diff options
author | alk3pInjection <webmaster@raspii.tech> | 2021-08-30 16:43:38 +0800 |
---|---|---|
committer | alk3pInjection <webmaster@raspii.tech> | 2021-08-30 16:43:38 +0800 |
commit | cbe033a53bfe49d980774e59025e3b2af91778b7 (patch) | |
tree | 558535f91276162e0be70d07b34ed2e6577e38ad /lib/lz4.h | |
parent | fdd43c66dd9e77283aa8f7e52a881be44d622441 (diff) | |
parent | d44371841a2f1728a3f36839fd4b7e872d0927d3 (diff) |
Merge tag 'v1.9.3' into lineage-18.1HEADlineage-18.1
Change-Id: Iad56c1b17a32f9f356a4c1ff9557f0e79addf481
Diffstat (limited to 'lib/lz4.h')
-rw-r--r-- | lib/lz4.h | 599 |
1 files changed, 371 insertions, 228 deletions
@@ -46,24 +46,31 @@ extern "C" { /** Introduction - LZ4 is lossless compression algorithm, providing compression speed at 500 MB/s per core, + LZ4 is lossless compression algorithm, providing compression speed >500 MB/s per core, scalable with multi-cores CPU. It features an extremely fast decoder, with speed in multiple GB/s per core, typically reaching RAM speed limits on multi-core systems. The LZ4 compression library provides in-memory compression and decompression functions. + It gives full buffer control to user. Compression can be done in: - a single step (described as Simple Functions) - a single step, reusing a context (described in Advanced Functions) - unbounded multiple steps (described as Streaming compression) - lz4.h provides block compression functions. It gives full buffer control to user. - Decompressing an lz4-compressed block also requires metadata (such as compressed size). - Each application is free to encode such metadata in whichever way it wants. + lz4.h generates and decodes LZ4-compressed blocks (doc/lz4_Block_format.md). + Decompressing such a compressed block requires additional metadata. + Exact metadata depends on exact decompression function. + For the typical case of LZ4_decompress_safe(), + metadata includes block's compressed size, and maximum bound of decompressed size. + Each application is free to encode and pass such metadata in whichever way it wants. - An additional format, called LZ4 frame specification (doc/lz4_Frame_format.md), - take care of encoding standard metadata alongside LZ4-compressed blocks. - Frame format is required for interoperability. - It is delivered through a companion API, declared in lz4frame.h. + lz4.h only handle blocks, it can not generate Frames. + + Blocks are different from Frames (doc/lz4_Frame_format.md). + Frames bundle both blocks and metadata in a specified manner. + Embedding metadata is required for compressed data to be self-contained and portable. + Frame format is delivered through a companion API, declared in lz4frame.h. + The `lz4` CLI can only manage frames. */ /*^*************************************************************** @@ -92,7 +99,7 @@ extern "C" { /*------ Version ------*/ #define LZ4_VERSION_MAJOR 1 /* for breaking interface changes */ -#define LZ4_VERSION_MINOR 8 /* for new (non-breaking) interface capabilities */ +#define LZ4_VERSION_MINOR 9 /* for new (non-breaking) interface capabilities */ #define LZ4_VERSION_RELEASE 3 /* for tweaks, bug-fixes, or development */ #define LZ4_VERSION_NUMBER (LZ4_VERSION_MAJOR *100*100 + LZ4_VERSION_MINOR *100 + LZ4_VERSION_RELEASE) @@ -103,7 +110,7 @@ extern "C" { #define LZ4_VERSION_STRING LZ4_EXPAND_AND_QUOTE(LZ4_LIB_VERSION) LZ4LIB_API int LZ4_versionNumber (void); /**< library version number; useful to check dll version */ -LZ4LIB_API const char* LZ4_versionString (void); /**< library version string; unseful to check dll version */ +LZ4LIB_API const char* LZ4_versionString (void); /**< library version string; useful to check dll version */ /*-************************************ @@ -112,40 +119,48 @@ LZ4LIB_API const char* LZ4_versionString (void); /**< library version string; /*! * LZ4_MEMORY_USAGE : * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) - * Increasing memory usage improves compression ratio - * Reduced memory usage may improve speed, thanks to cache effect + * Increasing memory usage improves compression ratio. + * Reduced memory usage may improve speed, thanks to better cache locality. * Default value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ #ifndef LZ4_MEMORY_USAGE # define LZ4_MEMORY_USAGE 14 #endif + /*-************************************ * Simple Functions **************************************/ /*! LZ4_compress_default() : - Compresses 'srcSize' bytes from buffer 'src' - into already allocated 'dst' buffer of size 'dstCapacity'. - Compression is guaranteed to succeed if 