summaryrefslogtreecommitdiff
path: root/src/segment.c
blob: 27dde010be79c49b4bba66e9bcdf89882c682d68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/* ----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include "mimalloc-atomic.h"

#include <string.h>  // memset
#include <stdio.h>

#define MI_PAGE_HUGE_ALIGN  (256*1024)

/* -----------------------------------------------------------
  Segment allocation
  We allocate pages inside big OS allocated "segments"
  (4mb on 64-bit). This is to avoid splitting VMA's on Linux
  and reduce fragmentation on other OS's. Each thread
  owns its own segments.

  Currently we have:
  - small pages (64kb), 32 in one segment
  - large pages (4mb), 1 in one segment
  - huge blocks > MI_LARGE_SIZE_MAX (512kb) are directly allocated by the OS

  In any case the memory for a segment is virtual and only
  committed on demand (i.e. we are careful to not touch the memory
  until we actually allocate a block there)

  If a  thread ends, it "abandons" pages with used blocks
  and there is an abandoned segment list whose segments can
  be reclaimed by still running threads, much like work-stealing.
----------------------------------------------------------- */


#if (MI_DEBUG > 1)
static bool mi_segment_is_valid(mi_segment_t* segment) {
  mi_assert_internal(segment != NULL);
  mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
  mi_assert_internal(segment->used <= segment->capacity);
  mi_assert_internal(segment->abandoned <= segment->used);
  size_t nfree = 0;
  for (size_t i = 0; i < segment->capacity; i++) {
    if (!segment->pages[i].segment_in_use) nfree++;
  }
  mi_assert_internal(nfree + segment->used == segment->capacity);
  mi_assert_internal(segment->thread_id == _mi_thread_id()); // or 0
  return true;
}
#endif

/* -----------------------------------------------------------
  Queue of segments containing free pages
----------------------------------------------------------- */


#if (MI_DEBUG>1)
static bool mi_segment_queue_contains(const mi_segment_queue_t* queue, mi_segment_t* segment) {
  mi_assert_internal(segment != NULL);
  mi_segment_t* list = queue->first;
  while (list != NULL) {
    if (list == segment) break;
    mi_assert_internal(list->next==NULL || list->next->prev == list);
    mi_assert_internal(list->prev==NULL || list->prev->next == list);
    list = list->next;
  }
  return (list == segment);
}
#endif

// quick test to see if a segment is in the free pages queue
static bool mi_segment_is_in_free_queue(mi_segment_t* segment, mi_segments_tld_t* tld) {
  bool in_queue = (segment->next != NULL || segment->prev != NULL || tld->small_free.first == segment);
  if (in_queue) {
    mi_assert(segment->page_kind == MI_PAGE_SMALL); // for now we only support small pages
    mi_assert_expensive(mi_segment_queue_contains(&tld->small_free, segment));
  }
  return in_queue;
}

static bool mi_segment_queue_is_empty(const mi_segment_queue_t* queue) {
  return (queue->first == NULL);
}

static void mi_segment_queue_remove(mi_segment_queue_t* queue, mi_segment_t* segment) {
  mi_assert_expensive(mi_segment_queue_contains(queue, segment));
  if (segment->prev != NULL) segment->prev->next = segment->next;
  if (segment->next != NULL) segment->next->prev = segment->prev;
  if (segment == queue->first) queue->first = segment->next;
  if (segment == queue->last)  queue->last = segment->prev;
  segment->next = NULL;
  segment->prev = NULL;
}

static void mi_segment_enqueue(mi_segment_queue_t* queue, mi_segment_t* segment) {
  mi_assert_expensive(!mi_segment_queue_contains(queue, segment));
  segment->next = NULL;
  segment->prev = queue->last;
  if (queue->last != NULL) {
    mi_assert_internal(queue->last->next == NULL);
    queue->last->next = segment;
    queue->last = segment;
  }
  else {
    queue->last = queue->first = segment;
  }
}

static void mi_segment_queue_insert_before(mi_segment_queue_t* queue, mi_segment_t* elem, mi_segment_t* segment) {
  mi_assert_expensive(elem==NULL || mi_segment_queue_contains(queue, elem));
  mi_assert_expensive(segment != NULL && !mi_segment_queue_contains(queue, segment));

  segment->prev = (elem == NULL ? queue->last : elem->prev);
  if (segment->prev != NULL) segment->prev->next = segment;
                        else queue->first = segment;
  segment->next = elem;
  if (segment->next != NULL) segment->next->prev = segment;
                        else queue->last = segment;
}


