diff options
author | Nick Kralevich <nnk@google.com> | 2015-12-23 10:07:58 -0800 |
---|---|---|
committer | Nick Kralevich <nnk@google.com> | 2015-12-23 10:11:40 -0800 |
commit | 253ed64ded244ef3d8a7226efb812e7989bc8026 (patch) | |
tree | e8599f17fb7668d9804de6744a7c2c8fa804bf3e /dist/sqlite3.h | |
parent | 53bf97d1506e8f0f0cfa42897759aeebfd41be12 (diff) |
sqlite: upgrade to SQLite 3.9.2
Downloaded from https://www.sqlite.org/2015/sqlite-amalgamation-3090200.zip
$ sha256sum sqlite-amalgamation-3090200.zip
567139c94375e3808a11f34d81f534d0c257e2c498cddbf4cac283d74b51fe9c sqlite-amalgamation-3090200.zip
dist/orig contains the stock sqlite3 code, as packaged in the ZIP file above.
dist contains a copy of dist/orig, but with the Android.patch file applied.
Please see Android.patch for a list of differences between stock and
Android.
One Android specific patch failed to apply cleanly. However, this patch was
a whitespace only patch, so it has been dropped from Android.patch. All
other android specific patches applied cleanly.
Changes since 3.8.10.2 (from https://www.sqlite.org/changes.html):
2015-11-03 (3.9.2)
* Fix the schema parser so that it interprets certain (obscure and ill-formed)
CREATE TABLE statements the same as legacy. Fix for ticket ac661962a2aeab3c331
* Fix a query planner problem that could result in an incorrect answer due to
the use of automatic indexing in subqueries in the FROM clause of a correlated
2015-10-16 (3.9.1)
* Fix the json1 extension so that it does not recognize ASCII form-feed as a
whitespace character, in order to comply with RFC-7159. Fix for ticket
57eec374ae1d0a1d
* Add a few #ifdef and build script changes to address compilation issues that
appeared after the 3.9.0 release.
2015-10-14 (3.9.0)
Policy Changes:
The version numbering conventions for SQLite are revised to use the emerging
standard of semantic versioning.
New Features And Enhancements:
* Added the json1 extension module in the source tree, and in the amalgamation.
Enable support using the SQLITE_ENABLE_JSON1 compile-time option.
* Added Full Text Search version 5 (FTS5) to the amalgamation, enabled using
SQLITE_ENABLE_FTS5. FTS5 will be considered "experimental" (subject to incompatible
changes) for at least one more release cycle.
* The CREATE VIEW statement now accepts an optional list of column names following
the view name.
* Added support for indexes on expressions.
* Added support for table-valued functions in the FROM clause of a SELECT statement.
* Added support for eponymous virtual tables.
* A VIEW may now reference undefined tables and functions when initially created.
Missing tables and functions are reported when the VIEW is used in a query.
* Added the sqlite3_value_subtype() and sqlite3_result_subtype() interfaced
(used by the json1 extension).
* The query planner is now able to use partial indexes that contain AND-connected
terms in the WHERE clause.
* The sqlite3_analyzer.exe utility is updated to report the depth of each btree and
to show the average fanout for indexes and WITHOUT ROWID tables.
* Enhanced the dbstat virtual table so that it can be used as a table-valued function
where the argument is the schema to be analyzed.
Other changes:
* The sqlite3_memory_alarm() interface, which has been deprecated and undocumented
for 8 years, is changed into a no-op.
Important fixes:
* Fixed a critical bug in the SQLite Encryption Extension that could cause the database
to become unreadable and unrecoverable if a VACUUM command changed the size of the
encryption nonce.
* Added a memory barrier in the implementation of sqlite3_initialize() to help ensure
that it is thread-safe.
* Fix the OR optimization so that it always ignores subplans that do not use an index.
* Do not apply the WHERE-clause pushdown optimization on terms that originate in the
ON or USING clause of a LEFT JOIN. Fix for ticket c2a19d81652f40568c.
2015-07-29 (3.8.11.1)
* Restore an undocumented side-effect of PRAGMA cache_size: force the database
schema to be parsed if the database has not been previously accessed.
* Fix a long-standing problem in sqlite3_changes() for WITHOUT ROWID tables that was
reported a few hours after the 3.8.11 release.
2015-07-27 (3.8.11)
* Added the experimental RBU extension. Note that this extension is experimental
and subject to change in incompatible ways.
* Added the experimental FTS5 extension. Note that this extension is experimental
and subject to change in incompatible ways.
* Added the sqlite3_value_dup() and sqlite3_value_free() interfaces.
* Enhance the spellfix1 extension to support ON CONFLICT clauses.
* The IS operator is now able to drive indexes.
* Enhance the query planner to permit automatic indexing on FROM-clause subqueries
that are implemented by co-routine.
* Disallow the use of "rowid" in common table expressions.
* Added the PRAGMA cell_size_check command for better and earlier detection of database
file corruption.
* Added the matchinfo 'b' flag to the matchinfo() function in FTS3.
* Improved fuzz-testing of database files, with fixes for problems found.
* Add the fuzzcheck test program and automatically run this program using both SQL
and database test cases on "make test".
* Added the SQLITE_MUTEX_STATIC_VFS1 static mutex and use it in the Windows VFS.
* The sqlite3_profile() callback is invoked (by sqlite3_reset() or sqlite3_finalize())
for statements that did not run to completion.
* Enhance the page cache so that it can preallocate a block of memory to use for the
initial set page cache lines. Set the default preallocation to 100 pages. Yields about
a 5% performance increase on common workloads.
