summaryrefslogtreecommitdiff
path: root/include/mimalloc-atomic.h
blob: b9935cb3f87d416ee2dba27cce40a506900601fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/* ----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_ATOMIC_H
#define MIMALLOC_ATOMIC_H

// ------------------------------------------------------
// Atomics
// We need to be portable between C, C++, and MSVC.
// ------------------------------------------------------

#if defined(__cplusplus)
#include <atomic>
#define  _Atomic(tp)        std::atomic<tp>
#elif defined(_MSC_VER)
#define _Atomic(tp)         tp
#define ATOMIC_VAR_INIT(x)  x
#else
#include <stdatomic.h>
#endif

// ------------------------------------------------------
// Atomic operations specialized for mimalloc
// ------------------------------------------------------

// Atomically add a value; returns the previous value. Memory ordering is relaxed.
static inline uintptr_t mi_atomic_add(_Atomic(uintptr_t)* p, uintptr_t add);

// Atomically "and" a value; returns the previous value. Memory ordering is release.
static inline uintptr_t mi_atomic_and(_Atomic(uintptr_t)* p, uintptr_t x);

// Atomically "or" a value; returns the previous value. Memory ordering is release.
static inline uintptr_t mi_atomic_or(_Atomic(uintptr_t)* p, uintptr_t x);

// Atomically compare and exchange a value; returns `true` if successful.
// May fail spuriously. Memory ordering is release; with relaxed on failure.
static inline bool mi_atomic_cas_weak(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired);

// Atomically compare and exchange a value; returns `true` if successful.
// May fail spuriously. Memory ordering is acquire-release; with acquire on failure.
static inline bool mi_atomic_cas_weak_acq_rel(_Atomic(uintptr_t)*p, uintptr_t* expected, uintptr_t desired);

// Atomically compare and exchange a value; returns `true` if successful.
// Memory ordering is acquire-release; with acquire on failure.
static inline bool mi_atomic_cas_strong(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired);

// Atomically exchange a value. Memory ordering is acquire-release.
static inline uintptr_t mi_atomic_exchange(_Atomic(uintptr_t)* p, uintptr_t exchange);

// Atomically read a value. Memory ordering is relaxed.
static inline uintptr_t mi_atomic_read_relaxed(const _Atomic(uintptr_t)* p);

// Atomically read a value. Memory ordering is acquire.
static inline uintptr_t mi_atomic_read(const _Atomic(uintptr_t)* p);

// Atomically write a value. Memory ordering is release.
static inline void mi_atomic_write(_Atomic(uintptr_t)* p, uintptr_t x);

// Yield
static inline void mi_atomic_yield(void);

// Atomically add a 64-bit value; returns the previous value. Memory ordering is relaxed.
// Note: not using _Atomic(int64_t) as it is only used for statistics.
static inline int64_t mi_atomic_addi64_relaxed(volatile int64_t* p, int64_t add);

// Atomically update `*p` with the maximum of `*p` and `x` as a 64-bit value.
// Returns the previous value. Note: not using _Atomic(int64_t) as it is only used for statistics.
static inline void mi_atomic_maxi64_relaxed(volatile int64_t* p, int64_t x);


// Atomically subtract a value; returns the previous value.
static inline uintptr_t mi_atomic_sub(_Atomic(uintptr_t)* p, uintptr_t sub) {
  return mi_atomic_add(p, (uintptr_t)(-((intptr_t)sub)));
}

// Atomically increment a value; returns the incremented result.
static inline uintptr_t mi_atomic_increment(_Atomic(uintptr_t)* p) {
  return mi_atomic_add(p, 1);
}

// Atomically decrement a value; returns the decremented result.
static inline uintptr_t mi_atomic_decrement(_Atomic(uintptr_t)* p) {
  return mi_atomic_sub(p, 1);
}

// Atomically add a signed value; returns the previous value.
static inline intptr_t mi_atomic_addi(_Atomic(intptr_t)* p, intptr_t add) {
  return (intptr_t)mi_atomic_add((_Atomic(uintptr_t)*)p, (uintptr_t)add);
}

// Atomically subtract a signed value; returns the previous value.
static inline intptr_t mi_atomic_subi(_Atomic(intptr_t)* p, intptr_t sub) {
  return (intptr_t)mi_atomic_addi(p,-sub);
}

// Atomically compare and exchange a void pointer; returns `true` if successful. May fail spuriously.
// Memory order is release. (like a write)
static inline bool mi_atomic_cas_weak_voidp(_Atomic(void*)* p, void** expected, void* desired, void* unused1, void* unused2) {
  (void)unused1; (void)unused2;  // for extra type check
  return mi_atomic_cas_weak((_Atomic(uintptr_t)*)p, (uintptr_t*)expected, (uintptr_t)desired);
}

