summaryrefslogtreecommitdiff
path: root/doc/mimalloc-doc.h
blob: 5911340278c2099c61c7b6dcb28ecb2222a21145 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
/* ----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/

#error "documentation file only!"


/*! \mainpage

This is the API documentation of the
[mimalloc](https://github.com/microsoft/mimalloc) allocator
(pronounced "me-malloc") -- a
general purpose allocator with excellent [performance](bench.html)
characteristics. Initially
developed by Daan Leijen for the run-time systems of the
[Koka](https://github.com/koka-lang/koka) and [Lean](https://github.com/leanprover/lean) languages.

It is a drop-in replacement for `malloc` and can be used in other programs
without code changes, for example, on Unix you can use it as:
```
> LD_PRELOAD=/usr/bin/libmimalloc.so  myprogram
```

Notable aspects of the design include:

- __small and consistent__: the library is about 8k LOC using simple and
  consistent data structures. This makes it very suitable
  to integrate and adapt in other projects. For runtime systems it
  provides hooks for a monotonic _heartbeat_ and deferred freeing (for
  bounded worst-case times with reference counting).
- __free list sharding__: instead of one big free list (per size class) we have
  many smaller lists per "mimalloc page" which reduces fragmentation and
  increases locality --
  things that are allocated close in time get allocated close in memory.
  (A mimalloc page contains blocks of one size class and is usually 64KiB on a 64-bit system).
- __free list multi-sharding__: the big idea! Not only do we shard the free list
  per mimalloc page, but for each page we have multiple free lists. In particular, there
  is one list for thread-local `free` operations, and another one for concurrent `free`
  operations. Free-ing from another thread can now be a single CAS without needing
  sophisticated coordination between threads. Since there will be 
  thousands of separate free lists, contention is naturally distributed over the heap,
  and the chance of contending on a single location will be low -- this is quite
  similar to randomized algorithms like skip lists where adding
  a random oracle removes the need for a more complex algorithm.
- __eager page reset__: when a "page" becomes empty (with increased chance
  due to free list sharding) the memory is marked to the OS as unused ("reset" or "purged")
  reducing (real) memory pressure and fragmentation, especially in long running
  programs.
- __secure__: _mimalloc_ can be build in secure mode, adding guard pages,
  randomized allocation, encrypted free lists, etc. to protect against various
  heap vulnerabilities. The performance penalty is only around 3% on average
  over our benchmarks.
- __first-class heaps__: efficiently create and use multiple heaps to allocate across different regions.
  A heap can be destroyed at once instead of deallocating each object separately.
- __bounded__: it does not suffer from _blowup_ \[1\], has bounded worst-case allocation
  times (_wcat_), bounded space overhead (~0.2% meta-data, with at most 12.5% waste in allocation sizes),
  and has no internal points of contention using only atomic operations.
- __fast__: In our benchmarks (see [below](#performance)),
  _mimalloc_ outperforms all other leading allocators (_jemalloc_, _tcmalloc_, _Hoard_, etc),
  and usually uses less memory (up to 25% more in the worst case). A nice property
  is that it does consistently well over a wide range of benchmarks.

You can read more on the design of _mimalloc_ in the
[technical report](https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action)
which also has detailed benchmark results.


Further information:

- \ref build
- \ref using
- \ref environment
- \ref overrides
- \ref bench
- \ref malloc
- \ref extended
- \ref aligned
- \ref heap
- \ref typed
- \ref analysis
- \ref options
- \ref posix
- \ref cpp

*/


/// \defgroup malloc Basic Allocation
/// The basic allocation interface.
/// \{


/// Free previously allocated memory.
/// The pointer `p` must have been allocated before (or be \a NULL).
/// @param p  pointer to free, or \a NULL.
void  mi_free(void* p);

/// Allocate \a size bytes.
/// @param size  number of bytes to allocate.
/// @returns pointer to the allocated memory or \a NULL if out of memory.
/// Returns a unique pointer if called with \a size 0.
void* mi_malloc(size_t size);

/// Allocate zero-initialized `size` bytes.
/// @param size The size in bytes.
/// @returns Pointer to newly allocated zero initialized memory,
/// or \a NULL if out of memory.
void* mi_zalloc(size_t size);

/// Allocate zero-initialized \a count elements of \a size bytes.
/// @param count number of elements.
/// @param size  size of each element.
/// @returns pointer to the allocated memory
/// of \a size*\a count bytes, or \a NULL if either out of memory
/// or when `count*size` overflows.
///
/// Returns a unique pointer if called with either \a size or \a count of 0.
/// @see mi_zalloc()
void* mi_calloc(size_t count, size_t size);

/// Re-allocate memory to \a newsize bytes.
/// @param p  pointer to previously allocated memory (or \a NULL).
/// @param newsize  the new required size in bytes.
/// @returns pointer to the re-allocated memory
/// of \a newsize bytes, or \a NULL if out of memory.
/// If \a NULL is returned, the pointer \a p is not freed.
/// Otherwise the original pointer is either freed or returned
/// as the reallocated result (in case it fits in-place with the
/// new size). If the pointer \a p is \a NULL, it behaves as
/// \a mi_malloc(\a newsize). If \a newsize is larger than the
/// original \a size allocated for \a p, the bytes after \a size
/// are uninitialized.
void* mi_realloc(void* p, size_t newsize);

/// Re-allocate memory to \a count elements of \a size bytes, with extra memory initialized to zero.
/// @param p Pointer to a previously allocated block (or \a NULL).
/// @param count The number of elements.
/// @param size The size of each element.
/// @returns A pointer to a re-allocated block of \a count * \a size bytes, or \a NULL
/// if out of memory or if \a count * \a size overflows.
///
/// If there is no overflow, it behaves exactly like `mi_rezalloc(p,count*size)`.
/// @see mi_reallocn()
/// @see [recallocarray()](http://man.openbsd.org/reallocarray) (on BSD).
void* mi_recalloc(void* p, size_t count, size_t size);

/// Try to re-allocate memory to \a newsize bytes _in place_.
/// @param p  pointer to previously allocated memory (or \a NULL).
/// @param newsize  the new required size in bytes.
/// @returns pointer to the re-allocated memory
/// of \a newsize bytes (always equal to \a p),
/// or \a NULL if either out of memory or if
/// the memory could not be expanded in place.
/// If \a NULL is returned, the pointer \a p is not freed.
/// Otherwise the original pointer is returned
/// as the reallocated result since it fits in-place with the
/// new size. If \a newsize is larger than the
/// original \a size allocated for \a p, the bytes after \a size
/// are uninitialized.
void* mi_expand(void* p, size_t newsize);

