summaryrefslogtreecommitdiff
path: root/doc/mimalloc-doc.h
blob: 16327d2c682348e0ec13fff4249c0e3434d20973 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
/* ----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/

#error "documentation file only!"


/*! \mainpage

This is the API documentation of the
[mimalloc](https://github.com/microsoft/mimalloc) allocator
(pronounced "me-malloc") -- a
general purpose allocator with excellent [performance](bench.html)
characteristics. Initially
developed by Daan Leijen for the run-time systems of the
[Koka](https://github.com/koka-lang/koka) and [Lean](https://github.com/leanprover/lean) languages.

It is a drop-in replacement for `malloc` and can be used in other programs
without code changes, for example, on Unix you can use it as:
```
> LD_PRELOAD=/usr/bin/libmimalloc.so  myprogram
```

Notable aspects of the design include:

- __small and consistent__: the library is less than 3500 LOC using simple and
  consistent data structures. This makes it very suitable
  to integrate and adapt in other projects. For runtime systems it
  provides hooks for a monotonic _heartbeat_ and deferred freeing (for
  bounded worst-case times with reference counting).
- __free list sharding__: the big idea: instead of one big free list (per size class) we have
  many smaller lists per memory "page" which both reduces fragmentation
  and increases locality --
  things that are allocated close in time get allocated close in memory.
  (A memory "page" in _mimalloc_ contains blocks of one size class and is
  usually 64KiB on a 64-bit system).
- __eager page reset__: when a "page" becomes empty (with increased chance
  due to free list sharding) the memory is marked to the OS as unused ("reset" or "purged")
  reducing (real) memory pressure and fragmentation, especially in long running
  programs.
- __secure__: _mimalloc_ can be build in secure mode, adding guard pages,
  randomized allocation, encrypted free lists, etc. to protect against various
  heap vulnerabilities. The performance penalty is only around 3% on average
  over our benchmarks.
- __first-class heaps__: efficiently create and use multiple heaps to allocate across different regions.
  A heap can be destroyed at once instead of deallocating each object separately.
- __bounded__: it does not suffer from _blowup_ \[1\], has bounded worst-case allocation
  times (_wcat_), bounded space overhead (~0.2% meta-data, with at most 16.7% waste in allocation sizes),
  and has no internal points of contention using only atomic operations.
- __fast__: In our benchmarks (see [below](#performance)),
  _mimalloc_ always outperforms all other leading allocators (_jemalloc_, _tcmalloc_, _Hoard_, etc),
  and usually uses less memory (up to 25% more in the worst case). A nice property
  is that it does consistently well over a wide range of benchmarks.

You can read more on the design of _mimalloc_ in the upcoming technical report
which also has detailed benchmark results.

Further information:

- \ref build
- \ref using
- \ref overrides
- \ref bench
- \ref malloc
- \ref extended
- \ref aligned
- \ref heap
- \ref typed
- \ref analysis
- \ref options

*/


/// \defgroup malloc Basic Allocation
/// The basic allocation interface.
/// \{


/// Free previously allocated memory.
/// The pointer `p` must have been allocated before (or be \a NULL).
/// @param p  pointer to free, or \a NULL.
void  mi_free(void* p);

/// Allocate \a size bytes.
/// @param size  number of bytes to allocate.
/// @returns pointer to the allocated memory or \a NULL if out of memory.
/// Returns a unique pointer if called with \a size 0.
void* mi_malloc(size_t size);

/// Allocate zero-initialized `size` bytes.
/// @param size The size in bytes.
/// @returns Pointer to newly allocated zero initialized memory,
/// or \a NULL if out of memory.
void* mi_zalloc(size_t size);

/// Allocate zero-initialized \a count elements of \a size bytes.
/// @param count number of elements.
/// @param size  size of each element.
/// @returns pointer to the allocated memory
/// of \a size*\a count bytes, or \a NULL if either out of memory
/// or when `count*size` overflows.
///
/// Returns a unique pointer if called with either \a size or \a count of 0.
/// @see mi_zalloc()
void* mi_calloc(size_t count, size_t size);

/// Re-allocate memory to \a newsize bytes.
/// @param p  pointer to previously allocated memory (or \a NULL).
/// @param newsize  the new required size in bytes.
/// @returns pointer to the re-allocated memory
/// of \a newsize bytes, or \a NULL if out of memory.
/// If \a NULL is returned, the pointer \a p is not freed.
/// Otherwise the original pointer is either freed or returned
/// as the reallocated result (in case it fits in-place with the
/// new size). If the pointer \a p is \a NULL, it behaves as
/// \a mi_malloc(\a newsize). If \a newsize is larger than the
/// original \a size allocated for \a p, the bytes after \a size
/// are uninitialized.
void* mi_realloc(void* p, size_t newsize);