* Miscellaneous micro-optimizations result in 22.3% more work for the same number of
CPU cycles relative to the previous release. SQLite now runs twice as fast as version
3.8.0 and three times as fast as version 3.3.9. (Measured using cachegrind on the
speedtest1.c workload on Ubuntu 14.04 x64 with gcc 4.8.2 and -Os. Your performance
may vary.)
* Added the sqlite3_result_zeroblob64() and sqlite3_bind_zeroblob64() interfaces.
Important bug fixes:
* Fix CREATE TABLE AS so that columns of type TEXT never end up holding an INT
value. Ticket f2ad7de056ab1dc9200
* Fix CREATE TABLE AS so that it does not leave NULL entries in the sqlite_master
table if the SELECT statement on the right-hand side aborts with an error.
Ticket 873cae2b6e25b
* Fix the skip-scan optimization so that it works correctly when the OR optimization
is used on WITHOUT ROWID tables. Ticket 8fd39115d8f46
* Fix the sqlite3_memory_used() and sqlite3_memory_highwater() interfaces so that
they actually do provide a 64-bit answer.
Change-Id: Ic59c75950fe54b2ae3a2dabe5fe22f3fb4225e83
Diffstat (limited to 'dist/sqlite3.h')
-rw-r--r-- | dist/sqlite3.h | 684 |
1 files changed, 648 insertions, 36 deletions
diff --git a/dist/sqlite3.h b/dist/sqlite3.h index d43b63c..7cca0ac 100644 --- a/dist/sqlite3.h +++ b/dist/sqlite3.h @@ -23,7 +23,7 @@ ** ** The official C-language API documentation for SQLite is derived ** from comments in this file. This file is the authoritative source -** on how SQLite interfaces are suppose to operate. +** on how SQLite interfaces are supposed to operate. ** ** The name of this file under configuration management is "sqlite.h.in". ** The makefile makes some minor changes to this file (such as inserting @@ -111,9 +111,9 @@ extern "C" { ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ -#define SQLITE_VERSION "3.8.10.2" -#define SQLITE_VERSION_NUMBER 3008010 -#define SQLITE_SOURCE_ID "2015-05-20 18:17:19 2ef4f3a5b1d1d0c4338f8243d40a2452cc1f7fe4" +#define SQLITE_VERSION "3.9.2" +#define SQLITE_VERSION_NUMBER 3009002 +#define SQLITE_SOURCE_ID "2015-11-02 18:31:45 bda77dda9697c463c3d0704014d51627fceee328" /* ** CAPI3REF: Run-Time Library Version Numbers @@ -124,7 +124,7 @@ extern "C" { ** but are associated with the library instead of the header file. ^(Cautious ** programmers might include assert() statements in their application to ** verify that values returned by these interfaces match the macros in -** the header, and thus insure that the application is +** the header, and thus ensure that the application is ** compiled with matching library and header files. ** ** <blockquote><pre> @@ -374,7 +374,7 @@ typedef int (*sqlite3_callback)(void*,int,char**, char**); ** Restrictions: ** ** <ul> -** <li> The application must insure that the 1st parameter to sqlite3_exec() +** <li> The application must ensure that the 1st parameter to sqlite3_exec() ** is a valid and open [database connection]. ** <li> The application must not close the [database connection] specified by ** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running. @@ -477,6 +477,7 @@ SQLITE_API int SQLITE_STDCALL sqlite3_exec( #define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8)) #define SQLITE_IOERR_GETTEMPPATH (SQLITE_IOERR | (25<<8)) #define SQLITE_IOERR_CONVPATH (SQLITE_IOERR | (26<<8)) +#define SQLITE_IOERR_VNODE (SQLITE_IOERR | (27<<8)) #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8)) @@ -963,6 +964,14 @@ struct sqlite3_io_methods { ** circumstances in order to fix a problem with priority inversion. ** Applications should <em>not</em> use this file-control. ** +** <li>[[SQLITE_FCNTL_ZIPVFS]] +** The [SQLITE_FCNTL_ZIPVFS] opcode is implemented by zipvfs only. All other +** VFS should return SQLITE_NOTFOUND for this opcode. +** +** <li>[[SQLITE_FCNTL_RBU]] +** The [SQLITE_FCNTL_RBU] opcode is implemented by the special VFS used by +** the RBU extension only. All other VFS should return SQLITE_NOTFOUND for +** this opcode. ** </ul> */ #define SQLITE_FCNTL_LOCKSTATE 1 @@ -988,6 +997,8 @@ struct sqlite3_io_methods { #define SQLITE_FCNTL_COMMIT_PHASETWO 22 #define SQLITE_FCNTL_WIN32_SET_HANDLE 23 #define SQLITE_FCNTL_WAL_BLOCK 24 +#define SQLITE_FCNTL_ZIPVFS 25 +#define SQLITE_FCNTL_RBU 26 /* deprecated names */ #define SQLITE_GET_LOCKPROXYFILE SQLITE_FCNTL_GET_LOCKPROXYFILE @@ -1356,9 +1367,11 @@ SQLITE_API int SQLITE_STDCALL sqlite3_os_end(void); ** applications and so this routine is usually not necessary. It is ** provided to support rare applications with unusual needs. ** -** The sqlite3_config() interface is not threadsafe. The application -** must insure that no other SQLite interfaces are invoked by other -** threads while sqlite3_config() is running. Furthermore, sqlite3_config() +** <b>The sqlite3_config() interface is not threadsafe. The application +** must ensure that no other SQLite interfaces are invoked by other +** threads while sqlite3_config() is running.</b> +** +** The sqlite3_config() interface ** may only be invoked prior to library initialization using ** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()]. ** ^If sqlite3_config() is called after [sqlite3_initialize()] and before @@ -3363,7 +3376,8 @@ SQLITE_API int SQLITE_STDCALL sqlite3_stmt_readonly(sqlite3_stmt *pStmt); ** ** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the ** [prepared statement] S has been stepped at least once using -** [sqlite3_step(S)] but has not run to completion and/or has not +** [sqlite3_step(S)] but has neither run to completion (returned +** [SQLITE_DONE] from [sqlite3_step(S)]) nor ** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S) ** interface returns false if S is a NULL pointer. If S is not a ** NULL pointer and is not a pointer to a valid [prepared statement] @@ -3390,7 +3404,9 @@ SQLITE_API int SQLITE_STDCALL