// Start of the page available memory; can be used on uninitialized pages (only `segment_idx` must be set)
uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t block_size, size_t* page_size)
{
  size_t   psize = (segment->page_kind == MI_PAGE_HUGE ? segment->segment_size : (size_t)1 << segment->page_shift);
  uint8_t* p     = (uint8_t*)segment + page->segment_idx*psize;

 if (page->segment_idx == 0) {
   // the first page starts after the segment info (and possible guard page)
   p     += segment->segment_info_size;
   psize -= segment->segment_info_size;
   // for small objects, ensure the page start is aligned with the block size (PR#66 by kickunderscore)
   if (block_size > 0 && segment->page_kind == MI_PAGE_SMALL) {
     size_t adjust = block_size - ((uintptr_t)p % block_size);
     if (adjust < block_size) {
       p     += adjust;
       psize -= adjust;
     }
     mi_assert_internal((uintptr_t)p % block_size == 0);
   }
  }
  long secure = mi_option_get(mi_option_secure);
  if (secure > 1 || (secure == 1 && page->segment_idx == segment->capacity - 1)) {
    // secure == 1: the last page has an os guard page at the end
    // secure >  1: every page has an os guard page
    psize -= _mi_os_page_size();
  }
  
  if (page_size != NULL) *page_size = psize;
  mi_assert_internal(_mi_ptr_page(p) == page);
  mi_assert_internal(_mi_ptr_segment(p) == segment);
  return p;
}

static size_t mi_segment_size(size_t capacity, size_t required, size_t* pre_size, size_t* info_size) {
  /*
  if (mi_option_is_enabled(mi_option_secure)) {
    // always reserve maximally so the protection falls on
    // the same address area, as we need to reuse them from the caches interchangably.
    capacity = MI_SMALL_PAGES_PER_SEGMENT;
  }
  */
  size_t minsize   = sizeof(mi_segment_t) + ((capacity - 1) * sizeof(mi_page_t)) + 16 /* padding */;
  size_t guardsize = 0;
  size_t isize     = 0;

  if (!mi_option_is_enabled(mi_option_secure)) {
    // normally no guard pages
    isize = _mi_align_up(minsize, (16 > MI_MAX_ALIGN_SIZE ? 16 : MI_MAX_ALIGN_SIZE));
  }
  else {
    // in secure mode, we set up a protected page in between the segment info
    // and the page data (and one at the end of the segment)
    size_t page_size = _mi_os_page_size();
    isize = _mi_align_up(minsize, page_size);
    guardsize = page_size;
    required = _mi_align_up(required, page_size);
  }
;
  if (info_size != NULL) *info_size = isize;
  if (pre_size != NULL)  *pre_size  = isize + guardsize;
  return (required==0 ? MI_SEGMENT_SIZE : _mi_align_up( required + isize + 2*guardsize, MI_PAGE_HUGE_ALIGN) );
}


/* -----------------------------------------------------------
Segment caches
We keep a small segment cache per thread to avoid repeated allocation
and free in the OS if a program allocates memory and then frees
all again repeatedly. (We tried a one-element cache but that
proves to be too small for certain workloads).
----------------------------------------------------------- */

static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) {
  if (segment_size>=0) mi_stat_increase(tld->stats->segments,1);
                  else mi_stat_decrease(tld->stats->segments,1);
  tld->current_size += segment_size;
  if (tld->current_size > tld->peak_size) tld->peak_size = tld->current_size;
}


static void mi_segment_os_free(mi_segment_t* segment, size_t segment_size, mi_segments_tld_t* tld) {
  mi_segments_track_size(-((long)segment_size),tld);
  _mi_os_free(segment, segment_size,tld->stats);
}