/// Re-allocate memory to \a count elements of \a size bytes, with extra memory initialized to zero.
/// @param p Pointer to a previously allocated block (or \a NULL).
/// @param count The number of elements.
/// @param size The size of each element.
/// @returns A pointer to a re-allocated block of \a count * \a size bytes, or \a NULL
/// if out of memory or if \a count * \a size overflows.
///
/// If there is no overflow, it behaves exactly like `mi_rezalloc(p,count*size)`.
/// @see mi_reallocn()
/// @see [recallocarray()](http://man.openbsd.org/reallocarray) (on BSD).
void* mi_recalloc(void* p, size_t count, size_t size);

/// Try to re-allocate memory to \a newsize bytes _in place_.
/// @param p  pointer to previously allocated memory (or \a NULL).
/// @param newsize  the new required size in bytes.
/// @returns pointer to the re-allocated memory
/// of \a newsize bytes (always equal to \a p),
/// or \a NULL if either out of memory or if
/// the memory could not be expanded in place.
/// If \a NULL is returned, the pointer \a p is not freed.
/// Otherwise the original pointer is returned
/// as the reallocated result since it fits in-place with the
/// new size. If \a newsize is larger than the
/// original \a size allocated for \a p, the bytes after \a size
/// are uninitialized.
void* mi_expand(void* p, size_t newsize);

/// Allocate \a count elements of \a size bytes.
/// @param count The number of elements.
/// @param size The size of each element.
/// @returns A pointer to a block of \a count * \a size bytes, or \a NULL
/// if out of memory or if \a count * \a size overflows.
///
/// If there is no overflow, it behaves exactly like `mi_malloc(p,count*size)`.
/// @see mi_calloc()
/// @see mi_zallocn()
void* mi_mallocn(size_t count, size_t size);

/// Re-allocate memory to \a count elements of \a size bytes.
/// @param p Pointer to a previously allocated block (or \a NULL).
/// @param count The number of elements.
/// @param size The size of each element.
/// @returns A pointer to a re-allocated block of \a count * \a size bytes, or \a NULL
/// if out of memory or if \a count * \a size overflows.
///
/// If there is no overflow, it behaves exactly like `mi_realloc(p,count*size)`.
/// @see [reallocarray()](<http://man.openbsd.org/reallocarray>) (on BSD)
void* mi_reallocn(void* p, size_t count, size_t size);

/// Re-allocate memory to \a newsize bytes,
/// @param p  pointer to previously allocated memory (or \a NULL).
/// @param newsize  the new required size in bytes.
/// @returns pointer to the re-allocated memory
/// of \a newsize bytes, or \a NULL if out of memory.
///
/// In contrast to mi_realloc(), if \a NULL is returned, the original pointer
/// \a p is freed (if it was not \a NULL itself).
/// Otherwise the original pointer is either freed or returned
/// as the reallocated result (in case it fits in-place with the
/// new size). If the pointer \a p is \a NULL, it behaves as
/// \a mi_malloc(\a newsize). If \a newsize is larger than the
/// original \a size allocated for \a p, the bytes after \a size
/// are uninitialized.
///
/// @see [reallocf](https://www.freebsd.org/cgi/man.cgi?query=reallocf) (on BSD)
void* mi_reallocf(void* p, size_t newsize);


/// Allocate and duplicate a string.
/// @param s string to duplicate (or \a NULL).
/// @returns a pointer to newly allocated memory initialized
/// to string \a s, or \a NULL if either out of memory or if
/// \a s is \a NULL.
///
/// Replacement for the standard [strdup()](http://pubs.opengroup.org/onlinepubs/9699919799/functions/strdup.html)
/// such that mi_free() can be used on the returned result.
char* mi_strdup(const char* s);

/// Allocate and duplicate a string up to \a n bytes.
/// @param s string to duplicate (or \a NULL).
/// @param n maximum number of bytes to copy (excluding the terminating zero).
/// @returns a pointer to newly allocated memory initialized
/// to string \a s up to the first \a n bytes (and always zero terminated),
/// or \a NULL if either out of memory or if \a s is \a NULL.
///
/// Replacement for the standard [strndup()](http://pubs.opengroup.org/onlinepubs/9699919799/functions/strndup.html)
/// such that mi_free() can be used on the returned result.
char* mi_strndup(const char* s, size_t n);