sqlite3_stmt_busy(sqlite3_stmt*); ** Some interfaces require a protected sqlite3_value. Other interfaces ** will accept either a protected or an unprotected sqlite3_value. ** Every interface that accepts sqlite3_value arguments specifies -** whether or not it requires a protected sqlite3_value. +** whether or not it requires a protected sqlite3_value. The +** [sqlite3_value_dup()] interface can be used to construct a new +** protected sqlite3_value from an unprotected sqlite3_value. ** ** The terms "protected" and "unprotected" refer to whether or not ** a mutex is held. An internal mutex is held for a protected @@ -3550,6 +3566,7 @@ SQLITE_API int SQLITE_STDCALL sqlite3_bind_text64(sqlite3_stmt*, int, const char void(*)(void*), unsigned char encoding); SQLITE_API int SQLITE_STDCALL sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); SQLITE_API int SQLITE_STDCALL sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); +SQLITE_API int SQLITE_STDCALL sqlite3_bind_zeroblob64(sqlite3_stmt*, int, sqlite3_uint64); /* ** CAPI3REF: Number Of SQL Parameters @@ -3613,7 +3630,7 @@ SQLITE_API const char *SQLITE_STDCALL sqlite3_bind_parameter_name(sqlite3_stmt*, ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_count()], and -** [sqlite3_bind_parameter_index()]. +** [sqlite3_bind_parameter_name()]. */ SQLITE_API int SQLITE_STDCALL sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); @@ -3893,8 +3910,6 @@ SQLITE_API int SQLITE_STDCALL sqlite3_data_count(sqlite3_stmt *pStmt); ** KEYWORDS: {column access functions} ** METHOD: sqlite3_stmt ** -** These routines form the "result set" interface. -** ** ^These routines return information about a single column of the current ** result row of a query. ^In every case the first argument is a pointer ** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*] @@ -3954,13 +3969,14 @@ SQLITE_API int SQLITE_STDCALL sqlite3_data_count(sqlite3_stmt *pStmt); ** even empty strings, are always zero-terminated. ^The return ** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer. ** -** ^The object returned by [sqlite3_column_value()] is an -** [unprotected sqlite3_value] object. An unprotected sqlite3_value object -** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()]. +** <b>Warning:</b> ^The object returned by [sqlite3_column_value()] is an +** [unprotected sqlite3_value] object. In a multithreaded environment, +** an unprotected sqlite3_value object may only be used safely with +** [sqlite3_bind_value()] and [sqlite3_result_value()]. ** If the [unprotected sqlite3_value] object returned by ** [sqlite3_column_value()] is used in any other way, including calls ** to routines like [sqlite3_value_int()], [sqlite3_value_text()], -** or [sqlite3_value_bytes()], then the behavior is undefined. +** or [sqlite3_value_bytes()], the behavior is not threadsafe. ** ** These routines attempt to convert the value where appropriate. ^For ** example, if the internal representation is FLOAT and a text result @@ -3991,12 +4007,6 @@ SQLITE_API int SQLITE_STDCALL sqlite3_data_count(sqlite3_stmt *pStmt); ** </table> ** </blockquote>)^ ** -** The table above makes reference to standard C library functions atoi() -** and atof(). SQLite does not really use these functions. It has its -** own equivalent internal routines. The atoi() and atof() names are -** used in the table for brevity and because they are familiar to most -** C programmers. -** ** Note that when type conversions occur, pointers returned by prior ** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or ** sqlite3_column_text16() may be invalidated. @@ -4021,7 +4031,7 @@ SQLITE_API int SQLITE_STDCALL sqlite3_data_count(sqlite3_stmt *pStmt); ** of conversion are done in place when it is possible, but sometimes they ** are not possible and in those cases prior pointers are invalidated. ** -** The safest and easiest to remember policy is to invoke these routines +** The safest policy is to invoke these routines ** in one of the following ways: ** ** <ul> @@ -4041,7 +4051,7 @@ SQLITE_API int SQLITE_STDCALL sqlite3_data_count(sqlite3_stmt *pStmt); ** ^The pointers returned are valid until a type conversion occurs as ** described above, or until [sqlite3_step()] or [sqlite3_reset()] or ** [sqlite3_finalize()] is called. ^The memory space used to hold strings -** and BLOBs is freed automatically. Do <b>not</b> pass the pointers returned +** and BLOBs is freed automatically. Do <em>not</em> pass the pointers returned ** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into ** [sqlite3_free()]. ** @@ -4291,12 +4301,12 @@ SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_memory_alarm(void(*)(voi #endif /* -** CAPI3REF: Obtaining SQL Function Parameter Values +** CAPI3REF: Obtaining SQL Values ** METHOD: sqlite3_value ** ** The C-language implementation of SQL functions and aggregates uses ** this set of interface routines to access the parameter values on -** the function or aggregate. +** the function or aggregate. ** ** The xFunc (for scalar functions) or xStep (for aggregates) parameters ** to [sqlite3_create_function()] and [sqlite3_create_function16()] @@ -4350,6 +4360,39 @@ SQLITE_API int SQLITE_STDCALL sqlite3_value_type(sqlite3_value*); SQLITE_API int SQLITE_STDCALL sqlite3_value_numeric_type(sqlite3_value*); /* +** CAPI3REF: Finding The Subtype Of SQL Values +** METHOD: sqlite3_value +** +** The sqlite3_value_subtype(V) function returns the subtype for +** an [application-defined SQL function] argument V. The subtype +** information can be used to pass a limited amount of context from +** one SQL function to another. Use the [sqlite3_result_subtype()] +** routine to set the subtype for the return value of an SQL function. +** +** SQLite makes no use of subtype itself. It merely passes the subtype +** from the result of one [application-defined SQL function] into the +** input of another. +*/ +SQLITE_API unsigned int SQLITE_STDCALL sqlite3_value_subtype(sqlite3_value*); + +/* +** CAPI3REF: Copy And Free SQL Values +** METHOD: sqlite3_value +** +** ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value] +** object D and returns a pointer to that copy. ^The [sqlite3_value] returned +** is a [protected sqlite3_value] object even if the input is not. +** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a +** memory allocation fails. +** +** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object +** previously obtained from [sqlite3_value_dup()]. ^If V is a NULL pointer +** then sqlite3_value_free(V) is a harmless no-op. +*/ +SQLITE_API SQLITE_EXPERIMENTAL sqlite3_value *SQLITE_STDCALL sqlite3_value_dup(const sqlite3_value*); +SQLITE_API SQLITE_EXPERIMENTAL void SQLITE_STDCALL sqlite3_value_free(sqlite3_value*); + +/* ** CAPI3REF: Obtain Aggregate Function Context ** METHOD: sqlite3_context ** @@ -4512,9 +4555,9 @@ typedef void (*sqlite3_destructor_type)(void*); ** to by the second parameter and which is N bytes long where N is the ** third parameter. ** -** ^The sqlite3_result_zeroblob() interfaces set the result of -** the application-defined function to be a BLOB containing all zero -** bytes and N bytes in size, where N is the value of the 2nd parameter. +** ^The sqlite3_result_zeroblob(C,N) and sqlite3_result_zeroblob64(C,N) +** interfaces set the result of the application-defined function to be +** a BLOB containing all zero bytes and N bytes in size. ** ** ^The sqlite3_result_double() interface sets the result from ** an application-defined function to be a floating point value specified @@ -4596,7 +4639,7 @@ typedef void (*sqlite3_destructor_type)(void*); ** from [sqlite3_malloc()] before it returns. ** ** ^The sqlite3_result_value() interface sets the result of -** the application-defined function to be a copy the +** the application-defined function to be a copy of the ** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The ** sqlite3_result_value() interface makes a copy of the [sqlite3_value] ** so that the [sqlite3_value] specified in the parameter may change or @@ -4629,6 +4672,22 @@ SQLITE_API void SQLITE_STDCALL sqlite3_result_text16le(sqlite3_context*, const v SQLITE_API void SQLITE_STDCALL sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); SQLITE_API void SQLITE_STDCALL sqlite3_result_value(sqlite3_context*, sqlite3_value*); SQLITE_API void SQLITE_STDCALL sqlite3_result_zeroblob(sqlite3_context*, int n); +SQLITE_API int SQLITE_STDCALL sqlite3_result_zeroblob64(sqlite3_context*, sqlite3_uint64 n); + + +/* +** CAPI3REF: Setting The Subtype Of An SQL Function +** METHOD: sqlite3_context +** +** The sqlite3_result_subtype(C,T) function causes the subtype of +** the result from the [application-defined SQL function] with +** [sqlite3_context] C to be the value T. Only the lower 8 bits +** of the subtype T are preserved in current versions of SQLite; +** higher order bits are discarded. +** The number of subtype bytes preserved by SQLite might increase +** in future releases of SQLite. +*/ +SQLITE_API void SQLITE_STDCALL sqlite3_result_subtype(sqlite3_context*,unsigned int); /* ** CAPI3REF: Define New Collating Sequences @@ -5575,13 +5634,31 @@ struct sqlite3_module { ** ^The estimatedRows value is an estimate of the number of rows that ** will be returned by the strategy. ** +** The xBestIndex method may optionally populate the idxFlags field with a +** mask of SQLITE_INDEX_SCAN_* flags. Currently there is only one such flag - +** SQLITE_INDEX_SCAN_UNIQUE. If the xBestIndex method sets this flag, SQLite +** assumes that the strategy may visit at most one row. +** +** Additionally, if xBestIndex sets the SQLITE_INDEX_SCAN_UNIQUE flag, then +** SQLite also assumes that if a call to the xUpdate() method is made as +** part of the same statement to delete or update a virtual table row and the +** implementation returns SQLITE_CONSTRAINT, then there is no need to rollback +** any database changes. In other words, if the xUpdate() returns +** SQLITE_CONSTRAINT, the database contents must be exactly as they were +** before xUpdate was called. By contrast, if SQLITE_INDEX_SCAN_UNIQUE is not +** set and xUpdate returns SQLITE_CONSTRAINT, any database changes made by +** the xUpdate method are automatically rolled back by SQLite. +** ** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info ** structure for SQLite version 3.8.2. If a virtual table extension is ** used with an SQLite version earlier than 3.8.2, the results of attempting ** to read or write the estimatedRows field are undefined (but are likely ** to included crashing the application). The estimatedRows field should ** therefore only be used if [sqlite3_libversion_number()] returns a -** value greater than or equal to 3008002. +** value greater than or equal to 3008002. Similarly, the idxFlags field +** was added for version 3.9.0. It may therefore only be used if +** sqlite3_libversion_number() returns a value greater than or equal to +** 3009000. */ struct sqlite3_index_info { /* Inputs */ @@ -5609,9 +5686,16 @@ struct sqlite3_index_info { double estimatedCost; /* Estimated cost of using this index */ /* Fields below are only available in SQLite 3.8.2 and later */ sqlite3_int64 estimatedRows; /* Estimated number of rows returned */ + /* Fields below are only available in SQLite 3.9.0 and later */ + int idxFlags; /* Mask of SQLITE_INDEX_SCAN_* flags */ }; /* +** CAPI3REF: Virtual Table Scan Flags +*/ +#define SQLITE_INDEX_SCAN_UNIQUE 1 /* Scan visits at most 1 row */ + +/* ** CAPI3REF: Virtual Table Constraint Operator Codes ** ** These macros defined the allowed values for the @@ -5872,7 +5956,7 @@ SQLITE_API int SQLITE_STDCALL