// Atomically read a void pointer; Memory order is relaxed (i.e. no fence, only atomic).
static inline void* mi_atomic_read_voidp(const _Atomic(void*)* p, void* unused) {
  (void)unused; // for extra type check
  return (void*)mi_atomic_read((const _Atomic(uintptr_t)*) p);
}

// Atomically read a void pointer; Memory order is acquire.
static inline void* mi_atomic_read_voidp_relaxed(const _Atomic(void*)*p, void* unused) {
  (void)unused; // for extra type check
  return (void*)mi_atomic_read_relaxed((const _Atomic(uintptr_t)*) p);
}

// Atomically write a void pointer; Memory order is acquire.
static inline void mi_atomic_write_voidp(_Atomic(void*)* p, void* exchange, void* unused) {
  (void)unused; // for extra type check
  mi_atomic_write((_Atomic(uintptr_t)*) p, (uintptr_t)exchange);
}

// Atomically exchange a void pointer; Memory order is release-acquire.
static inline void* mi_atomic_exchange_voidp(_Atomic(void*)*p, void* exchange, void* unused) {
  (void)unused; // for extra type check
  return (void*)mi_atomic_exchange((_Atomic(uintptr_t)*) p, (uintptr_t)exchange);
}

// Atomically compare and exchange a pointer; returns `true` if successful. May fail spuriously.
// Memory order is release. (like a write)
#define mi_atomic_cas_ptr_weak(T,p,expected,desired) \
  mi_atomic_cas_weak_voidp((_Atomic(void*)*)(p), (void**)(expected), desired, *(p), *(expected))

// Atomically read a pointer; Memory order is relaxed (i.e. no fence, only atomic).
#define mi_atomic_read_ptr_relaxed(T,p)  \
  (T*)(mi_atomic_read_voidp_relaxed((const _Atomic(void*)*)(p), *(p)))

// Atomically read a pointer; Memory order is acquire.
#define mi_atomic_read_ptr(T,p) \
  (T*)(mi_atomic_read_voidp((const _Atomic(void*)*)(p), *(p)))

// Atomically write a pointer; Memory order is acquire.
#define mi_atomic_write_ptr(T,p,x) \
  mi_atomic_write_voidp((_Atomic(void*)*)(p), x, *(p))
    
// Atomically exchange a pointer value.
#define mi_atomic_exchange_ptr(T,p,exchange) \
  (T*)(mi_atomic_exchange_voidp((_Atomic(void*)*)(p), exchange, *(p)))



#if !defined(__cplusplus) && defined(_MSC_VER)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <intrin.h>
#ifdef _WIN64
typedef LONG64   msc_intptr_t;
#define MI_64(f) f##64
#else
typedef LONG     msc_intptr_t;
#define MI_64(f) f
#endif
static inline uintptr_t mi_atomic_add(_Atomic(uintptr_t)* p, uintptr_t add) {
  return (uintptr_t)MI_64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, (msc_intptr_t)add);
}
static inline uintptr_t mi_atomic_and(_Atomic(uintptr_t)* p, uintptr_t x) {
  return (uintptr_t)MI_64(_InterlockedAnd)((volatile msc_intptr_t*)p, (msc_intptr_t)x);
}
static inline uintptr_t mi_atomic_or(_Atomic(uintptr_t)* p, uintptr_t x) {
  return (uintptr_t)MI_64(_InterlockedOr)((volatile msc_intptr_t*)p, (msc_intptr_t)x);
}
static inline bool mi_atomic_cas_strong(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired) {
  uintptr_t read = (uintptr_t)MI_64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)desired, (msc_intptr_t)(*expected));
  if (read == *expected) {
    return true;
  }
  else {
    *expected = read;
    return false;
  }
}
static inline bool mi_atomic_cas_weak(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired) {
  return mi_atomic_cas_strong(p,expected,desired);
}
static inline bool mi_atomic_cas_weak_acq_rel(_Atomic(uintptr_t)*p, uintptr_t* expected, uintptr_t desired) {
  return mi_atomic_cas_strong(p, expected, desired);
}
static inline uintptr_t mi_atomic_exchange(_Atomic(uintptr_t)* p, uintptr_t exchange) {
  return (uintptr_t)MI_64(_InterlockedExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)exchange);
}
static inline uintptr_t mi_atomic_read(_Atomic(uintptr_t) const* p) {
  return *p;
}
static inline uintptr_t mi_atomic_read_relaxed(_Atomic(uintptr_t) const* p) {
  return *p;
}
static inline void mi_atomic_write(_Atomic(uintptr_t)* p, uintptr_t x) {
  #if defined(_M_IX86) || defined(_M_X64)
  *p = x;
  #else
  mi_atomic_exchange(p,x);
  #endif
}
static inline int64_t mi_atomic_addi64_relaxed(volatile _Atomic(int64_t)* p, int64_t add) {
  #ifdef _WIN64
  return (int64_t)mi_atomic_addi((int64_t*)p,add);
  #else
  int64_t current;
  int64_t sum;
  do {
    current = *p;
    sum = current + add;
  } while (_InterlockedCompareExchange64(p, sum, current) != current);
  return current;
  #endif
}