/// Resolve a file path name.
/// @param fname File name.
/// @param resolved_name Should be \a NULL (but can also point to a buffer
///                      of at least \a PATH_MAX bytes).
/// @returns If successful a pointer to the resolved absolute file name, or
/// \a NULL on failure (with \a errno set to the error code).
///
/// If \a resolved_name was \a NULL, the returned result should be freed with
/// mi_free().
///
/// Replacement for the standard [realpath()](http://pubs.opengroup.org/onlinepubs/9699919799/functions/realpath.html)
/// such that mi_free() can be used on the returned result (if \a resolved_name was \a NULL).
char* mi_realpath(const char* fname, char* resolved_name);

/// \}

// ------------------------------------------------------
// Extended functionality
// ------------------------------------------------------

/// \defgroup extended Extended Functions
/// Extended functionality.
/// \{

/// Maximum size allowed for small allocations in
/// #mi_malloc_small and #mi_zalloc_small (usually `128*sizeof(void*)` (= 1KB on 64-bit systems))
#define MI_SMALL_SIZE_MAX   (128*sizeof(void*))

/// Allocate a small object.
/// @param size The size in bytes, can be at most #MI_SMALL_SIZE_MAX.
/// @returns a pointer to newly allocated memory of at least \a size
/// bytes, or \a NULL if out of memory.
/// This function is meant for use in run-time systems for best
/// performance and does not check if \a size was indeed small -- use
/// with care!
void* mi_malloc_small(size_t size);

/// Allocate a zero initialized small object.
/// @param size The size in bytes, can be at most #MI_SMALL_SIZE_MAX.
/// @returns a pointer to newly allocated zero-initialized memory of at
/// least \a size bytes, or \a NULL if out of memory.
/// This function is meant for use in run-time systems for best
/// performance and does not check if \a size was indeed small -- use
/// with care!
void* mi_zalloc_small(size_t size);

/// Return the available bytes in a memory block.
/// @param p Pointer to previously allocated memory (or \a NULL)
/// @returns Returns the available bytes in the memory block, or
/// 0 if \a p was \a NULL.
///
/// The returned size can be
/// used to call \a mi_expand successfully.
/// The returned size is always at least equal to the
/// allocated size of \a p, and, in the current design,
/// should be less than 16.7% more.
///
/// @see [_msize](https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/msize?view=vs-2017) (Windows)
/// @see [malloc_usable_size](http://man7.org/linux/man-pages/man3/malloc_usable_size.3.html) (Linux)
/// @see mi_good_size()
size_t mi_usable_size(void* p);

/// Return the used allocation size.
/// @param size The minimal required size in bytes.
/// @returns the size `n` that will be allocated, where `n >= size`.
///
/// Generally, `mi_usable_size(mi_malloc(size)) == mi_good_size(size)`.
/// This can be used to reduce internal wasted space when
/// allocating buffers for example.
///
/// @see mi_usable_size()
size_t mi_good_size(size_t size);

/// Eagerly free memory.
/// @param force If \a true, aggressively return memory to the OS (can be expensive!)
///
/// Regular code should not have to call this function. It can be beneficial
/// in very narrow circumstances; in particular, when a long running thread
/// allocates a lot of blocks that are freed by other threads it may improve
/// resource usage by calling this every once in a while.
void   mi_collect(bool force);

/// Print statistics.
/// @param out Output file. Use \a NULL for \a stderr.
///
/// Most detailed when using a debug build.
void   mi_stats_print(FILE* out);

/// Reset statistics.
void   mi_stats_reset();

/// Initialize mimalloc on a thread.
/// Should not be used as on most systems (pthreads, windows) this is done
/// automatically.
void   mi_thread_init();

/// Uninitialize mimalloc on a thread.
/// Should not be used as on most systems (pthreads, windows) this is done
/// automatically. Ensures that any memory that is not freed yet (but will
/// be freed by other threads in the future) is properly handled.
void   mi_thread_done();

/// Print out heap statistics for this thread.
/// @param out Output file. Use \a NULL for \a stderr.
///
/// Most detailed when using a debug build.
void   mi_thread_stats_print(FILE* out);