// The segment cache is limited to be at most 1/8 of the peak size
// in use (and no more than 32)
#define MI_SEGMENT_CACHE_MAX (32)
#define MI_SEGMENT_CACHE_FRACTION (8)


// Get a segment of at least `required` size.
// If `required == MI_SEGMENT_SIZE` the `segment_size` will match exactly
static mi_segment_t* _mi_segment_cache_findx(mi_segments_tld_t* tld, size_t required, bool reverse) {
  mi_assert_internal(required % _mi_os_page_size() == 0);
  mi_segment_t* segment = (reverse ? tld->cache.last : tld->cache.first);
  while (segment != NULL) {
    if (segment->segment_size >= required) {
      tld->cache_count--;
      tld->cache_size -= segment->segment_size;
      mi_segment_queue_remove(&tld->cache, segment);
      // exact size match?
      if (required==0 || segment->segment_size == required) {
        return segment;
      }
      // not more than 25% waste and on a huge page segment? (in that case the segment size does not need to match required)
      else if (required != MI_SEGMENT_SIZE && segment->segment_size - (segment->segment_size/4) <= required) {
        return segment;
      }
      // try to shrink the memory to match exactly
      else {
        if (mi_option_is_enabled(mi_option_secure)) {
          _mi_os_unprotect(segment, segment->segment_size);
        }
        if (_mi_os_shrink(segment, segment->segment_size, required)) {
          tld->current_size -= segment->segment_size;
          tld->current_size += required;
          segment->segment_size = required;
          return segment;
        }
        else {
          // if that all fails, we give up
          mi_segment_os_free(segment,segment->segment_size,tld);
          return NULL;
        }
      }
    }
    segment = (reverse ? segment->prev : segment->next);
  }
  return NULL;
}

static mi_segment_t* mi_segment_cache_find(mi_segments_tld_t* tld, size_t required) {
  return _mi_segment_cache_findx(tld,required,false);
}

static mi_segment_t* mi_segment_cache_evict(mi_segments_tld_t* tld) {
  // TODO: random eviction instead?
  return _mi_segment_cache_findx(tld, 0, true /* from the end */);
}

static bool mi_segment_cache_full(mi_segments_tld_t* tld) {
  if (tld->cache_count < MI_SEGMENT_CACHE_MAX &&
      tld->cache_size*MI_SEGMENT_CACHE_FRACTION < tld->peak_size) return false;
  // take the opportunity to reduce the segment cache if it is too large (now)
  while (tld->cache_size*MI_SEGMENT_CACHE_FRACTION >= tld->peak_size + 1) {
    mi_segment_t* segment = mi_segment_cache_evict(tld);
    mi_assert_internal(segment != NULL);
    if (segment != NULL) mi_segment_os_free(segment, segment->segment_size, tld);
  }
  return true;
}

static bool mi_segment_cache_insert(mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_assert_internal(segment->next==NULL && segment->prev==NULL);
  mi_assert_internal(!mi_segment_is_in_free_queue(segment,tld));
  mi_assert_expensive(!mi_segment_queue_contains(&tld->cache, segment));
  if (mi_segment_cache_full(tld)) return false;
  if (mi_option_is_enabled(mi_option_cache_reset) && !mi_option_is_enabled(mi_option_page_reset)) {
    _mi_os_reset((uint8_t*)segment + segment->segment_info_size, segment->segment_size - segment->segment_info_size);
  }
  // insert ordered
  mi_segment_t* seg = tld->cache.first;
  while (seg != NULL && seg->segment_size < segment->segment_size) {
    seg = seg->next;
  }
  mi_segment_queue_insert_before( &tld->cache, seg, segment );
  tld->cache_count++;
  tld->cache_size += segment->segment_size;
  return true;
}