'dstCapacity' >= LZ4_compressBound(srcSize). - It also runs faster, so it's a recommended setting. - If the function cannot compress 'src' into a more limited 'dst' budget, - compression stops *immediately*, and the function result is zero. - Note : as a consequence, 'dst' content is not valid. - Note 2 : This function is protected against buffer overflow scenarios (never writes outside 'dst' buffer, nor read outside 'source' buffer). - srcSize : max supported value is LZ4_MAX_INPUT_SIZE. - dstCapacity : size of buffer 'dst' (which must be already allocated) - return : the number of bytes written into buffer 'dst' (necessarily <= dstCapacity) - or 0 if compression fails */ + * Compresses 'srcSize' bytes from buffer 'src' + * into already allocated 'dst' buffer of size 'dstCapacity'. + * Compression is guaranteed to succeed if 'dstCapacity' >= LZ4_compressBound(srcSize). + * It also runs faster, so it's a recommended setting. + * If the function cannot compress 'src' into a more limited 'dst' budget, + * compression stops *immediately*, and the function result is zero. + * In which case, 'dst' content is undefined (invalid). + * srcSize : max supported value is LZ4_MAX_INPUT_SIZE. + * dstCapacity : size of buffer 'dst' (which must be already allocated) + * @return : the number of bytes written into buffer 'dst' (necessarily <= dstCapacity) + * or 0 if compression fails + * Note : This function is protected against buffer overflow scenarios (never writes outside 'dst' buffer, nor read outside 'source' buffer). + */ LZ4LIB_API int LZ4_compress_default(const char* src, char* dst, int srcSize, int dstCapacity); /*! LZ4_decompress_safe() : - compressedSize : is the exact complete size of the compressed block. - dstCapacity : is the size of destination buffer, which must be already allocated. - return : the number of bytes decompressed into destination buffer (necessarily <= dstCapacity) - If destination buffer is not large enough, decoding will stop and output an error code (negative value). - If the source stream is detected malformed, the function will stop decoding and return a negative result. - This function is protected against malicious data packets. -*/ + * compressedSize : is the exact complete size of the compressed block. + * dstCapacity : is the size of destination buffer (which must be already allocated), presumed an upper bound of decompressed size. + * @return : the number of bytes decompressed into destination buffer (necessarily <= dstCapacity) + * If destination buffer is not large enough, decoding will stop and output an error code (negative value). + * If the source stream is detected malformed, the function will stop decoding and return a negative result. + * Note 1 : This function is protected against malicious data packets : + * it will never writes outside 'dst' buffer, nor read outside 'source' buffer, + * even if the compressed block is maliciously modified to order the decoder to do these actions. + * In such case, the decoder stops immediately, and considers the compressed block malformed. + * Note 2 : compressedSize and dstCapacity must be provided to the function, the compressed block does not contain them. + * The implementation is free to send / store / derive this information in whichever way is most beneficial. + * If there is a need for a different format which bundles together both compressed data and its metadata, consider looking at lz4frame.h instead. + */ LZ4LIB_API int LZ4_decompress_safe (const char* src, char* dst, int compressedSize, int dstCapacity); @@ -155,8 +170,7 @@ LZ4LIB_API int LZ4_decompress_safe (const char* src, char* dst, int compressedSi #define LZ4_MAX_INPUT_SIZE 0x7E000000 /* 2 113 929 216 bytes */ #define LZ4_COMPRESSBOUND(isize) ((unsigned)(isize) > (unsigned)LZ4_MAX_INPUT_SIZE ? 0 : (isize) + ((isize)/255) + 16) -/*! -LZ4_compressBound() : +/*! LZ4_compressBound() : Provides the maximum size that LZ4 compression may output in a "worst case" scenario (input data not compressible) This function is primarily useful for memory allocation purposes (destination buffer size). Macro LZ4_COMPRESSBOUND() is also provided for compilation-time evaluation (stack memory allocation for example). @@ -167,24 +181,23 @@ LZ4_compressBound() : */ LZ4LIB_API int LZ4_compressBound(int inputSize); -/*! -LZ4_compress_fast() : +/*! LZ4_compress_fast() : Same as LZ4_compress_default(), but allows selection of "acceleration" factor. The larger the acceleration value, the faster the algorithm, but also the lesser the compression. It's a trade-off. It can be fine