/// Type of deferred free functions.
/// @param force If \a true all outstanding items should be freed.
/// @param heartbeat A monotonically increasing count.
///
/// @see mi_register_deferred_free
typedef void (mi_deferred_free_fun)(bool force, unsigned long long heartbeat);

/// Register a deferred free function.
/// @param deferred_free Address of a deferred free-ing function or \a NULL to unregister.
///
/// Some runtime systems use deferred free-ing, for example when using
/// reference counting to limit the worst case free time.
/// Such systems can register (re-entrant) deferred free function
/// to free more memory on demand. When the \a force parameter is
/// \a true all possible memory should be freed.
/// The per-thread \a heartbeat parameter is monotonically increasing
/// and guaranteed to be deterministic if the program allocates
/// deterministically. The \a deferred_free function is guaranteed
/// to be called deterministically after some number of allocations
/// (regardless of freeing or available free memory).
/// At most one \a deferred_free function can be active.
void   mi_register_deferred_free(mi_deferred_free_fun* deferred_free);

/// \}

// ------------------------------------------------------
// Aligned allocation
// ------------------------------------------------------

/// \defgroup aligned Aligned Allocation
///
/// Allocating aligned memory blocks.
///
/// \{

/// Allocate \a size bytes aligned by \a alignment.
/// @param size  number of bytes to allocate.
/// @param alignment  the minimal alignment of the allocated memory.
/// @returns pointer to the allocated memory or \a NULL if out of memory.
/// The returned pointer is aligned by \a alignment, i.e.
/// `(uintptr_t)p % alignment == 0`.
///
/// Returns a unique pointer if called with \a size 0.
/// @see [_aligned_malloc](https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/aligned-malloc?view=vs-2017) (on Windows)
/// @see [aligned_alloc](http://man.openbsd.org/reallocarray) (on BSD, with switched arguments!)
/// @see [posix_memalign](https://linux.die.net/man/3/posix_memalign) (on Posix, with switched arguments!)
/// @see [memalign](https://linux.die.net/man/3/posix_memalign) (on Linux, with switched arguments!)
void* mi_malloc_aligned(size_t size, size_t alignment);
void* mi_zalloc_aligned(size_t size, size_t alignment);
void* mi_calloc_aligned(size_t count, size_t size, size_t alignment);
void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment);

/// Allocate \a size bytes aligned by \a alignment at a specified \a offset.
/// @param size  number of bytes to allocate.
/// @param alignment  the minimal alignment of the allocated memory at \a offset.
/// @param offset     the offset that should be aligned.
/// @returns pointer to the allocated memory or \a NULL if out of memory.
/// The returned pointer is aligned by \a alignment at \a offset, i.e.
/// `((uintptr_t)p + offset) % alignment == 0`.
///
/// Returns a unique pointer if called with \a size 0.
/// @see [_aligned_offset_malloc](https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/aligned-offset-malloc?view=vs-2017) (on Windows)
void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset);
void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset);
void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset);
void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset);

/// \}

/// \defgroup heap Heap Allocation
///
/// First-class heaps that can be destroyed in one go.
///
/// \{

/// Type of first-class heaps.
/// A heap can only be used for allocation in
/// the thread that created this heap! Any allocated
/// blocks can be freed or reallocated by any other thread though.
struct mi_heap_s;

/// Type of first-class heaps.
/// A heap can only be used for (re)allocation in
/// the thread that created this heap! Any allocated
/// blocks can be freed by any other thread though.
typedef struct mi_heap_s mi_heap_t;

/// Create a new heap that can be used for allocation.
mi_heap_t* mi_heap_new();

/// Delete a previously allocated heap.
/// This will release resources and migrate any
/// still allocated blocks in this heap (efficienty)
/// to the default heap.
///
/// If \a heap is the default heap, the default
/// heap is set to the backing heap.
void mi_heap_delete(mi_heap_t* heap);

/// Destroy a heap, freeing all its still allocated blocks.
/// Use with care as this will free all blocks still
/// allocated in the heap. However, this can be a very
/// efficient way to free all heap memory in one go.
///
/// If \a heap is the default heap, the default
/// heap is set to the backing heap.
void mi_heap_destroy(mi_heap_t* heap);

/// Set the default heap to use for mi_malloc() et al.
/// @param heap  The new default heap.
/// @returns The previous default heap.
mi_heap_t* mi_heap_set_default(mi_heap_t* heap);

/// Get the default heap that is used for mi_malloc() et al.
/// @returns The current default heap.
mi_heap_t* mi_heap_get_default();