/// Allocate \a count elements of \a size bytes.
/// @param count The number of elements.
/// @param size The size of each element.
/// @returns A pointer to a block of \a count * \a size bytes, or \a NULL
/// if out of memory or if \a count * \a size overflows.
///
/// If there is no overflow, it behaves exactly like `mi_malloc(p,count*size)`.
/// @see mi_calloc()
/// @see mi_zallocn()
void* mi_mallocn(size_t count, size_t size);

/// Re-allocate memory to \a count elements of \a size bytes.
/// @param p Pointer to a previously allocated block (or \a NULL).
/// @param count The number of elements.
/// @param size The size of each element.
/// @returns A pointer to a re-allocated block of \a count * \a size bytes, or \a NULL
/// if out of memory or if \a count * \a size overflows.
///
/// If there is no overflow, it behaves exactly like `mi_realloc(p,count*size)`.
/// @see [reallocarray()](<http://man.openbsd.org/reallocarray>) (on BSD)
void* mi_reallocn(void* p, size_t count, size_t size);

/// Re-allocate memory to \a newsize bytes,
/// @param p  pointer to previously allocated memory (or \a NULL).
/// @param newsize  the new required size in bytes.
/// @returns pointer to the re-allocated memory
/// of \a newsize bytes, or \a NULL if out of memory.
///
/// In contrast to mi_realloc(), if \a NULL is returned, the original pointer
/// \a p is freed (if it was not \a NULL itself).
/// Otherwise the original pointer is either freed or returned
/// as the reallocated result (in case it fits in-place with the
/// new size). If the pointer \a p is \a NULL, it behaves as
/// \a mi_malloc(\a newsize). If \a newsize is larger than the
/// original \a size allocated for \a p, the bytes after \a size
/// are uninitialized.
///
/// @see [reallocf](https://www.freebsd.org/cgi/man.cgi?query=reallocf) (on BSD)
void* mi_reallocf(void* p, size_t newsize);


/// Allocate and duplicate a string.
/// @param s string to duplicate (or \a NULL).
/// @returns a pointer to newly allocated memory initialized
/// to string \a s, or \a NULL if either out of memory or if
/// \a s is \a NULL.
///
/// Replacement for the standard [strdup()](http://pubs.opengroup.org/onlinepubs/9699919799/functions/strdup.html)
/// such that mi_free() can be used on the returned result.
char* mi_strdup(const char* s);

/// Allocate and duplicate a string up to \a n bytes.
/// @param s string to duplicate (or \a NULL).
/// @param n maximum number of bytes to copy (excluding the terminating zero).
/// @returns a pointer to newly allocated memory initialized
/// to string \a s up to the first \a n bytes (and always zero terminated),
/// or \a NULL if either out of memory or if \a s is \a NULL.
///
/// Replacement for the standard [strndup()](http://pubs.opengroup.org/onlinepubs/9699919799/functions/strndup.html)
/// such that mi_free() can be used on the returned result.
char* mi_strndup(const char* s, size_t n);

/// Resolve a file path name.
/// @param fname File name.
/// @param resolved_name Should be \a NULL (but can also point to a buffer
///                      of at least \a PATH_MAX bytes).
/// @returns If successful a pointer to the resolved absolute file name, or
/// \a NULL on failure (with \a errno set to the error code).
///
/// If \a resolved_name was \a NULL, the returned result should be freed with
/// mi_free().
///
/// Replacement for the standard [realpath()](http://pubs.opengroup.org/onlinepubs/9699919799/functions/realpath.html)
/// such that mi_free() can be used on the returned result (if \a resolved_name was \a NULL).
char* mi_realpath(const char* fname, char* resolved_name);

/// \}

// ------------------------------------------------------
// Extended functionality
// ------------------------------------------------------

/// \defgroup extended Extended Functions
/// Extended functionality.
/// \{

/// Maximum size allowed for small allocations in
/// #mi_malloc_small and #mi_zalloc_small (usually `128*sizeof(void*)` (= 1KB on 64-bit systems))
#define MI_SMALL_SIZE_MAX   (128*sizeof(void*))

/// Allocate a small object.
/// @param size The size in bytes, can be at most #MI_SMALL_SIZE_MAX.
/// @returns a pointer to newly allocated memory of at least \a size
/// bytes, or \a NULL if out of memory.
/// This function is meant for use in run-time systems for best
/// performance and does not check if \a size was indeed small -- use
/// with care!
void* mi_malloc_small(size_t size);

/// Allocate a zero initialized small object.
/// @param size The size in bytes, can be at most #MI_SMALL_SIZE_MAX.
/// @returns a pointer to newly allocated zero-initialized memory of at
/// least \a size bytes, or \a NULL if out of memory.
/// This function is meant for use in run-time systems for best
/// performance and does not check if \a size was indeed small -- use
/// with care!
void* mi_zalloc_small(size_t size);

/// Return the available bytes in a memory block.
/// @param p Pointer to previously allocated memory (or \a NULL)
/// @returns Returns the available bytes in the memory block, or
/// 0 if \a p was \a NULL.
///
/// The returned size can be
/// used to call \a mi_expand successfully.
/// The returned size is always at least equal to the
/// allocated size of \a p, and, in the current design,
/// should be less than 16.7% more.
///
/// @see [_msize](https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/msize?view=vs-2017) (Windows)
/// @see [malloc_usable_size](http://man7.org/linux/man-pages/man3/malloc_usable_size.3.html) (Linux)
/// @see mi_good_size()
size_t mi_usable_size(void* p);

/// Return the used allocation size.
/// @param size The minimal required size in bytes.
/// @returns the size `n` that will be allocated, where `n >= size`.
///
/// Generally, `mi_usable_size(mi_malloc(size)) == mi_good_size(size)`.
/// This can be used to reduce internal wasted space when
/// allocating buffers for example.
///
/// @see mi_usable_size()
size_t mi_good_size(size_t size);

/// Eagerly free memory.
/// @param force If \a true, aggressively return memory to the OS (can be expensive!)
///
/// Regular code should not have to call this function. It can be beneficial
/// in very narrow circumstances; in particular, when a long running thread
/// allocates a lot of blocks that are freed by other threads it may improve
/// resource usage by calling this every once in a while.
void   mi_collect(bool force);