// called by ending threads to free cached segments
void _mi_segment_thread_collect(mi_segments_tld_t* tld) {
  mi_segment_t* segment;
  while ((segment = mi_segment_cache_find(tld,0)) != NULL) {
    mi_segment_os_free(segment, MI_SEGMENT_SIZE, tld);
  }
  mi_assert_internal(tld->cache_count == 0 && tld->cache_size == 0);
  mi_assert_internal(mi_segment_queue_is_empty(&tld->cache));
}

/* -----------------------------------------------------------
   Segment allocation
----------------------------------------------------------- */


// Allocate a segment from the OS aligned to `MI_SEGMENT_SIZE` .
static mi_segment_t* mi_segment_alloc( size_t required, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
{
  // calculate needed sizes first

  size_t capacity;
  if (page_kind == MI_PAGE_HUGE) {
    mi_assert_internal(page_shift==MI_SEGMENT_SHIFT && required > 0);
    capacity = 1;
  }
  else {
    mi_assert_internal(required==0);
    size_t page_size = (size_t)1 << page_shift;
    capacity = MI_SEGMENT_SIZE / page_size;
    mi_assert_internal(MI_SEGMENT_SIZE % page_size == 0);
    mi_assert_internal(capacity >= 1 && capacity <= MI_SMALL_PAGES_PER_SEGMENT);
  }
  size_t info_size;
  size_t pre_size;
  size_t segment_size = mi_segment_size( capacity, required, &pre_size, &info_size);
  mi_assert_internal(segment_size >= required);
  size_t page_size = (page_kind == MI_PAGE_HUGE ? segment_size : (size_t)1 << page_shift);

  // Allocate the segment
  mi_segment_t* segment = NULL;

  // try to get it from our caches
  segment = mi_segment_cache_find(tld,segment_size);
  mi_assert_internal(segment == NULL ||
                     (segment_size==MI_SEGMENT_SIZE && segment_size == segment->segment_size) ||
                      (segment_size!=MI_SEGMENT_SIZE && segment_size <= segment->segment_size));
  if (segment != NULL && mi_option_is_enabled(mi_option_secure) && (segment->page_kind != page_kind || segment->segment_size != segment_size)) {
    _mi_os_unprotect(segment,segment->segment_size);
  }

  // and otherwise allocate it from the OS
  if (segment == NULL) {
    segment = (mi_segment_t*)_mi_os_alloc_aligned(segment_size, MI_SEGMENT_SIZE, os_tld);
    if (segment == NULL) return NULL;
    mi_segments_track_size((long)segment_size,tld);
  }

  mi_assert_internal((uintptr_t)segment % MI_SEGMENT_SIZE == 0);

  memset(segment, 0, info_size);
  if (mi_option_is_enabled(mi_option_secure)) {
    // in secure mode, we set up a protected page in between the segment info
    // and the page data
    mi_assert_internal( info_size == pre_size - _mi_os_page_size() && info_size % _mi_os_page_size() == 0);
    _mi_os_protect( (uint8_t*)segment + info_size, (pre_size - info_size) );
    size_t os_page_size = _mi_os_page_size();
    if (mi_option_get(mi_option_secure) <= 1) {
      // and protect the last page too
      _mi_os_protect( (uint8_t*)segment + segment_size - os_page_size, os_page_size );
    }
    else {
      // protect every page
      for (size_t i = 0; i < capacity; i++) {
        _mi_os_protect( (uint8_t*)segment + (i+1)*page_size - os_page_size, os_page_size );
      }
    }
  }

  segment->page_kind  = page_kind;
  segment->capacity   = capacity;
  segment->page_shift = page_shift;
  segment->segment_size = segment_size;
  segment->segment_info_size = pre_size;
  segment->thread_id  = _mi_thread_id();
  segment->cookie = _mi_ptr_cookie(segment);
  for (uint8_t i = 0; i < segment->capacity; i++) {
    segment->pages[i].segment_idx = i;
  }
  mi_stat_increase(tld->stats->committed, segment->segment_info_size);
  //fprintf(stderr,"mimalloc: alloc segment at %p\n", (void*)segment);
  return segment;
}