/// Get the backing heap.
/// The _backing_ heap is the initial default heap for
/// a thread and always available for allocations.
/// It cannot be destroyed or deleted
/// except by exiting the thread.
mi_heap_t* mi_heap_get_backing();

/// Allocate in a specific heap.
/// @see mi_malloc()
void* mi_heap_malloc(mi_heap_t* heap, size_t size);

/// Allocate zero-initialized in a specific heap.
/// @see mi_zalloc()
void* mi_heap_zalloc(mi_heap_t* heap, size_t size);

/// Allocate \a count zero-initialized elements in a specific heap.
/// @see mi_calloc()
void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size);

/// Allocate \a count elements in a specific heap.
/// @see mi_mallocn()
void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size);

/// Duplicate a string in a specific heap.
/// @see mi_strdup()
char* mi_heap_strdup(mi_heap_t* heap, const char* s);

/// Duplicate a string of at most length \a n in a specific heap.
/// @see mi_strndup()
char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n);

/// Resolve a file path name using a specific \a heap to allocate the result.
/// @see mi_realpath()
char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name);

void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize);
void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size);
void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize);

void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment);
void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset);
void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment);
void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset);
void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment);
void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset);
void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment);
void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset);

/// \}

/// \defgroup typed Typed Macros
///
/// Typed allocation macros
///
/// \{

/// Allocate a block of type \a tp.
/// @param tp The type of the block to allocate.
/// @returns A pointer to an object of type \a tp, or
/// \a NULL if out of memory.
///
/// **Example:**
/// ```
/// int* p = mi_malloc_tp(int)
/// ```
///
/// @see mi_malloc()
#define mi_malloc_tp(tp)        ((tp*)mi_malloc(sizeof(tp)))

/// Allocate a zero-initialized block of type \a tp.
#define mi_zalloc_tp(tp)        ((tp*)mi_zalloc(sizeof(tp)))

/// Allocate \a count zero-initialized blocks of type \a tp.
#define mi_calloc_tp(tp,count)      ((tp*)mi_calloc(count,sizeof(tp)))

/// Allocate \a count blocks of type \a tp.
#define mi_mallocn_tp(tp,count)     ((tp*)mi_mallocn(count,sizeof(tp)))

/// Re-allocate to \a count blocks of type \a tp.
#define mi_reallocn_tp(p,tp,count)  ((tp*)mi_reallocn(p,count,sizeof(tp)))

/// Allocate a block of type \a tp in a heap \a hp.
#define mi_heap_malloc_tp(hp,tp)        ((tp*)mi_heap_malloc(hp,sizeof(tp)))

/// Allocate a zero-initialized block of type \a tp in a heap \a hp.
#define mi_heap_zalloc_tp(hp,tp)        ((tp*)mi_heap_zalloc(hp,sizeof(tp)))

/// Allocate \a count zero-initialized blocks of type \a tp in a heap \a hp.
#define mi_heap_calloc_tp(hp,tp,count)      ((tp*)mi_heap_calloc(hp,count,sizeof(tp)))

/// Allocate \a count blocks of type \a tp in a heap \a hp.
#define mi_heap_mallocn_tp(hp,tp,count)     ((tp*)mi_heap_mallocn(hp,count,sizeof(tp)))

/// Re-allocate to \a count blocks of type \a tp in a heap \a hp.
#define mi_heap_reallocn_tp(hp,p,tp,count)  ((tp*)mi_heap_reallocn(p,count,sizeof(tp)))

/// \}

/// \defgroup analysis Heap Introspection
///
/// Inspect the heap at runtime.
///
/// \{

/// Does a heap contain a pointer to a previously allocated block?
/// @param heap The heap.
/// @param p Pointer to a previously allocated block (in any heap)-- cannot be some
///          random pointer!
/// @returns \a true if the block pointed to by \a p is in the \a heap.
/// @see mi_heap_check_owned()
bool mi_heap_contains_block(mi_heap_t* heap, const void* p);

/// Check safely if any pointer is part of a heap.
/// @param heap The heap.
/// @param p   Any pointer -- not required to be previously allocated by us.
/// @returns \a true if \a p points to a block in \a heap.
///
/// Note: expensive function, linear in the pages in the heap.
/// @see mi_heap_contains_block()
/// @see mi_heap_get_default()
bool mi_heap_check_owned(mi_heap_t* heap, const void* p);