/// Deprecated
/// @param out Ignored, outputs to the registered output function or stderr by default.
///
/// Most detailed when using a debug build.
void mi_stats_print(void* out);

/// Print the main statistics.
/// @param out An output function or \a NULL for the default.
/// @param arg Optional argument passed to \a out (if not \a NULL)
///
/// Most detailed when using a debug build.
void mi_stats_print_out(mi_output_fun* out, void* arg);

/// Reset statistics.
void mi_stats_reset(void);

/// Merge thread local statistics with the main statistics and reset.
void mi_stats_merge(void);

/// Initialize mimalloc on a thread.
/// Should not be used as on most systems (pthreads, windows) this is done
/// automatically.
void mi_thread_init(void);

/// Uninitialize mimalloc on a thread.
/// Should not be used as on most systems (pthreads, windows) this is done
/// automatically. Ensures that any memory that is not freed yet (but will
/// be freed by other threads in the future) is properly handled.
void mi_thread_done(void);

/// Print out heap statistics for this thread.
/// @param out An output function or \a NULL for the default.
/// @param arg Optional argument passed to \a out (if not \a NULL)
///
/// Most detailed when using a debug build.
void mi_thread_stats_print_out(mi_output_fun* out, void* arg);

/// Type of deferred free functions.
/// @param force If \a true all outstanding items should be freed.
/// @param heartbeat A monotonically increasing count.
/// @param arg Argument that was passed at registration to hold extra state.
///
/// @see mi_register_deferred_free
typedef void (mi_deferred_free_fun)(bool force, unsigned long long heartbeat, void* arg);

/// Register a deferred free function.
/// @param deferred_free Address of a deferred free-ing function or \a NULL to unregister.
/// @param arg Argument that will be passed on to the deferred free function.
///
/// Some runtime systems use deferred free-ing, for example when using
/// reference counting to limit the worst case free time.
/// Such systems can register (re-entrant) deferred free function
/// to free more memory on demand. When the \a force parameter is
/// \a true all possible memory should be freed.
/// The per-thread \a heartbeat parameter is monotonically increasing
/// and guaranteed to be deterministic if the program allocates
/// deterministically. The \a deferred_free function is guaranteed
/// to be called deterministically after some number of allocations
/// (regardless of freeing or available free memory).
/// At most one \a deferred_free function can be active.
void   mi_register_deferred_free(mi_deferred_free_fun* deferred_free, void* arg);

/// Type of output functions.
/// @param msg Message to output.
/// @param arg Argument that was passed at registration to hold extra state.
///
/// @see mi_register_output()
typedef void (mi_output_fun)(const char* msg, void* arg);

/// Register an output function.
/// @param out The output function, use `NULL` to output to stderr.
/// @param arg Argument that will be passed on to the output function.
///
/// The `out` function is called to output any information from mimalloc,
/// like verbose or warning messages.
void mi_register_output(mi_output_fun* out, void* arg);

/// Type of error callback functions.
/// @param err Error code (see mi_register_error() for a complete list).
/// @param arg Argument that was passed at registration to hold extra state.
///
/// @see mi_register_error()
typedef void (mi_error_fun)(int err, void* arg);

/// Register an error callback function.
/// @param errfun The error function that is called on an error (use \a NULL for default)
/// @param arg Extra argument that will be passed on to the error function.
///
/// The \a errfun function is called on an error in mimalloc after emitting
/// an error message (through the output function). It as always legal to just
/// return from the \a errfun function in which case allocation functions generally
/// return \a NULL or ignore the condition. The default function only calls abort()
/// when compiled in secure mode with an \a EFAULT error. The possible error
/// codes are:
/// * \a EAGAIN: Double free was detected (only in debug and secure mode).
/// * \a EFAULT: Corrupted free list or meta-data was detected (only in debug and secure mode).
/// * \a ENOMEM: Not enough memory available to satisfy the request.
/// * \a EOVERFLOW: Too large a request, for example in mi_calloc(), the \a count and \a size parameters are too large.
/// * \a EINVAL: Trying to free or re-allocate an invalid pointer.
void mi_register_error(mi_error_fun* errfun, void* arg);

/// Is a pointer part of our heap?
/// @param p The pointer to check.
/// @returns \a true if this is a pointer into our heap.
/// This function is relatively fast.
bool mi_is_in_heap_region(const void* p);


/// Reserve \a pages of huge OS pages (1GiB) evenly divided over \a numa_nodes nodes,
/// but stops after at most `timeout_msecs` seconds.
/// @param pages The number of 1GiB pages to reserve.
/// @param numa_nodes The number of nodes do evenly divide the pages over, or 0 for using the actual number of NUMA nodes.
/// @param timeout_msecs Maximum number of milli-seconds to try reserving, or 0 for no timeout.
/// @returns 0 if successfull, \a ENOMEM if running out of memory, or \a ETIMEDOUT if timed out.
///
/// The reserved memory is used by mimalloc to satisfy allocations.
/// May quit before \a timeout_msecs are expired if it estimates it will take more than
/// 1.5 times \a timeout_msecs. The time limit is needed because on some operating systems
/// it can take a long time to reserve contiguous memory if the physical memory is
/// fragmented.
int mi_reserve_huge_os_pages_interleave(size_t pages, size_t numa_nodes, size_t timeout_msecs);

/// Reserve \a pages of huge OS pages (1GiB) at a specific \a numa_node,
/// but stops after at most `timeout_msecs` seconds.
/// @param pages The number of 1GiB pages to reserve.
/// @param numa_node The NUMA node where the memory is reserved (start at 0).
/// @param timeout_msecs Maximum number of milli-seconds to try reserving, or 0 for no timeout.
/// @returns 0 if successfull, \a ENOMEM if running out of memory, or \a ETIMEDOUT if timed out.
///
/// The reserved memory is used by mimalloc to satisfy allocations.
/// May quit before \a timeout_msecs are expired if it estimates it will take more than
/// 1.5 times \a timeout_msecs. The time limit is needed because on some operating systems
/// it can take a long time to reserve contiguous memory if the physical memory is
/// fragmented.
int mi_reserve_huge_os_pages_at(size_t pages, int numa_node, size_t timeout_msecs);