tuned, with each successive value providing roughly +~3% to speed. An acceleration value of "1" is the same as regular LZ4_compress_default() - Values <= 0 will be replaced by ACCELERATION_DEFAULT (currently == 1, see lz4.c). + Values <= 0 will be replaced by LZ4_ACCELERATION_DEFAULT (currently == 1, see lz4.c). + Values > LZ4_ACCELERATION_MAX will be replaced by LZ4_ACCELERATION_MAX (currently == 65537, see lz4.c). */ LZ4LIB_API int LZ4_compress_fast (const char* src, char* dst, int srcSize, int dstCapacity, int acceleration); -/*! -LZ4_compress_fast_extState() : - Same compression function, just using an externally allocated memory space to store compression state. - Use LZ4_sizeofState() to know how much memory must be allocated, - and allocate it on 8-bytes boundaries (using malloc() typically). - Then, provide this buffer as 'void* state' to compression function. -*/ +/*! LZ4_compress_fast_extState() : + * Same as LZ4_compress_fast(), using an externally allocated memory space for its state. + * Use LZ4_sizeofState() to know how much memory must be allocated, + * and allocate it on 8-bytes boundaries (using `malloc()` typically). + * Then, provide this buffer as `void* state` to compression function. + */ LZ4LIB_API int LZ4_sizeofState(void); LZ4LIB_API int LZ4_compress_fast_extState (void* state, const char* src, char* dst, int srcSize, int dstCapacity, int acceleration); @@ -200,54 +213,54 @@ LZ4LIB_API int LZ4_compress_fast_extState (void* state, const char* src, char* d * New value is necessarily <= input value. * @return : Nb bytes written into 'dst' (necessarily <= targetDestSize) * or 0 if compression fails. -*/ -LZ4LIB_API int LZ4_compress_destSize (const char* src, char* dst, int* srcSizePtr, int targetDstSize); - - -/*! LZ4_decompress_fast() : **unsafe!** - * This function used to be a bit faster than LZ4_decompress_safe(), - * though situation has changed in recent versions, - * and now `LZ4_decompress_safe()` can be as fast and sometimes faster than `LZ4_decompress_fast()`. - * Moreover, LZ4_decompress_fast() is not protected vs malformed input, as it doesn't perform full validation of compressed data. - * As a consequence, this function is no longer recommended, and may be deprecated in future versions. - * It's only remaining specificity is that it can decompress data without knowing its compressed size. * - * originalSize : is the uncompressed size to regenerate. - * `dst` must be already allocated, its size must be >= 'originalSize' bytes. - * @return : number of bytes read from source buffer (== compressed size). - * If the source stream is detected malformed, the function stops decoding and returns a negative result. - * note : This function requires uncompressed originalSize to be known in advance. - * The function never writes past the output buffer. - * However, since it doesn't know its 'src' size, it may read past the intended input. - * Also, because match offsets are not validated during decoding, - * reads from 'src' may underflow. - * Use this function in trusted environment **only**. + * Note : from v1.8.2 to v1.9.1, this function had a bug (fixed un v1.9.2+): + * the produced compressed content could, in specific circumstances, + * require to be decompressed into a destination buffer larger + * by at least 1 byte than the content to decompress. + * If an application uses `LZ4_compress_destSize()`, + * it's highly recommended to update liblz4 to v1.9.2 or better. + * If this can't be done or ensured, + * the receiving decompression function should provide + * a dstCapacity which is > decompressedSize, by at least 1 byte. + * See https://github.com/lz4/lz4/issues/859 for details */ -LZ4LIB_API int LZ4_decompress_fast (const char* src, char* dst, int originalSize); +LZ4LIB_API int LZ4_compress_destSize (const char* src, char* dst, int* srcSizePtr, int targetDstSize); + /*! LZ4_decompress_safe_partial() : * Decompress an LZ4 compressed block, of size 'srcSize' at position 'src', * into destination buffer 'dst' of size 'dstCapacity'. * Up to 'targetOutputSize' bytes will be decoded. - * The function stops decoding on reaching this objective, - * which can boost performance when only the beginning of a block is required. + * The function stops decoding on reaching this objective. + * This can be useful to boost performance + * whenever only the beginning of a block is required. * - * @return : the number of bytes decoded in `dst` (necessarily <= dstCapacity) + * @return : the number of bytes decoded in `dst` (necessarily <= targetOutputSize) * If source