.magnitude_line.set_data(self.magnitude)
+ self.filtered_acceleration_line_magnitude.set_data(self.filtered_acceleration_magnitude)
self.tilt_angle_line.set_data(self.tilt_angle)
self.orientation_angle_line.set_data(self.orientation_angle)
self.current_rotation_line.set_data(self.current_rotation)
self.proposed_rotation_line.set_data(self.proposed_rotation)
- self.proposal_rotation_line.set_data(self.proposal_rotation)
+ self.predicted_rotation_line.set_data(self.predicted_rotation)
+ self.time_until_settled_line.set_data(self.time_until_settled)
+ self.time_until_flat_delay_expired_line.set_data(self.time_until_flat_delay_expired)
+ self.time_until_swing_delay_expired_line.set_data(self.time_until_swing_delay_expired)
self.sample_latency_line.set_data(self.sample_latency)
- for poly in self.proposal_confidence_polys:
- poly.remove()
- self.proposal_confidence_polys = []
- for i in range(0, 4):
- self.proposal_confidence_polys.append(self.orientation_axes.fill_between(
- self.proposal_confidence[i][0][0],
- self.proposal_confidence[i][0][1],
- self.proposal_confidence[i][1][1],
- facecolor='goldenrod', edgecolor='goldenrod'))
-
self.fig.canvas.draw_idle()
# Scroll a time series.