sqlite3_blob_open( ** ** ^This function sets the database handle error code and message. */ -SQLITE_API SQLITE_EXPERIMENTAL int SQLITE_STDCALL sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64); +SQLITE_API int SQLITE_STDCALL sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64); /* ** CAPI3REF: Close A BLOB Handle @@ -6068,6 +6152,9 @@ SQLITE_API int SQLITE_STDCALL sqlite3_vfs_unregister(sqlite3_vfs*); ** <li> SQLITE_MUTEX_STATIC_APP1 ** <li> SQLITE_MUTEX_STATIC_APP2 ** <li> SQLITE_MUTEX_STATIC_APP3 +** <li> SQLITE_MUTEX_STATIC_VFS1 +** <li> SQLITE_MUTEX_STATIC_VFS2 +** <li> SQLITE_MUTEX_STATIC_VFS3 ** </ul> ** ** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) @@ -6269,6 +6356,9 @@ SQLITE_API int SQLITE_STDCALL sqlite3_mutex_notheld(sqlite3_mutex*); #define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */ +#define SQLITE_MUTEX_STATIC_VFS1 11 /* For use by built-in VFS */ +#define SQLITE_MUTEX_STATIC_VFS2 12 /* For use by extension VFS */ +#define SQLITE_MUTEX_STATIC_VFS3 13 /* For use by application VFS */ /* ** CAPI3REF: Retrieve the mutex for a database connection @@ -7682,7 +7772,7 @@ SQLITE_API int SQLITE_STDCALL sqlite3_vtab_on_conflict(sqlite3 *); ** ** See also: [sqlite3_stmt_scanstatus_reset()] */ -SQLITE_API SQLITE_EXPERIMENTAL int SQLITE_STDCALL sqlite3_stmt_scanstatus( +SQLITE_API int SQLITE_STDCALL sqlite3_stmt_scanstatus( sqlite3_stmt *pStmt, /* Prepared statement for which info desired */ int idx, /* Index of loop to report on */ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */ @@ -7698,7 +7788,7 @@ SQLITE_API SQLITE_EXPERIMENTAL int SQLITE_STDCALL sqlite3_stmt_scanstatus( ** This API is only available if the library is built with pre-processor ** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined. */ -SQLITE_API SQLITE_EXPERIMENTAL void SQLITE_STDCALL sqlite3_stmt_scanstatus_reset(sqlite3_stmt*); +SQLITE_API void SQLITE_STDCALL sqlite3_stmt_scanstatus_reset(sqlite3_stmt*); /* @@ -7813,6 +7903,8 @@ struct sqlite3_rtree_query_info { int eParentWithin; /* Visibility of parent node */ int eWithin; /* OUT: Visiblity */ sqlite3_rtree_dbl rScore; /* OUT: Write the score here */ + /* The following fields are only available in 3.8.11 and later */ + sqlite3_value **apSqlParam; /* Original SQL values of parameters */ }; /* @@ -7829,3 +7921,523 @@ struct sqlite3_rtree_query_info { #endif /* ifndef _SQLITE3RTREE_H_ */ +/* +** 2014 May 31 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** Interfaces to extend FTS5. Using the interfaces defined in this file, +** FTS5 may be extended with: +** +** * custom tokenizers, and +** * custom auxiliary functions. +*/ + + +#ifndef _FTS5_H +#define _FTS5_H + + +#ifdef __cplusplus +extern "C" { +#endif + +/************************************************************************* +** CUSTOM AUXILIARY FUNCTIONS +** +** Virtual table implementations may overload SQL functions by implementing +** the sqlite3_module.xFindFunction() method. +*/ + +typedef struct Fts5ExtensionApi Fts5ExtensionApi; +typedef struct Fts5Context Fts5Context; +typedef struct Fts5PhraseIter Fts5PhraseIter; + +typedef void (*fts5_extension_function)( + const Fts5ExtensionApi *pApi, /* API offered by current FTS version */ + Fts5Context *pFts, /* First arg to pass to pApi functions */ + sqlite3_context *pCtx, /* Context for returning result/error */ + int nVal, /* Number of values in apVal[] array */ + sqlite3_value **apVal /* Array of trailing arguments */ +); + +struct Fts5PhraseIter { + const unsigned char *a; + const unsigned char *b; +}; + +/* +** EXTENSION API FUNCTIONS +** +** xUserData(pFts): +** Return a copy of the context pointer the extension function was +** registered with. +** +** xColumnTotalSize(pFts, iCol, pnToken): +** If parameter iCol is less than zero, set output variable *pnToken +** to the total number of tokens in the FTS5 table. Or, if iCol is +** non-negative but less than the number of columns in the table, return +** the total number of tokens in column iCol, considering all rows in +** the FTS5 table. +** +** If parameter iCol is greater than or equal to the number of columns +** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g. +** an OOM condition or IO error), an appropriate SQLite error code is +** returned. +** +** xColumnCount(pFts): +** Return the number of columns in the table. +** +** xColumnSize(pFts, iCol, pnToken): +** If parameter iCol is less than zero, set output variable *pnToken +** to the total number of tokens in the current row. Or, if iCol is +** non-negative but less than the number of columns in the table, set +** *pnToken to the number of tokens in column iCol of the current row. +** +** If parameter iCol is greater than or equal to the number of columns +** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g. +** an OOM condition or IO error), an appropriate SQLite error code is +** returned. +** +** xColumnText: +** This function attempts to retrieve the text of column iCol of the +** current document. If successful, (*pz) is set to point to a buffer +** containing the text in utf-8 encoding, (*pn) is set to the size in bytes +** (not characters) of the buffer and SQLITE_OK is returned. Otherwise, +** if an error occurs, an SQLite error code is returned and the final values +** of (*pz) and (*pn) are undefined. +** +** xPhraseCount: +** Returns the number of phrases in the current query expression. +** +** xPhraseSize: +** Returns the number of tokens in phrase iPhrase of the query. Phrases +** are numbered starting from zero. +** +** xInstCount: +** Set *pnInst to the total number of occurrences of all phrases within +** the query within the current row. Return SQLITE_OK if successful, or +** an error code (i.e. SQLITE_NOMEM) if an error occurs. +** +** xInst: +** Query for the details of phrase match iIdx