/// Is the C runtime \a malloc API redirected?
/// @returns \a true if all malloc API calls are redirected to mimalloc.
///
/// Currenty only used on Windows.
bool mi_is_redirected();

/// Return process information (time and memory usage).
/// @param elapsed_msecs   Optional. Elapsed wall-clock time of the process in milli-seconds.
/// @param user_msecs      Optional. User time in milli-seconds (as the sum over all threads).
/// @param system_msecs    Optional. System time in milli-seconds.
/// @param current_rss     Optional. Current working set size (touched pages).
/// @param peak_rss        Optional. Peak working set size (touched pages).
/// @param current_commit  Optional. Current committed memory (backed by the page file).
/// @param peak_commit     Optional. Peak committed memory (backed by the page file).
/// @param page_faults     Optional. Count of hard page faults.
///
/// The \a current_rss is precise on Windows and MacOSX; other systems estimate
/// this using \a current_commit. The \a commit is precise on Windows but estimated
/// on other systems as the amount of read/write accessible memory reserved by mimalloc.
void mi_process_info(size_t* elapsed_msecs, size_t* user_msecs, size_t* system_msecs, size_t* current_rss, size_t* peak_rss, size_t* current_commit, size_t* peak_commit, size_t* page_faults);

/// \}

// ------------------------------------------------------
// Aligned allocation
// ------------------------------------------------------

/// \defgroup aligned Aligned Allocation
///
/// Allocating aligned memory blocks.
///
/// \{

/// Allocate \a size bytes aligned by \a alignment.
/// @param size  number of bytes to allocate.
/// @param alignment  the minimal alignment of the allocated memory.
/// @returns pointer to the allocated memory or \a NULL if out of memory.
/// The returned pointer is aligned by \a alignment, i.e.
/// `(uintptr_t)p % alignment == 0`.
///
/// Returns a unique pointer if called with \a size 0.
/// @see [_aligned_malloc](https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/aligned-malloc?view=vs-2017) (on Windows)
/// @see [aligned_alloc](http://man.openbsd.org/reallocarray) (on BSD, with switched arguments!)
/// @see [posix_memalign](https://linux.die.net/man/3/posix_memalign) (on Posix, with switched arguments!)
/// @see [memalign](https://linux.die.net/man/3/posix_memalign) (on Linux, with switched arguments!)
void* mi_malloc_aligned(size_t size, size_t alignment);
void* mi_zalloc_aligned(size_t size, size_t alignment);
void* mi_calloc_aligned(size_t count, size_t size, size_t alignment);
void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment);

/// Allocate \a size bytes aligned by \a alignment at a specified \a offset.
/// @param size  number of bytes to allocate.
/// @param alignment  the minimal alignment of the allocated memory at \a offset.
/// @param offset     the offset that should be aligned.
/// @returns pointer to the allocated memory or \a NULL if out of memory.
/// The returned pointer is aligned by \a alignment at \a offset, i.e.
/// `((uintptr_t)p + offset) % alignment == 0`.
///
/// Returns a unique pointer if called with \a size 0.
/// @see [_aligned_offset_malloc](https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/aligned-offset-malloc?view=vs-2017) (on Windows)
void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset);
void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset);
void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset);
void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset);

/// \}

/// \defgroup heap Heap Allocation
///
/// First-class heaps that can be destroyed in one go.
///
/// \{

/// Type of first-class heaps.
/// A heap can only be used for allocation in
/// the thread that created this heap! Any allocated
/// blocks can be freed or reallocated by any other thread though.
struct mi_heap_s;

/// Type of first-class heaps.
/// A heap can only be used for (re)allocation in
/// the thread that created this heap! Any allocated
/// blocks can be freed by any other thread though.
typedef struct mi_heap_s mi_heap_t;

/// Create a new heap that can be used for allocation.
mi_heap_t* mi_heap_new();

/// Delete a previously allocated heap.
/// This will release resources and migrate any
/// still allocated blocks in this heap (efficienty)
/// to the default heap.
///
/// If \a heap is the default heap, the default
/// heap is set to the backing heap.
void mi_heap_delete(mi_heap_t* heap);

/// Destroy a heap, freeing all its still allocated blocks.
/// Use with care as this will free all blocks still
/// allocated in the heap. However, this can be a very
/// efficient way to free all heap memory in one go.
///
/// If \a heap is the default heap, the default
/// heap is set to the backing heap.
void mi_heap_destroy(mi_heap_t* heap);

/// Set the default heap to use for mi_malloc() et al.
/// @param heap  The new default heap.
/// @returns The previous default heap.
mi_heap_t* mi_heap_set_default(mi_heap_t* heap);

/// Get the default heap that is used for mi_malloc() et al.
/// @returns The current default heap.
mi_heap_t* mi_heap_get_default();

/// Get the backing heap.
/// The _backing_ heap is the initial default heap for
/// a thread and always available for allocations.
/// It cannot be destroyed or deleted
/// except by exiting the thread.
mi_heap_t* mi_heap_get_backing();

/// Release outstanding resources in a specific heap.
void mi_heap_collect(mi_heap_t* heap, bool force);

/// Allocate in a specific heap.
/// @see mi_malloc()
void* mi_heap_malloc(mi_heap_t* heap, size_t size);

/// Allocate a small object in a specific heap.
/// \a size must be smaller or equal to MI_SMALL_SIZE_MAX().
/// @see mi_malloc()
void* mi_heap_malloc_small(mi_heap_t* heap, size_t size);

/// Allocate zero-initialized in a specific heap.
/// @see mi_zalloc()
void* mi_heap_zalloc(mi_heap_t* heap, size_t size);

/// Allocate \a count zero-initialized elements in a specific heap.
/// @see mi_calloc()
void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size);

/// Allocate \a count elements in a specific heap.
/// @see mi_mallocn()
void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size);

/// Duplicate a string in a specific heap.
/// @see mi_strdup()
char* mi_heap_strdup(mi_heap_t* heap, const char* s);

/// Duplicate a string of at most length \a n in a specific heap.
/// @see mi_strndup()
char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n);

/// Resolve a file path name using a specific \a heap to allocate the result.
/// @see mi_realpath()
char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name);

void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize);
void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size);
void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize);

void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment);
void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset);
void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment);
void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset);
void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment);
void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset);
void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment);
void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset);