#if MI_STAT
// Available memory in a page
static size_t mi_page_size(const mi_page_t* page) {
  size_t psize;
  _mi_page_start(_mi_page_segment(page), page, &psize);
  return psize;
}
#endif

static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t* tld) {
  //fprintf(stderr,"mimalloc: free segment at %p\n", (void*)segment);
  mi_assert(segment != NULL);
  if (mi_segment_is_in_free_queue(segment,tld)) {
    if (segment->page_kind != MI_PAGE_SMALL) {
      fprintf(stderr, "mimalloc: expecting small segment: %i, %p, %p, %p\n", segment->page_kind, segment->prev, segment->next, tld->small_free.first);
      fflush(stderr);
    }
    else {
      mi_assert_internal(segment->page_kind == MI_PAGE_SMALL); // for now we only support small pages
      mi_assert_expensive(mi_segment_queue_contains(&tld->small_free, segment));
      mi_segment_queue_remove(&tld->small_free, segment);
    }
  }
  mi_assert_expensive(!mi_segment_queue_contains(&tld->small_free, segment));
  mi_assert(segment->next == NULL);
  mi_assert(segment->prev == NULL);
  mi_stat_decrease( tld->stats->committed, segment->segment_info_size);
  segment->thread_id = 0;

  // update reset memory statistics
  for (uint8_t i = 0; i < segment->capacity; i++) {
    mi_page_t* page = &segment->pages[i];
    if (page->is_reset) {
      page->is_reset = false;
      mi_stat_decrease( tld->stats->reset,mi_page_size(page));
    }
  }

  if (!force && mi_segment_cache_insert(segment, tld)) {
    // it is put in our cache
  }
  else {
    // otherwise return it to the OS
    mi_segment_os_free(segment, segment->segment_size, tld);
  }
}




/* -----------------------------------------------------------
  Free page management inside a segment
----------------------------------------------------------- */


static bool mi_segment_has_free(const mi_segment_t* segment) {
  return (segment->used < segment->capacity);
}

static mi_page_t* mi_segment_find_free(mi_segment_t* segment) {
  mi_assert_internal(mi_segment_has_free(segment));
  mi_assert_expensive(mi_segment_is_valid(segment));
  for (size_t i = 0; i < segment->capacity; i++) {
    mi_page_t* page = &segment->pages[i];
    if (!page->segment_in_use) {
      return page;
    }
  }
  mi_assert(false);
  return NULL;
}


/* -----------------------------------------------------------
   Free
----------------------------------------------------------- */

static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld);

static void mi_segment_page_clear(mi_segment_t* segment, mi_page_t* page, mi_stats_t* stats) {
  UNUSED(stats);
  mi_assert_internal(page->segment_in_use);
  mi_assert_internal(mi_page_all_free(page));
  size_t inuse = page->capacity * page->block_size;
  mi_stat_decrease( stats->committed, inuse);
  mi_stat_decrease( stats->pages, 1);

  // reset the page memory to reduce memory pressure?
  if (!page->is_reset && mi_option_is_enabled(mi_option_page_reset)) {
    size_t psize;
    uint8_t* start = _mi_page_start(segment, page, &psize);
    mi_stat_increase( stats->reset, psize);  // for stats we assume resetting the full page
    page->is_reset = true;
    if (inuse > 0) {
      _mi_os_reset(start, inuse);
    }
  }

  // zero the page data
  uint8_t idx = page->segment_idx; // don't clear the index
  bool is_reset = page->is_reset;  // don't clear the reset flag
  memset(page, 0, sizeof(*page));
  page->segment_idx = idx;
  page->segment_in_use = false;
  page->is_reset = is_reset;
  segment->used--;
}

void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld)
{
  mi_assert(page != NULL);
  mi_segment_t* segment = _mi_page_segment(page);
  mi_assert_expensive(mi_segment_is_valid(segment));