within the current row. +** Phrase matches are numbered starting from zero, so the iIdx argument +** should be greater than or equal to zero and smaller than the value +** output by xInstCount(). +** +** Returns SQLITE_OK if successful, or an error code (i.e. SQLITE_NOMEM) +** if an error occurs. +** +** xRowid: +** Returns the rowid of the current row. +** +** xTokenize: +** Tokenize text using the tokenizer belonging to the FTS5 table. +** +** xQueryPhrase(pFts5, iPhrase, pUserData, xCallback): +** This API function is used to query the FTS table for phrase iPhrase +** of the current query. Specifically, a query equivalent to: +** +** ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid +** +** with $p set to a phrase equivalent to the phrase iPhrase of the +** current query is executed. For each row visited, the callback function +** passed as the fourth argument is invoked. The context and API objects +** passed to the callback function may be used to access the properties of +** each matched row. Invoking Api.xUserData() returns a copy of the pointer +** passed as the third argument to pUserData. +** +** If the callback function returns any value other than SQLITE_OK, the +** query is abandoned and the xQueryPhrase function returns immediately. +** If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK. +** Otherwise, the error code is propagated upwards. +** +** If the query runs to completion without incident, SQLITE_OK is returned. +** Or, if some error occurs before the query completes or is aborted by +** the callback, an SQLite error code is returned. +** +** +** xSetAuxdata(pFts5, pAux, xDelete) +** +** Save the pointer passed as the second argument as the extension functions +** "auxiliary data". The pointer may then be retrieved by the current or any +** future invocation of the same fts5 extension function made as part of +** of the same MATCH query using the xGetAuxdata() API. +** +** Each extension function is allocated a single auxiliary data slot for +** each FTS query (MATCH expression). If the extension function is invoked +** more than once for a single FTS query, then all invocations share a +** single auxiliary data context. +** +** If there is already an auxiliary data pointer when this function is +** invoked, then it is replaced by the new pointer. If an xDelete callback +** was specified along with the original pointer, it is invoked at this +** point. +** +** The xDelete callback, if one is specified, is also invoked on the +** auxiliary data pointer after the FTS5 query has finished. +** +** If an error (e.g. an OOM condition) occurs within this function, an +** the auxiliary data is set to NULL and an error code returned. If the +** xDelete parameter was not NULL, it is invoked on the auxiliary data +** pointer before returning. +** +** +** xGetAuxdata(pFts5, bClear) +** +** Returns the current auxiliary data pointer for the fts5 extension +** function. See the xSetAuxdata() method for details. +** +** If the bClear argument is non-zero, then the auxiliary data is cleared +** (set to NULL) before this function returns. In this case the xDelete, +** if any, is not invoked. +** +** +** xRowCount(pFts5, pnRow) +** +** This function is used to retrieve the total number of rows in the table. +** In other words, the same value that would be returned by: +** +** SELECT count(*) FROM ftstable; +** +** xPhraseFirst() +** This function is used, along with type Fts5PhraseIter and the xPhraseNext +** method, to iterate through all instances of a single query phrase within +** the current row. This is the same information as is accessible via the +** xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient +** to use, this API may be faster under some circumstances. To iterate +** through instances of phrase iPhrase, use the following code: +** +** Fts5PhraseIter iter; +** int iCol, iOff; +** for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff); +** iOff>=0; +** pApi->xPhraseNext(pFts, &iter, &iCol, &iOff) +** ){ +** // An instance of phrase iPhrase at offset iOff of column iCol +** } +** +** The Fts5PhraseIter structure is defined above. Applications should not +** modify this structure directly - it should only be used as shown above +** with the xPhraseFirst() and xPhraseNext() API methods. +** +** xPhraseNext() +** See xPhraseFirst above. +*/ +struct Fts5ExtensionApi { + int iVersion; /* Currently always set to 1 */ + + void *(*xUserData)(Fts5Context*); + + int (*xColumnCount)(Fts5Context*); + int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow); + int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken); + + int (*xTokenize)(Fts5Context*, + const char *pText, int nText, /* Text to tokenize */ + void *pCtx, /* Context passed to xToken() */ + int (*xToken)(void*, int, const char*, int, int, int) /* Callback */ + ); + + int (*xPhraseCount)(Fts5Context*); + int (*xPhraseSize)(Fts5Context*, int iPhrase); + + int (*xInstCount)(Fts5Context*, int *pnInst); + int (*xInst)(Fts5Context*, int iIdx, int *piPhrase, int *piCol, int *piOff); + + sqlite3_int64 (*xRowid)(Fts5Context*); + int (*xColumnText)(Fts5Context*, int iCol, const char **pz, int *pn); + int (*xColumnSize)(Fts5Context*, int iCol, int *pnToken); + + int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData, + int(*)(const Fts5ExtensionApi*,Fts5Context*,void*) + ); + int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*)); + void *(*xGetAuxdata)(Fts5Context*, int bClear); + + void (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*); + void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff); +}; + +/* +** CUSTOM AUXILIARY FUNCTIONS +*************************************************************************/ + +/************************************************************************* +** CUSTOM