/// \}


/// \defgroup zeroinit Zero initialized re-allocation
///
/// The zero-initialized re-allocations are only valid on memory that was
/// originally allocated with zero initialization too.
/// e.g. `mi_calloc`, `mi_zalloc`, `mi_zalloc_aligned` etc.
/// see <https://github.com/microsoft/mimalloc/issues/63#issuecomment-508272992>
///
/// \{

void* mi_rezalloc(void* p, size_t newsize);
void* mi_recalloc(void* p, size_t newcount, size_t size) ;

void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment);
void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset);
void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment);
void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset);

void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize);
void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t newcount, size_t size);

void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment);
void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset);
void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment);
void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset);

/// \}

/// \defgroup typed Typed Macros
///
/// Typed allocation macros. For example:
/// ```
/// int* p = mi_malloc_tp(int)
/// ```
///
/// \{

/// Allocate a block of type \a tp.
/// @param tp The type of the block to allocate.
/// @returns A pointer to an object of type \a tp, or
/// \a NULL if out of memory.
///
/// **Example:**
/// ```
/// int* p = mi_malloc_tp(int)
/// ```
///
/// @see mi_malloc()
#define mi_malloc_tp(tp)        ((tp*)mi_malloc(sizeof(tp)))

/// Allocate a zero-initialized block of type \a tp.
#define mi_zalloc_tp(tp)        ((tp*)mi_zalloc(sizeof(tp)))

/// Allocate \a count zero-initialized blocks of type \a tp.
#define mi_calloc_tp(tp,count)      ((tp*)mi_calloc(count,sizeof(tp)))

/// Allocate \a count blocks of type \a tp.
#define mi_mallocn_tp(tp,count)     ((tp*)mi_mallocn(count,sizeof(tp)))

/// Re-allocate to \a count blocks of type \a tp.
#define mi_reallocn_tp(p,tp,count)  ((tp*)mi_reallocn(p,count,sizeof(tp)))

/// Allocate a block of type \a tp in a heap \a hp.
#define mi_heap_malloc_tp(hp,tp)        ((tp*)mi_heap_malloc(hp,sizeof(tp)))

/// Allocate a zero-initialized block of type \a tp in a heap \a hp.
#define mi_heap_zalloc_tp(hp,tp)        ((tp*)mi_heap_zalloc(hp,sizeof(tp)))

/// Allocate \a count zero-initialized blocks of type \a tp in a heap \a hp.
#define mi_heap_calloc_tp(hp,tp,count)      ((tp*)mi_heap_calloc(hp,count,sizeof(tp)))

/// Allocate \a count blocks of type \a tp in a heap \a hp.
#define mi_heap_mallocn_tp(hp,tp,count)     ((tp*)mi_heap_mallocn(hp,count,sizeof(tp)))

/// Re-allocate to \a count blocks of type \a tp in a heap \a hp.
#define mi_heap_reallocn_tp(hp,p,tp,count)  ((tp*)mi_heap_reallocn(p,count,sizeof(tp)))

/// Re-allocate to \a count zero initialized blocks of type \a tp in a heap \a hp.
#define mi_heap_recalloc_tp(hp,p,tp,count)  ((tp*)mi_heap_recalloc(p,count,sizeof(tp)))

/// \}

/// \defgroup analysis Heap Introspection
///
/// Inspect the heap at runtime.
///
/// \{

/// Does a heap contain a pointer to a previously allocated block?
/// @param heap The heap.
/// @param p Pointer to a previously allocated block (in any heap)-- cannot be some
///          random pointer!
/// @returns \a true if the block pointed to by \a p is in the \a heap.
/// @see mi_heap_check_owned()
bool mi_heap_contains_block(mi_heap_t* heap, const void* p);

/// Check safely if any pointer is part of a heap.
/// @param heap The heap.
/// @param p   Any pointer -- not required to be previously allocated by us.
/// @returns \a true if \a p points to a block in \a heap.
///
/// Note: expensive function, linear in the pages in the heap.
/// @see mi_heap_contains_block()
/// @see mi_heap_get_default()
bool mi_heap_check_owned(mi_heap_t* heap, const void* p);

/// Check safely if any pointer is part of the default heap of this thread.
/// @param p   Any pointer -- not required to be previously allocated by us.
/// @returns \a true if \a p points to a block in default heap of this thread.
///
/// Note: expensive function, linear in the pages in the heap.
/// @see mi_heap_contains_block()
/// @see mi_heap_get_default()
bool mi_check_owned(const void* p);

/// An area of heap space contains blocks of a single size.
/// The bytes in freed blocks are `committed - used`.
typedef struct mi_heap_area_s {
  void*  blocks;      ///< start of the area containing heap blocks
  size_t reserved;    ///< bytes reserved for this area
  size_t committed;   ///< current committed bytes of this area
  size_t used;        ///< bytes in use by allocated blocks
  size_t block_size;  ///< size in bytes of one block
} mi_heap_area_t;

/// Visitor function passed to mi_heap_visit_blocks()
/// @returns \a true if ok, \a false to stop visiting (i.e. break)
///
/// This function is always first called for every \a area
/// with \a block as a \a NULL pointer. If \a visit_all_blocks
/// was \a true, the function is then called for every allocated
/// block in that area.
typedef bool (mi_block_visit_fun)(const mi_heap_t* heap, const mi_heap_area_t* area, void* block, size_t block_size, void* arg);

/// Visit all areas and blocks in a heap.
/// @param heap The heap to visit.
/// @param visit_all_blocks If \a true visits all allocated blocks, otherwise
///                         \a visitor is only called for every heap area.
/// @param visitor This function is called for every area in the heap
///                 (with \a block as \a NULL). If \a visit_all_blocks is
///                 \a true, \a visitor is also called for every allocated
///                 block in every area (with `block!=NULL`).
///                 return \a false from this function to stop visiting early.
/// @param arg Extra argument passed to \a visitor.
/// @returns \a true if all areas and blocks were visited.
bool mi_heap_visit_blocks(const mi_heap_t* heap, bool visit_all_blocks, mi_block_visit_fun* visitor, void* arg);