/// Check safely if any pointer is part of the default heap of this thread.
/// @param p   Any pointer -- not required to be previously allocated by us.
/// @returns \a true if \a p points to a block in default heap of this thread.
///
/// Note: expensive function, linear in the pages in the heap.
/// @see mi_heap_contains_block()
/// @see mi_heap_get_default()
bool mi_check_owned(const void* p);

/// An area of heap space contains blocks of a single size.
/// The bytes in freed blocks are `committed - used`.
typedef struct mi_heap_area_s {
  void*  blocks;      ///< start of the area containing heap blocks
  size_t reserved;    ///< bytes reserved for this area
  size_t committed;   ///< current committed bytes of this area
  size_t used;        ///< bytes in use by allocated blocks
  size_t block_size;  ///< size in bytes of one block
} mi_heap_area_t;

/// Visitor function passed to mi_heap_visit_blocks()
/// @returns \a true if ok, \a false to stop visiting (i.e. break)
///
/// This function is always first called for every \a area
/// with \a block as a \a NULL pointer. If \a visit_all_blocks
/// was \a true, the function is then called for every allocated
/// block in that area.
typedef bool (mi_block_visit_fun)(const mi_heap_t* heap, const mi_heap_area_t* area, void* block, size_t block_size, void* arg);

/// Visit all areas and blocks in a heap.
/// @param heap The heap to visit.
/// @param visit_all_blocks If \a true visits all allocated blocks, otherwise
///                         \a visitor is only called for every heap area.
/// @param visitor This function is called for every area in the heap
///                 (with \a block as \a NULL). If \a visit_all_blocks is
///                 \a true, \a visitor is also called for every allocated
///                 block in every area (with `block!=NULL`).
///                 return \a false from this function to stop visiting early.
/// @param arg Extra argument passed to \a visitor.
/// @returns \a true if all areas and blocks were visited.
bool mi_heap_visit_blocks(const mi_heap_t* heap, bool visit_all_blocks, mi_block_visit_fun* visitor, void* arg);

/// \}

/// \defgroup options Runtime Options
///
/// Set runtime behavior.
///
/// \{

/// Runtime options.
typedef enum mi_option_e {
  mi_option_page_reset,   ///< Reset page memory when it becomes free.
  mi_option_cache_reset,  ///< Reset segment memory when a segment is cached.
  mi_option_pool_commit,  ///< Commit segments in large pools.
  mi_option_show_stats,   ///< Print statistics to `stderr` when the program is done.
  mi_option_show_errors,  ///< Print error messages to `stderr`.
  mi_option_verbose,      ///< Print verbose messages to `stderr`.
  _mi_option_last
} mi_option_t;

bool  mi_option_enabled(mi_option_t option);
void  mi_option_enable(mi_option_t option, bool enable);
void  mi_option_enable_default(mi_option_t option, bool enable);

long  mi_option_get(mi_option_t option);
void  mi_option_set(mi_option_t option, long value);
void  mi_option_set_default(mi_option_t option, long value);


/// \}

/// \defgroup posix Posix
///
///  `mi_` prefixed implementations of various Posix, Unix, and C++ allocation functions.
///  Defined for convenience as all redirect to the regular mimalloc API.
///
/// \{

void*  mi_recalloc(void* p, size_t count, size_t size);
size_t mi_malloc_size(const void* p);
size_t mi_malloc_usable_size(const void *p);
void   mi_cfree(void* p);

int mi_posix_memalign(void** p, size_t alignment, size_t size);
int mi__posix_memalign(void** p, size_t alignment, size_t size);
void* mi_memalign(size_t alignment, size_t size);
void* mi_valloc(size_t size);

void* mi_pvalloc(size_t size);
void* mi_aligned_alloc(size_t alignment, size_t size);
void* mi_reallocarray(void* p, size_t count, size_t size);

void mi_free_size(void* p, size_t size);
void mi_free_size_aligned(void* p, size_t size, size_t alignment);
void mi_free_aligned(void* p, size_t alignment);

/// Only defined in C++ compilation; raise `std::bad_alloc` exception on failure.
void* mi_new(std::size_t n) noexcept(false);

/// Only defined in C++ compilation; raise `std::bad_alloc` exception on failure.
void* mi_new_aligned(std::size_t n, std::align_val_t alignment) noexcept(false);


/// \}

/*! \page build Building

Checkout the sources from Github:
```
git clone https://github.com/microsoft/mimalloc
```

## Windows

Open `ide/vs2017/mimalloc.sln` in Visual Studio 2017 and build.
The `mimalloc` project builds a static library (in `out/msvc-x64`), while the
`mimalloc-override` project builds a DLL for overriding malloc
in the entire program.