TOKENIZERS +** +** Applications may also register custom tokenizer types. A tokenizer +** is registered by providing fts5 with a populated instance of the +** following structure. All structure methods must be defined, setting +** any member of the fts5_tokenizer struct to NULL leads to undefined +** behaviour. The structure methods are expected to function as follows: +** +** xCreate: +** This function is used to allocate and inititalize a tokenizer instance. +** A tokenizer instance is required to actually tokenize text. +** +** The first argument passed to this function is a copy of the (void*) +** pointer provided by the application when the fts5_tokenizer object +** was registered with FTS5 (the third argument to xCreateTokenizer()). +** The second and third arguments are an array of nul-terminated strings +** containing the tokenizer arguments, if any, specified following the +** tokenizer name as part of the CREATE VIRTUAL TABLE statement used +** to create the FTS5 table. +** +** The final argument is an output variable. If successful, (*ppOut) +** should be set to point to the new tokenizer handle and SQLITE_OK +** returned. If an error occurs, some value other than SQLITE_OK should +** be returned. In this case, fts5 assumes that the final value of *ppOut +** is undefined. +** +** xDelete: +** This function is invoked to delete a tokenizer handle previously +** allocated using xCreate(). Fts5 guarantees that this function will +** be invoked exactly once for each successful call to xCreate(). +** +** xTokenize: +** This function is expected to tokenize the nText byte string indicated +** by argument pText. pText may or may not be nul-terminated. The first +** argument passed to this function is a pointer to an Fts5Tokenizer object +** returned by an earlier call to xCreate(). +** +** The second argument indicates the reason that FTS5 is requesting +** tokenization of the supplied text. This is always one of the following +** four values: +** +** <ul><li> <b>FTS5_TOKENIZE_DOCUMENT</b> - A document is being inserted into +** or removed from the FTS table. The tokenizer is being invoked to +** determine the set of tokens to add to (or delete from) the +** FTS index. +** +** <li> <b>FTS5_TOKENIZE_QUERY</b> - A MATCH query is being executed +** against the FTS index. The tokenizer is being called to tokenize +** a bareword or quoted string specified as part of the query. +** +** <li> <b>(FTS5_TOKENIZE_QUERY | FTS5_TOKENIZE_PREFIX)</b> - Same as +** FTS5_TOKENIZE_QUERY, except that the bareword or quoted string is +** followed by a "*" character, indicating that the last token +** returned by the tokenizer will be treated as a token prefix. +** +** <li> <b>FTS5_TOKENIZE_AUX</b> - The tokenizer is being invoked to +** satisfy an fts5_api.xTokenize() request made by an auxiliary +** function. Or an fts5_api.xColumnSize() request made by the same +** on a columnsize=0 database. +** </ul> +** +** For each token in the input string, the supplied callback xToken() must +** be invoked. The first argument to it should be a copy of the pointer +** passed as the second argument to xTokenize(). The third and fourth +** arguments are a pointer to a buffer containing the token text, and the +** size of the token in bytes. The 4th and 5th arguments are the byte offsets +** of the first byte of and first byte immediately following the text from +** which the token is derived within the input. +** +** The second argument passed to the xToken() callback ("tflags") should +** normally be set to 0. The exception is if the tokenizer supports +** synonyms. In this case see the discussion below for details. +** +** FTS5 assumes the xToken() callback is invoked for each token in the +** order that they occur within the input text. +** +** If an xToken() callback returns any value other than SQLITE_OK, then +** the tokenization should be abandoned and the xTokenize() method should +** immediately return a copy of the xToken() return value. Or, if the +** input buffer is exhausted, xTokenize() should return SQLITE_OK. Finally, +** if an error occurs with the xTokenize() implementation itself, it +** may abandon the tokenization and return any error code other than +** SQLITE_OK or SQLITE_DONE. +** +** SYNONYM SUPPORT +** +** Custom tokenizers may also support synonyms. Consider a case in which a +** user wishes to query for a phrase such as "first place". Using the +** built-in tokenizers, the FTS5 query 'first + place' will match instances +** of "first place" within the document set, but not alternative forms +** such as "1st place". In some applications, it would be better to match +** all instances of "first place" or "1st place" regardless of which form +** the user specified in the MATCH query text. +** +** There are several ways to approach this in FTS5: +** +** <ol><li> By mapping all synonyms to a single token. In this case, the +** In the above example, this means that the tokenizer returns the +** same token for inputs "first" and "1st". Say that token is in +** fact "first", so that when the user inserts the document "I won +** 1st place" entries are added to the index for tokens "i", "won", +** "first" and "place". If the user then queries for '1st + place', +** the tokenizer substitutes "first" for "1st" and the query works +** as expected. +** +** <li> By adding multiple synonyms for a single term to the FTS index. +** In this case, when tokenizing query text, the tokenizer may +** provide multiple synonyms for a single term within the document. +** FTS5 then queries the index for each synonym individually. For +** example, faced with the query: +** +** <codeblock> +** ... MATCH 'first place'</codeblock> +** +** the tokenizer offers both "1st" and "first" as synonyms for the +** first token in the MATCH query and