/// \}

/// \defgroup options Runtime Options
///
/// Set runtime behavior.
///
/// \{

/// Runtime options.
typedef enum mi_option_e {
  // stable options
  mi_option_show_errors,  ///< Print error messages to `stderr`.
  mi_option_show_stats,   ///< Print statistics to `stderr` when the program is done.
  mi_option_verbose,      ///< Print verbose messages to `stderr`.
  // the following options are experimental
  mi_option_eager_commit, ///< Eagerly commit segments (4MiB) (enabled by default).
  mi_option_eager_region_commit, ///< Eagerly commit large (256MiB) memory regions (enabled by default, except on Windows)
  mi_option_large_os_pages,      ///< Use large OS pages (2MiB in size) if possible
  mi_option_reserve_huge_os_pages, ///< The number of huge OS pages (1GiB in size) to reserve at the start of the program.
  mi_option_segment_cache,   ///< The number of segments per thread to keep cached.
  mi_option_page_reset,      ///< Reset page memory after \a mi_option_reset_delay milliseconds when it becomes free.
  mi_option_segment_reset,   ///< Experimental
  mi_option_reset_delay,     ///< Delay in milli-seconds before resetting a page (100ms by default)
  mi_option_use_numa_nodes,  ///< Pretend there are at most N NUMA nodes
  mi_option_reset_decommits, ///< Experimental
  mi_option_eager_commit_delay,  ///< Experimental
  mi_option_os_tag,          ///< OS tag to assign to mimalloc'd memory
  _mi_option_last
} mi_option_t;


bool  mi_option_is_enabled(mi_option_t option);
void  mi_option_enable(mi_option_t option);
void  mi_option_disable(mi_option_t option);
void  mi_option_set_enabled(mi_option_t option, bool enable);
void  mi_option_set_enabled_default(mi_option_t option, bool enable);

long  mi_option_get(mi_option_t option);
void  mi_option_set(mi_option_t option, long value);
void  mi_option_set_default(mi_option_t option, long value);


/// \}

/// \defgroup posix Posix
///
///  `mi_` prefixed implementations of various Posix, Unix, and C++ allocation functions.
///  Defined for convenience as all redirect to the regular mimalloc API.
///
/// \{

void*  mi_recalloc(void* p, size_t count, size_t size);
size_t mi_malloc_size(const void* p);
size_t mi_malloc_usable_size(const void *p);

/// Just as `free` but also checks if the pointer `p` belongs to our heap.
void   mi_cfree(void* p);

int mi_posix_memalign(void** p, size_t alignment, size_t size);
int mi__posix_memalign(void** p, size_t alignment, size_t size);
void* mi_memalign(size_t alignment, size_t size);
void* mi_valloc(size_t size);

void* mi_pvalloc(size_t size);
void* mi_aligned_alloc(size_t alignment, size_t size);
void* mi_reallocarray(void* p, size_t count, size_t size);

void mi_free_size(void* p, size_t size);
void mi_free_size_aligned(void* p, size_t size, size_t alignment);
void mi_free_aligned(void* p, size_t alignment);

/// \}

/// \defgroup cpp C++ wrappers
///
///  `mi_` prefixed implementations of various allocation functions
///  that use C++ semantics on out-of-memory, generally calling
///  `std::get_new_handler` and raising a `std::bad_alloc` exception on failure.
///
///  Note: use the `mimalloc-new-delete.h` header to override the \a new
///        and \a delete operators globally. The wrappers here are mostly
///        for convience for library writers that need to interface with
///        mimalloc from C++.
///
/// \{

/// like mi_malloc(), but when out of memory, use `std::get_new_handler` and raise `std::bad_alloc` exception on failure.
void* mi_new(std::size_t n) noexcept(false);

/// like mi_mallocn(), but when out of memory, use `std::get_new_handler` and raise `std::bad_alloc` exception on failure.
void* mi_new_n(size_t count, size_t size) noexcept(false);

/// like mi_malloc_aligned(), but when out of memory, use `std::get_new_handler` and raise `std::bad_alloc` exception on failure.
void* mi_new_aligned(std::size_t n, std::align_val_t alignment) noexcept(false);

/// like `mi_malloc`, but when out of memory, use `std::get_new_handler` but return \a NULL on failure.
void* mi_new_nothrow(size_t n);

/// like `mi_malloc_aligned`, but when out of memory, use `std::get_new_handler` but return \a NULL on failure.
void* mi_new_aligned_nothrow(size_t n, size_t alignment);

/// like mi_realloc(), but when out of memory, use `std::get_new_handler` and raise `std::bad_alloc` exception on failure.
void* mi_new_realloc(void* p, size_t newsize);

/// like mi_reallocn(), but when out of memory, use `std::get_new_handler` and raise `std::bad_alloc` exception on failure.
void* mi_new_reallocn(void* p, size_t newcount, size_t size);

/// \a std::allocator implementation for mimalloc for use in STL containers.
/// For example:
/// ```
/// std::vector<int, mi_stl_allocator<int> > vec;
/// vec.push_back(1);
/// vec.pop_back();
/// ```
template<class T> struct mi_stl_allocator { }

/// \}

/*! \page build Building

Checkout the sources from Github:
```
git clone https://github.com/microsoft/mimalloc
```

## Windows

Open `ide/vs2019/mimalloc.sln` in Visual Studio 2019 and build (or `ide/vs2017/mimalloc.sln`).
The `mimalloc` project builds a static library (in `out/msvc-x64`), while the
`mimalloc-override` project builds a DLL for overriding malloc
in the entire program.

## macOS, Linux, BSD, etc.

We use [`cmake`](https://cmake.org)<sup>1</sup> as the build system:

```
> mkdir -p out/release
> cd out/release
> cmake ../..
> make
```
This builds the library as a shared (dynamic)
library (`.so` or `.dylib`), a static library (`.a`), and
as a single object file (`.o`).

`> sudo make install` (install the library and header files in `/usr/local/lib`  and `/usr/local/include`)

You can build the debug version which does many internal checks and
maintains detailed statistics as:

```
> mkdir -p out/debug
> cd out/debug
> cmake -DCMAKE_BUILD_TYPE=Debug ../..
> make
```
This will name the shared library as `libmimalloc-debug.so`.

Finally, you can build a _secure_ version that uses guard pages, encrypted
free lists, etc, as:
```
> mkdir -p out/secure
> cd out/secure
> cmake -DMI_SECURE=ON ../..
> make
```
This will name the shared library as `libmimalloc-secure.so`.
Use `ccmake`<sup>2</sup> instead of `cmake`
to see and customize all the available build options.