## macOS, Linux, BSD, etc.

We use [`cmake`](https://cmake.org)<sup>1</sup> as the build system:

```
> mkdir -p out/release
> cd out/release
> cmake ../..
> make
```
This builds the library as a shared (dynamic)
library (`.so` or `.dylib`), a static library (`.a`), and
as a single object file (`.o`).

`> sudo make install` (install the library and header files in `/usr/local/lib`  and `/usr/local/include`)

You can build the debug version which does many internal checks and
maintains detailed statistics as:

```
> mkdir -p out/debug
> cd out/debug
> cmake -DCMAKE_BUILD_TYPE=Debug ../..
> make
```
This will name the shared library as `libmimalloc-debug.so`.

Finally, you can build a _secure_ version that uses guard pages, encrypted
free lists, etc, as:
```
> mkdir -p out/secure
> cd out/secure
> cmake -DMI_SECURE=ON ../..
> make
```
This will name the shared library as `libmimalloc-secure.so`.
Use `ccmake`<sup>2</sup> instead of `cmake`
to see and customize all the available build options.

Notes:
1. Install CMake: `sudo apt-get install cmake`
2. Install CCMake: `sudo apt-get install cmake-curses-gui`

*/

/*! \page using Using the library


The preferred usage is including `<mimalloc.h>`, linking with
the shared- or static library, and using the `mi_malloc` API exclusively for allocation. For example,
```
gcc -o myprogram -lmimalloc myfile.c
```

mimalloc uses only safe OS calls (`mmap` and `VirtualAlloc`) and can co-exist
with other allocators linked to the same program.
If you use `cmake`, you can simply use:
```
find_package(mimalloc 1.0 REQUIRED)
```
in your `CMakeLists.txt` to find a locally installed mimalloc. Then use either:
```
target_link_libraries(myapp PUBLIC mimalloc)
```
to link with the shared (dynamic) library, or:
```
target_link_libraries(myapp PUBLIC mimalloc-static)
```
to link with the static library. See `test\CMakeLists.txt` for an example.


You can pass environment variables to print verbose messages (`MIMALLOC_VERBOSE=1`)
and statistics (`MIMALLOC_SHOW_STATS=1`) (in the debug version):
```
> env MIMALLOC_SHOW_STATS=1 ./cfrac 175451865205073170563711388363

175451865205073170563711388363 = 374456281610909315237213 * 468551

heap stats:     peak      total      freed       unit
normal   2:    16.4 kb    17.5 mb    17.5 mb      16 b   ok
normal   3:    16.3 kb    15.2 mb    15.2 mb      24 b   ok
normal   4:      64 b      4.6 kb     4.6 kb      32 b   ok
normal   5:      80 b    118.4 kb   118.4 kb      40 b   ok
normal   6:      48 b       48 b       48 b       48 b   ok
normal  17:     960 b      960 b      960 b      320 b   ok

heap stats:     peak      total      freed       unit
    normal:    33.9 kb    32.8 mb    32.8 mb       1 b   ok
      huge:       0 b        0 b        0 b        1 b   ok
     total:    33.9 kb    32.8 mb    32.8 mb       1 b   ok
malloc requested:         32.8 mb

 committed:    58.2 kb    58.2 kb    58.2 kb       1 b   ok
  reserved:     2.0 mb     2.0 mb     2.0 mb       1 b   ok
     reset:       0 b        0 b        0 b        1 b   ok
  segments:       1          1          1
-abandoned:       0
     pages:       6          6          6
-abandoned:       0
     mmaps:       3
 mmap fast:       0
 mmap slow:       1
   threads:       0
   elapsed:     2.022s
   process: user: 1.781s, system: 0.016s, faults: 756, reclaims: 0, rss: 2.7 mb
```

The above model of using the `mi_` prefixed API is not always possible
though in existing programs that already use the standard malloc interface,
and another option is to override the standard malloc interface
completely and redirect all calls to the _mimalloc_ library instead.

See \ref overrides for more info.

*/

/*! \page overrides Overriding Malloc

Overriding the standard `malloc` can be done either _dynamically_ or _statically_.

## Dynamic override

This is the recommended way to override the standard malloc interface.

### Unix, BSD, macOS

On these systems we preload the mimalloc shared
library so all calls to the standard `malloc` interface are
resolved to the _mimalloc_ library.