static inline void mi_atomic_maxi64_relaxed(volatile _Atomic(int64_t)*p, int64_t x) {
  int64_t current;
  do {
    current = *p;
  } while (current < x && _InterlockedCompareExchange64(p, x, current) != current);
}

#else
#ifdef __cplusplus
#define  MI_USING_STD   using namespace std;
#else
#define  MI_USING_STD
#endif
static inline uintptr_t mi_atomic_add(_Atomic(uintptr_t)* p, uintptr_t add) {
  MI_USING_STD
  return atomic_fetch_add_explicit(p, add, memory_order_relaxed);
}
static inline uintptr_t mi_atomic_and(_Atomic(uintptr_t)* p, uintptr_t x) {
  MI_USING_STD
  return atomic_fetch_and_explicit(p, x, memory_order_release);
}
static inline uintptr_t mi_atomic_or(_Atomic(uintptr_t)* p, uintptr_t x) {
  MI_USING_STD
  return atomic_fetch_or_explicit(p, x, memory_order_release);
}
static inline bool mi_atomic_cas_weak(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired) {
  MI_USING_STD
  return atomic_compare_exchange_weak_explicit(p, expected, desired, memory_order_release, memory_order_relaxed);
}
static inline bool mi_atomic_cas_weak_acq_rel(_Atomic(uintptr_t)*p, uintptr_t* expected, uintptr_t desired) {
  MI_USING_STD
  return atomic_compare_exchange_weak_explicit(p, expected, desired, memory_order_acq_rel, memory_order_acquire);
}
static inline bool mi_atomic_cas_strong(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired) {
  MI_USING_STD
  return atomic_compare_exchange_strong_explicit(p, expected, desired, memory_order_acq_rel, memory_order_acquire);
}
static inline uintptr_t mi_atomic_exchange(_Atomic(uintptr_t)* p, uintptr_t exchange) {
  MI_USING_STD
  return atomic_exchange_explicit(p, exchange, memory_order_acq_rel);
}
static inline uintptr_t mi_atomic_read_relaxed(const _Atomic(uintptr_t)* p) {
  MI_USING_STD
  return atomic_load_explicit((_Atomic(uintptr_t)*) p, memory_order_relaxed);
}
static inline uintptr_t mi_atomic_read(const _Atomic(uintptr_t)* p) {
  MI_USING_STD
  return atomic_load_explicit((_Atomic(uintptr_t)*) p, memory_order_acquire);
}
static inline void mi_atomic_write(_Atomic(uintptr_t)* p, uintptr_t x) {
  MI_USING_STD
  return atomic_store_explicit(p, x, memory_order_release);
}
static inline int64_t mi_atomic_addi64_relaxed(volatile int64_t* p, int64_t add) {
  MI_USING_STD
  return atomic_fetch_add_explicit((_Atomic(int64_t)*)p, add, memory_order_relaxed);
}
static inline void mi_atomic_maxi64_relaxed(volatile int64_t* p, int64_t x) {
  MI_USING_STD
  int64_t current = atomic_load_explicit((_Atomic(int64_t)*)p, memory_order_relaxed);
  while (current < x && !atomic_compare_exchange_weak_explicit((_Atomic(int64_t)*)p, &current, x, memory_order_release, memory_order_relaxed)) { /* nothing */ };
}
#endif

#if defined(__cplusplus)
#include <thread>
static inline void mi_atomic_yield(void) {
  std::this_thread::yield();
}
#elif defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
static inline void mi_atomic_yield(void) {
  YieldProcessor();
}
#elif (defined(__GNUC__) || defined(__clang__)) && \
      (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))
#if defined(__x86_64__) || defined(__i386__)
static inline void mi_atomic_yield(void) {
  asm volatile ("pause" ::: "memory");
}
#elif defined(__arm__) || defined(__aarch64__)
static inline void mi_atomic_yield(void) {
  asm volatile("yield");
}
#endif
#elif defined(__wasi__)
#include <sched.h>
static inline void mi_atomic_yield(void) {
  sched_yield();
}
#else
#include <unistd.h>
static inline void mi_atomic_yield(void) {
  sleep(0);
}
#endif


#endif // __MIMALLOC_ATOMIC_H