Notes:
1. Install CMake: `sudo apt-get install cmake`
2. Install CCMake: `sudo apt-get install cmake-curses-gui`

*/

/*! \page using Using the library

### Build

The preferred usage is including `<mimalloc.h>`, linking with
the shared- or static library, and using the `mi_malloc` API exclusively for allocation. For example,
```
gcc -o myprogram -lmimalloc myfile.c
```

mimalloc uses only safe OS calls (`mmap` and `VirtualAlloc`) and can co-exist
with other allocators linked to the same program.
If you use `cmake`, you can simply use:
```
find_package(mimalloc 1.0 REQUIRED)
```
in your `CMakeLists.txt` to find a locally installed mimalloc. Then use either:
```
target_link_libraries(myapp PUBLIC mimalloc)
```
to link with the shared (dynamic) library, or:
```
target_link_libraries(myapp PUBLIC mimalloc-static)
```
to link with the static library. See `test\CMakeLists.txt` for an example.

### C++
For best performance in C++ programs, it is also recommended to override the
global `new` and `delete` operators. For convience, mimalloc provides
[`mimalloc-new-delete.h`](https://github.com/microsoft/mimalloc/blob/master/include/mimalloc-new-delete.h) which does this for you -- just include it in a single(!) source file in your project.

In C++, mimalloc also provides the `mi_stl_allocator` struct which implements the `std::allocator`
interface. For example:
```
std::vector<some_struct, mi_stl_allocator<some_struct>> vec;
vec.push_back(some_struct());
```

### Statistics

You can pass environment variables to print verbose messages (`MIMALLOC_VERBOSE=1`)
and statistics (`MIMALLOC_SHOW_STATS=1`) (in the debug version):
```
> env MIMALLOC_SHOW_STATS=1 ./cfrac 175451865205073170563711388363

175451865205073170563711388363 = 374456281610909315237213 * 468551

heap stats:     peak      total      freed       unit
normal   2:    16.4 kb    17.5 mb    17.5 mb      16 b   ok
normal   3:    16.3 kb    15.2 mb    15.2 mb      24 b   ok
normal   4:      64 b      4.6 kb     4.6 kb      32 b   ok
normal   5:      80 b    118.4 kb   118.4 kb      40 b   ok
normal   6:      48 b       48 b       48 b       48 b   ok
normal  17:     960 b      960 b      960 b      320 b   ok

heap stats:     peak      total      freed       unit
    normal:    33.9 kb    32.8 mb    32.8 mb       1 b   ok
      huge:       0 b        0 b        0 b        1 b   ok
     total:    33.9 kb    32.8 mb    32.8 mb       1 b   ok
malloc requested:         32.8 mb

 committed:    58.2 kb    58.2 kb    58.2 kb       1 b   ok
  reserved:     2.0 mb     2.0 mb     2.0 mb       1 b   ok
     reset:       0 b        0 b        0 b        1 b   ok
  segments:       1          1          1
-abandoned:       0
     pages:       6          6          6
-abandoned:       0
     mmaps:       3
 mmap fast:       0
 mmap slow:       1
   threads:       0
   elapsed:     2.022s
   process: user: 1.781s, system: 0.016s, faults: 756, reclaims: 0, rss: 2.7 mb
```

The above model of using the `mi_` prefixed API is not always possible
though in existing programs that already use the standard malloc interface,
and another option is to override the standard malloc interface
completely and redirect all calls to the _mimalloc_ library instead.

See \ref overrides for more info.

*/

/*! \page environment Environment Options

You can set further options either programmatically (using [`mi_option_set`](https://microsoft.github.io/mimalloc/group__options.html)),
or via environment variables.

- `MIMALLOC_SHOW_STATS=1`: show statistics when the program terminates.
- `MIMALLOC_VERBOSE=1`: show verbose messages.
- `MIMALLOC_SHOW_ERRORS=1`: show error and warning messages.
- `MIMALLOC_PAGE_RESET=0`: by default, mimalloc will reset (or purge) OS pages when not in use to signal to the OS
   that the underlying physical memory can be reused. This can reduce memory fragmentation in long running (server)
   programs. By setting it to `0` no such page resets will be done which can improve performance for programs that are not long
   running. As an alternative, the `MIMALLOC_RESET_DELAY=`<msecs> can be set higher (100ms by default) to make the page
   reset occur less frequently instead of turning it off completely.
- `MIMALLOC_LARGE_OS_PAGES=1`: use large OS pages (2MiB) when available; for some workloads this can significantly
   improve performance. Use `MIMALLOC_VERBOSE` to check if the large OS pages are enabled -- usually one needs
   to explicitly allow large OS pages (as on [Windows][windows-huge] and [Linux][linux-huge]). However, sometimes
   the OS is very slow to reserve contiguous physical memory for large OS pages so use with care on systems that
   can have fragmented memory (for that reason, we generally recommend to use `MIMALLOC_RESERVE_HUGE_OS_PAGES` instead when possible).
- `MIMALLOC_RESERVE_HUGE_OS_PAGES=N`: where N is the number of 1GiB _huge_ OS pages. This reserves the huge pages at
   startup and sometimes this can give a large (latency) performance improvement on big workloads.
   Usually it is better to not use
   `MIMALLOC_LARGE_OS_PAGES` in combination with this setting. Just like large OS pages, use with care as reserving
   contiguous physical memory can take a long time when memory is fragmented (but reserving the huge pages is done at
   startup only once).
   Note that we usually need to explicitly enable huge OS pages (as on [Windows][windows-huge] and [Linux][linux-huge])). With huge OS pages, it may be beneficial to set the setting
   `MIMALLOC_EAGER_COMMIT_DELAY=N` (`N` is 1 by default) to delay the initial `N` segments (of 4MiB)
   of a thread to not allocate in the huge OS pages; this prevents threads that are short lived
   and allocate just a little to take up space in the huge OS page area (which cannot be reset).

Use caution when using `fork` in combination with either large or huge OS pages: on a fork, the OS uses copy-on-write
for all pages in the original process including the huge OS pages. When any memory is now written in that area, the
OS will copy the entire 1GiB huge page (or 2MiB large page) which can cause the memory usage to grow in big increments.