FTS5 effectively runs a query +** similar to: +** +** <codeblock> +** ... MATCH '(first OR 1st) place'</codeblock> +** +** except that, for the purposes of auxiliary functions, the query +** still appears to contain just two phrases - "(first OR 1st)" +** being treated as a single phrase. +** +** <li> By adding multiple synonyms for a single term to the FTS index. +** Using this method, when tokenizing document text, the tokenizer +** provides multiple synonyms for each token. So that when a +** document such as "I won first place" is tokenized, entries are +** added to the FTS index for "i", "won", "first", "1st" and +** "place". +** +** This way, even if the tokenizer does not provide synonyms +** when tokenizing query text (it should not - to do would be +** inefficient), it doesn't matter if the user queries for +** 'first + place' or '1st + place', as there are entires in the +** FTS index corresponding to both forms of the first token. +** </ol> +** +** Whether it is parsing document or query text, any call to xToken that +** specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit +** is considered to supply a synonym for the previous token. For example, +** when parsing the document "I won first place", a tokenizer that supports +** synonyms would call xToken() 5 times, as follows: +** +** <codeblock> +** xToken(pCtx, 0, "i", 1, 0, 1); +** xToken(pCtx, 0, "won", 3, 2, 5); +** xToken(pCtx, 0, "first", 5, 6, 11); +** xToken(pCtx, FTS5_TOKEN_COLOCATED, "1st", 3, 6, 11); +** xToken(pCtx, 0, "place", 5, 12, 17); +**</codeblock> +** +** It is an error to specify the FTS5_TOKEN_COLOCATED flag the first time +** xToken() is called. Multiple synonyms may be specified for a single token +** by making multiple calls to xToken(FTS5_TOKEN_COLOCATED) in sequence. +** There is no limit to the number of synonyms that may be provided for a +** single token. +** +** In many cases, method (1) above is the best approach. It does not add +** extra data to the FTS index or require FTS5 to query for multiple terms, +** so it is efficient in terms of disk space and query speed. However, it +** does not support prefix queries very well. If, as suggested above, the +** token "first" is subsituted for "1st" by the tokenizer, then the query: +** +** <codeblock> +** ... MATCH '1s*'</codeblock> +** +** will not match documents that contain the token "1st" (as the tokenizer +** will probably not map "1s" to any prefix of "first"). +** +** For full prefix support, method (3) may be preferred. In this case, +** because the index contains entries for both "first" and "1st", prefix +** queries such as 'fi*' or '1s*' will match correctly. However, because +** extra entries are added to the FTS index, this method uses more space +** within the database. +** +** Method (2) offers a midpoint between (1) and (3). Using this method, +** a query such as '1s*' will match documents that contain the literal +** token "1st", but not "first" (assuming the tokenizer is not able to +** provide synonyms for prefixes). However, a non-prefix query like '1st' +** will match against "1st" and "first". This method does not require +** extra disk space, as no extra entries are added to the FTS index. +** On the other hand, it may require more CPU cycles to run MATCH queries, +** as separate queries of the FTS index are required for each synonym. +** +** When using methods (2) or (3), it is important that the tokenizer only +** provide synonyms when tokenizing document text (method (2)) or query +** text (method (3)), not both. Doing so will not cause any errors, but is +** inefficient. +*/ +typedef struct Fts5Tokenizer Fts5Tokenizer; +typedef struct fts5_tokenizer fts5_tokenizer; +struct fts5_tokenizer { + int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut); + void (*xDelete)(Fts5Tokenizer*); + int (*xTokenize)(Fts5Tokenizer*, + void *pCtx, + int flags, /* Mask of FTS5_TOKENIZE_* flags */ + const char *pText, int nText, + int (*xToken)( + void *pCtx, /* Copy of 2nd argument to xTokenize() */ + int tflags, /* Mask of FTS5_TOKEN_* flags */ + const char *pToken, /* Pointer to buffer containing token */ + int nToken, /* Size of token in bytes */ + int iStart, /* Byte offset of token within input text */ + int iEnd /* Byte offset of end of token within input text */ + ) + ); +}; + +/* Flags that may be passed as the third argument to xTokenize() */ +#define FTS5_TOKENIZE_QUERY 0x0001 +#define FTS5_TOKENIZE_PREFIX 0x0002 +#define FTS5_TOKENIZE_DOCUMENT 0x0004 +#define FTS5_TOKENIZE_AUX 0x0008 + +/* Flags that may be passed by the tokenizer implementation back to FTS5 +** as the third argument to the supplied xToken callback. */ +#define FTS5_TOKEN_COLOCATED 0x0001 /* Same position as prev. token */ + +/* +** END OF CUSTOM TOKENIZERS +*************************************************************************/ + +/************************************************************************* +** FTS5 EXTENSION REGISTRATION API +*/ +typedef struct fts5_api fts5_api; +struct fts5_api { + int iVersion; /* Currently always set to 2 */ + + /* Create a new tokenizer */ + int (*xCreateTokenizer)( + fts5_api *pApi, + const char *zName, + void *pContext, + fts5_tokenizer *pTokenizer, + void (*xDestroy)(void*) + ); + + /* Find an existing tokenizer */ + int (*xFindTokenizer)( + fts5_api *pApi, + const char *zName, + void **ppContext, + fts5_tokenizer *pTokenizer + ); + + /* Create a new auxiliary function */ + int (*xCreateFunction)( + fts5_api *pApi, + const char *zName, + void *pContext, + fts5_extension_function xFunction, + void (*xDestroy)(void*) + ); +}; + +/* +** END OF REGISTRATION API +*************************************************************************/ + +#ifdef __cplusplus +} /* end of the 'extern "C"' block */ +#endif + +#endif /* _FTS5_H */ + + |