- `env LD_PRELOAD=/usr/lib/libmimalloc.so myprogram` (on Linux, BSD, etc.)
- `env DYLD_INSERT_LIBRARIES=usr/lib/libmimalloc.dylib myprogram` (On macOS)

  Note certain security restrictions may apply when doing this from
  the [shell](https://stackoverflow.com/questions/43941322/dyld-insert-libraries-ignored-when-calling-application-through-bash).

You can set extra environment variables to check that mimalloc is running,
like:
```
env MIMALLOC_VERBOSE=1 LD_PRELOAD=/usr/lib/libmimalloc.so myprogram
```
or run with the debug version to get detailed statistics:
```
env MIMALLOC_SHOW_STATS=1 LD_PRELOAD=/usr/lib/libmimalloc-debug.so myprogram
```

### Windows

On Windows you need to link your program explicitly with the mimalloc
DLL, and use the C-runtime library as a DLL (the `/MD` or `/MDd` switch).
To ensure the mimalloc DLL gets loaded it is easiest to insert some
call to the mimalloc API in the `main` function, like `mi_version()`.

Due to the way mimalloc intercepts the standard malloc at runtime, it is best
to link to the mimalloc import library first on the command line so it gets
loaded right after the universal C runtime DLL (`ucrtbase`). See
the `mimalloc-override-test` project for an example.


## Static override

On Unix systems, you can also statically link with _mimalloc_ to override the standard
malloc interface. The recommended way is to link the final program with the
_mimalloc_ single object file (`mimalloc-override.o`). We use
an object file instead of a library file as linkers give preference to
that over archives to resolve symbols. To ensure that the standard
malloc interface resolves to the _mimalloc_ library, link it as the first
object file. For example:

```
gcc -o myprogram mimalloc-override.o  myfile1.c ...
```



## List of Overrides:

The specific functions that get redirected to the _mimalloc_ library are:

```
// C
void*  malloc(size_t size);
void*  calloc(size_t size, size_t n);
void*  realloc(void* p, size_t newsize);
void   free(void* p);

// C++
void   operator delete(void* p);
void   operator delete[](void* p);

void*  operator new(std::size_t n) noexcept(false);
void*  operator new[](std::size_t n) noexcept(false);
void*  operator new( std::size_t n, std::align_val_t align) noexcept(false);
void*  operator new[]( std::size_t n, std::align_val_t align) noexcept(false);

void*  operator new  ( std::size_t count, const std::nothrow_t& tag);
void*  operator new[]( std::size_t count, const std::nothrow_t& tag);
void*  operator new  ( std::size_t count, std::align_val_t al, const std::nothrow_t&);
void*  operator new[]( std::size_t count, std::align_val_t al, const std::nothrow_t&);

// Posix
int    posix_memalign(void** p, size_t alignment, size_t size);

// Linux
void*  memalign(size_t alignment, size_t size);
void*  aligned_alloc(size_t alignment, size_t size);
void*  valloc(size_t size);
void*  pvalloc(size_t size);
size_t malloc_usable_size(void *p);

// BSD
void*  reallocarray( void* p, size_t count, size_t size );
void*  reallocf(void* p, size_t newsize);
void   cfree(void* p);

// Windows
void*  _expand(void* p, size_t newsize);
size_t _msize(void* p);

void*  _malloc_dbg(size_t size, int block_type, const char* fname, int line);
void*  _realloc_dbg(void* p, size_t newsize, int block_type, const char* fname, int line);
void*  _calloc_dbg(size_t count, size_t size, int block_type, const char* fname, int line);
void*  _expand_dbg(void* p, size_t size, int block_type, const char* fname, int line);
size_t _msize_dbg(void* p, int block_type);
void   _free_dbg(void* p, int block_type);
```

*/

/*! \page bench Performance

We tested _mimalloc_ against many other top allocators over a wide
range of benchmarks, ranging from various real world programs to
synthetic benchmarks that see how the allocator behaves under more
extreme circumstances.

In our benchmarks, _mimalloc_ always outperforms all other leading
allocators (_jemalloc_, _tcmalloc_, _Hoard_, etc) (Apr 2019),
and usually uses less memory (up to 25% more in the worst case).
A nice property is that it does *consistently* well over the wide
range of benchmarks.

See the [Performance](https://github.com/microsoft/mimalloc#Performance)
section in the _mimalloc_ repository for benchmark results,
or the the technical report for detailed benchmark results.

*/