  // mark it as free now
  mi_segment_page_clear(segment, page, tld->stats);

  if (segment->used == 0) {
    // no more used pages; remove from the free list and free the segment
    mi_segment_free(segment, force, tld);
  }
  else {
    if (segment->used == segment->abandoned) {
      // only abandoned pages; remove from free list and abandon
      mi_segment_abandon(segment,tld);
    }
    else if (segment->used + 1 == segment->capacity) {
      mi_assert_internal(segment->page_kind == MI_PAGE_SMALL); // for now we only support small pages
      // move back to segments small pages free list
      mi_segment_enqueue(&tld->small_free, segment);
    }
  }
}


/* -----------------------------------------------------------
   Abandonment
----------------------------------------------------------- */

// When threads terminate, they can leave segments with
// live blocks (reached through other threads). Such segments
// are "abandoned" and will be reclaimed by other threads to
// reuse their pages and/or free them eventually
static volatile mi_segment_t* abandoned = NULL;
static volatile uintptr_t     abandoned_count = 0;

static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_assert_internal(segment->used == segment->abandoned);
  mi_assert_internal(segment->used > 0);
  mi_assert_internal(segment->abandoned_next == NULL);
  mi_assert_expensive(mi_segment_is_valid(segment));
  // remove the segment from the free page queue if needed
  if (mi_segment_is_in_free_queue(segment,tld)) {
    mi_assert(segment->page_kind == MI_PAGE_SMALL); // for now we only support small pages
    mi_assert_expensive(mi_segment_queue_contains(&tld->small_free, segment));
    mi_segment_queue_remove(&tld->small_free, segment);
  }
  mi_assert_internal(segment->next == NULL && segment->prev == NULL);
  // all pages in the segment are abandoned; add it to the abandoned list
  segment->thread_id = 0;
  do {
    segment->abandoned_next = (mi_segment_t*)abandoned;
  } while (!mi_atomic_compare_exchange_ptr((volatile void**)&abandoned, segment, segment->abandoned_next));
  mi_atomic_increment(&abandoned_count);
  mi_stat_increase( tld->stats->segments_abandoned,1);
}

void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld) {
  mi_assert(page != NULL);
  mi_segment_t* segment = _mi_page_segment(page);
  mi_assert_expensive(mi_segment_is_valid(segment));
  segment->abandoned++;
  mi_stat_increase( tld->stats->pages_abandoned, 1);
  mi_assert_internal(segment->abandoned <= segment->used);
  if (segment->used == segment->abandoned) {
    // all pages are abandoned, abandon the entire segment
    mi_segment_abandon(segment,tld);
  }
}

bool _mi_segment_try_reclaim_abandoned( mi_heap_t* heap, bool try_all, mi_segments_tld_t* tld) {
  uintptr_t reclaimed = 0;
  uintptr_t atmost;
  if (try_all) {
    atmost = abandoned_count+16;   // close enough
  }
  else {
    atmost = abandoned_count/8;    // at most 1/8th of all outstanding (estimated)
    if (atmost < 8) atmost = 8;    // but at least 8
  }

  // for `atmost` `reclaimed` abandoned segments...
  while(atmost > reclaimed) {
    // try to claim the head of the abandoned segments
    mi_segment_t* segment;
    do {
      segment = (mi_segment_t*)abandoned;
    } while(segment != NULL && !mi_atomic_compare_exchange_ptr((volatile void**)&abandoned, segment->abandoned_next, segment));
    if (segment==NULL) break; // stop early if no more segments available