[linux-huge]: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/tuning_and_optimizing_red_hat_enterprise_linux_for_oracle_9i_and_10g_databases/sect-oracle_9i_and_10g_tuning_guide-large_memory_optimization_big_pages_and_huge_pages-configuring_huge_pages_in_red_hat_enterprise_linux_4_or_5
[windows-huge]: https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-the-lock-pages-in-memory-option-windows?view=sql-server-2017

*/

/*! \page overrides Overriding Malloc

Overriding the standard `malloc` can be done either _dynamically_ or _statically_.

## Dynamic override

This is the recommended way to override the standard malloc interface.


### Linux, BSD

On these systems we preload the mimalloc shared
library so all calls to the standard `malloc` interface are
resolved to the _mimalloc_ library.

- `env LD_PRELOAD=/usr/lib/libmimalloc.so myprogram`

You can set extra environment variables to check that mimalloc is running,
like:
```
env MIMALLOC_VERBOSE=1 LD_PRELOAD=/usr/lib/libmimalloc.so myprogram
```
or run with the debug version to get detailed statistics:
```
env MIMALLOC_SHOW_STATS=1 LD_PRELOAD=/usr/lib/libmimalloc-debug.so myprogram
```

### MacOS

On macOS we can also preload the mimalloc shared
library so all calls to the standard `malloc` interface are
resolved to the _mimalloc_ library.

- `env DYLD_FORCE_FLAT_NAMESPACE=1 DYLD_INSERT_LIBRARIES=/usr/lib/libmimalloc.dylib myprogram`

Note that certain security restrictions may apply when doing this from
the [shell](https://stackoverflow.com/questions/43941322/dyld-insert-libraries-ignored-when-calling-application-through-bash).

(Note: macOS support for dynamic overriding is recent, please report any issues.)


### Windows

Overriding on Windows is robust and has the
particular advantage to be able to redirect all malloc/free calls that go through
the (dynamic) C runtime allocator, including those from other DLL's or libraries.

The overriding on Windows requires that you link your program explicitly with
the mimalloc DLL and use the C-runtime library as a DLL (using the `/MD` or `/MDd` switch).
Also, the `mimalloc-redirect.dll` (or `mimalloc-redirect32.dll`) must be available
in the same folder as the main `mimalloc-override.dll` at runtime (as it is a dependency).
The redirection DLL ensures that all calls to the C runtime malloc API get redirected to
mimalloc (in `mimalloc-override.dll`).

To ensure the mimalloc DLL is loaded at run-time it is easiest to insert some
call to the mimalloc API in the `main` function, like `mi_version()`
(or use the `/INCLUDE:mi_version` switch on the linker). See the `mimalloc-override-test` project
for an example on how to use this. For best performance on Windows with C++, it
is also recommended to also override the `new`/`delete` operations (by including
[`mimalloc-new-delete.h`](https://github.com/microsoft/mimalloc/blob/master/include/mimalloc-new-delete.h) a single(!) source file in your project).

The environment variable `MIMALLOC_DISABLE_REDIRECT=1` can be used to disable dynamic
overriding at run-time. Use `MIMALLOC_VERBOSE=1` to check if mimalloc was successfully redirected.

(Note: in principle, it is possible to even patch existing executables without any recompilation
if they are linked with the dynamic C runtime (`ucrtbase.dll`) -- just put the `mimalloc-override.dll`
into the import table (and put `mimalloc-redirect.dll` in the same folder)
Such patching can be done for example with [CFF Explorer](https://ntcore.com/?page_id=388)).


## Static override

On Unix systems, you can also statically link with _mimalloc_ to override the standard
malloc interface. The recommended way is to link the final program with the
_mimalloc_ single object file (`mimalloc-override.o`). We use
an object file instead of a library file as linkers give preference to
that over archives to resolve symbols. To ensure that the standard
malloc interface resolves to the _mimalloc_ library, link it as the first
object file. For example:

```
gcc -o myprogram mimalloc-override.o  myfile1.c ...
```

## List of Overrides:

The specific functions that get redirected to the _mimalloc_ library are:

```
// C
void*  malloc(size_t size);
void*  calloc(size_t size, size_t n);
void*  realloc(void* p, size_t newsize);
void   free(void* p);

// C++
void   operator delete(void* p);
void   operator delete[](void* p);

void*  operator new(std::size_t n) noexcept(false);
void*  operator new[](std::size_t n) noexcept(false);
void*  operator new( std::size_t n, std::align_val_t align) noexcept(false);
void*  operator new[]( std::size_t n, std::align_val_t align) noexcept(false);

void*  operator new  ( std::size_t count, const std::nothrow_t& tag);
void*  operator new[]( std::size_t count, const std::nothrow_t& tag);
void*  operator new  ( std::size_t count, std::align_val_t al, const std::nothrow_t&);
void*  operator new[]( std::size_t count, std::align_val_t al, const std::nothrow_t&);

// Posix
int    posix_memalign(void** p, size_t alignment, size_t size);

// Linux
void*  memalign(size_t alignment, size_t size);
void*  aligned_alloc(size_t alignment, size_t size);
void*  valloc(size_t size);
void*  pvalloc(size_t size);
size_t malloc_usable_size(void *p);

// BSD
void*  reallocarray( void* p, size_t count, size_t size );
void*  reallocf(void* p, size_t newsize);
void   cfree(void* p);

// Windows
void*  _expand(void* p, size_t newsize);
size_t _msize(void* p);

void*  _malloc_dbg(size_t size, int block_type, const char* fname, int line);
void*  _realloc_dbg(void* p, size_t newsize, int block_type, const char* fname, int line);
void*  _calloc_dbg(size_t count, size_t size, int block_type, const char* fname, int line);
void*  _expand_dbg(void* p, size_t size, int block_type, const char* fname, int line);
size_t _msize_dbg(void* p, int block_type);
void   _free_dbg(void* p, int block_type);
```

*/

/*! \page bench Performance

We tested _mimalloc_ against many other top allocators over a wide
range of benchmarks, ranging from various real world programs to
synthetic benchmarks that see how the allocator behaves under more
extreme circumstances.

In our benchmarks, _mimalloc_ always outperforms all other leading
allocators (_jemalloc_, _tcmalloc_, _Hoard_, etc) (Jan 2021),
and usually uses less memory (up to 25% more in the worst case).
A nice property is that it does *consistently* well over the wide
range of benchmarks.

See the [Performance](https://github.com/microsoft/mimalloc#Performance)
section in the _mimalloc_ repository for benchmark results,
or the the technical report for detailed benchmark results.

*/