    // got it.
    mi_atomic_decrement(&abandoned_count);
    segment->thread_id = _mi_thread_id();
    segment->abandoned_next = NULL;
    mi_segments_track_size((long)segment->segment_size,tld);
    mi_assert_internal(segment->next == NULL && segment->prev == NULL);
    mi_assert_expensive(mi_segment_is_valid(segment));
    mi_stat_decrease(tld->stats->segments_abandoned,1);
    // add its free pages to the the current thread
    if (segment->page_kind == MI_PAGE_SMALL && mi_segment_has_free(segment)) {
      mi_segment_enqueue(&tld->small_free, segment);
    }
    // add its abandoned pages to the current thread
    mi_assert(segment->abandoned == segment->used);
    for (size_t i = 0; i < segment->capacity; i++) {
      mi_page_t* page = &segment->pages[i];
      if (page->segment_in_use) {
        segment->abandoned--;
        mi_assert(page->next == NULL);
        mi_stat_decrease( tld->stats->pages_abandoned, 1);
        if (mi_page_all_free(page)) {
          // if everything free by now, free the page
          mi_segment_page_clear(segment,page,tld->stats);
        }
        else {
          // otherwise reclaim it
          _mi_page_reclaim(heap,page);
        }
      }
    }
    mi_assert(segment->abandoned == 0);
    if (segment->used == 0) {  // due to page_clear
      mi_segment_free(segment,false,tld);
    }
    else {
      reclaimed++;
    }
  }
  return (reclaimed>0);
}


/* -----------------------------------------------------------
   Small page allocation
----------------------------------------------------------- */

// Allocate a small page inside a segment.
// Requires that the page has free pages
static mi_page_t* mi_segment_small_page_alloc_in(mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_assert_internal(mi_segment_has_free(segment));
  mi_page_t* page = mi_segment_find_free(segment);
  page->segment_in_use = true;
  segment->used++;
  mi_assert_internal(segment->used <= segment->capacity);
  if (segment->used == segment->capacity) {
    // if no more free pages, remove from the queue
    mi_assert_internal(!mi_segment_has_free(segment));
    mi_assert_expensive(mi_segment_queue_contains(&tld->small_free, segment));
    mi_segment_queue_remove(&tld->small_free, segment);
  }
  return page;
}

static mi_page_t* mi_segment_small_page_alloc(mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
  if (mi_segment_queue_is_empty(&tld->small_free)) {
    mi_segment_t* segment = mi_segment_alloc(0,MI_PAGE_SMALL,MI_SMALL_PAGE_SHIFT,tld,os_tld);
    if (segment == NULL) return NULL;
    mi_segment_enqueue(&tld->small_free, segment);
  }
  mi_assert_internal(tld->small_free.first != NULL);
  return mi_segment_small_page_alloc_in(tld->small_free.first,tld);
}


/* -----------------------------------------------------------
   large page allocation
----------------------------------------------------------- */

static mi_page_t* mi_segment_large_page_alloc(mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
  mi_segment_t* segment = mi_segment_alloc(0,MI_PAGE_LARGE,MI_LARGE_PAGE_SHIFT,tld,os_tld);
  if (segment == NULL) return NULL;
  segment->used = 1;
  mi_page_t* page = &segment->pages[0];
  page->segment_in_use = true;
  return page;
}

static mi_page_t* mi_segment_huge_page_alloc(size_t size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
{
  mi_segment_t* segment = mi_segment_alloc(size, MI_PAGE_HUGE, MI_SEGMENT_SHIFT,tld,os_tld);
  if (segment == NULL) return NULL;
  mi_assert_internal(segment->segment_size - segment->segment_info_size >= size);
  segment->used = 1;
  mi_page_t* page = &segment->pages[0];
  page->segment_in_use = true;
  return page;
}

/* -----------------------------------------------------------
   Page allocation and free
----------------------------------------------------------- */

mi_page_t* _mi_segment_page_alloc(size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
  mi_page_t* page;
  if (block_size < MI_SMALL_PAGE_SIZE / 8)
    // smaller blocks than 8kb (assuming MI_SMALL_PAGE_SIZE == 64kb)
    page = mi_segment_small_page_alloc(tld,os_tld);
  else if (block_size < (MI_LARGE_SIZE_MAX - sizeof(mi_segment_t)))
    page = mi_segment_large_page_alloc(tld, os_tld);
  else
    page = mi_segment_huge_page_alloc(block_size,tld,os_tld);
  mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page)));
  return page;
}