stream is detected malformed, function returns a negative result. * - * Note : @return can be < targetOutputSize, if compressed block contains less data. + * Note 1 : @return can be < targetOutputSize, if compressed block contains less data. * - * Note 2 : this function features 2 parameters, targetOutputSize and dstCapacity, - * and expects targetOutputSize <= dstCapacity. - * It effectively stops decoding on reaching targetOutputSize, + * Note 2 : targetOutputSize must be <= dstCapacity + * + * Note 3 : this function effectively stops decoding on reaching targetOutputSize, * so dstCapacity is kind of redundant. - * This is because in a previous version of this function, - * decoding operation would not "break" a sequence in the middle. - * As a consequence, there was no guarantee that decoding would stop at exactly targetOutputSize, + * This is because in older versions of this function, + * decoding operation would still write complete sequences. + * Therefore, there was no guarantee that it would stop writing at exactly targetOutputSize, * it could write more bytes, though only up to dstCapacity. * Some "margin" used to be required for this operation to work properly. - * This is no longer necessary. - * The function nonetheless keeps its signature, in an effort to not break API. + * Thankfully, this is no longer necessary. + * The function nonetheless keeps the same signature, in an effort to preserve API compatibility. + * + * Note 4 : If srcSize is the exact size of the block, + * then targetOutputSize can be any value, + * including larger than the block's decompressed size. + * The function will, at most, generate block's decompressed size. + * + * Note 5 : If srcSize is _larger_ than block's compressed size, + * then targetOutputSize **MUST** be <= block's decompressed size. + * Otherwise, *silent corruption will occur*. */ LZ4LIB_API int LZ4_decompress_safe_partial (const char* src, char* dst, int srcSize, int targetOutputSize, int dstCapacity); @@ -257,30 +270,49 @@ LZ4LIB_API int LZ4_decompress_safe_partial (const char* src, char* dst, int srcS ***********************************************/ typedef union LZ4_stream_u LZ4_stream_t; /* incomplete type (defined later) */ -/*! LZ4_createStream() and LZ4_freeStream() : - * LZ4_createStream() will allocate and initialize an `LZ4_stream_t` structure. - * LZ4_freeStream() releases its memory. - */ LZ4LIB_API LZ4_stream_t* LZ4_createStream(void); LZ4LIB_API int LZ4_freeStream (LZ4_stream_t* streamPtr); -/*! LZ4_resetStream() : - * An LZ4_stream_t structure can be allocated once and re-used multiple times. - * Use this function to start compressing a new stream. +/*! LZ4_resetStream_fast() : v1.9.0+ + * Use this to prepare an LZ4_stream_t for a new chain of dependent blocks + * (e.g., LZ4_compress_fast_continue()). + * + * An LZ4_stream_t must be initialized once before usage. + * This is automatically done when created by LZ4_createStream(). + * However, should the LZ4_stream_t be simply declared on stack (for example), + * it's necessary to initialize it first, using LZ4_initStream(). + * + * After init, start any new stream with LZ4_resetStream_fast(). + * A same LZ4_stream_t can be re-used multiple times consecutively + * and compress multiple streams, + * provided that it starts each new stream with LZ4_resetStream_fast(). + * + * LZ4_resetStream_fast() is much faster than LZ4_initStream(), + * but is not compatible with memory regions containing garbage data. + * + * Note: it's only useful to call LZ4_resetStream_fast() + * in the context of streaming compression. + * The *extState* functions perform their own resets. + * Invoking LZ4_resetStream_fast() before is redundant, and even counterproductive. */ -LZ4LIB_API void LZ4_resetStream (LZ4_stream_t* streamPtr); +LZ4LIB_API void LZ4_resetStream_fast (LZ4_stream_t* streamPtr); /*! LZ4_loadDict() : - * Use this function to load a static dictionary into LZ4_stream_t. - * Any previous data will be forgotten, only 'dictionary' will remain in memory. + * Use this function to reference a static dictionary into LZ4_stream_t. + * The dictionary must remain available during compression. + * LZ4_loadDict() triggers a reset, so any previous data will be forgotten. + * The same dictionary will have to be loaded on decompression side for successful decoding. + * Dictionary are useful for better compression of small data (KB range). + * While LZ4 accept any input as dictionary, + * results are generally better when using Zstandard's Dictionary Builder. * Loading a size of 0 is allowed, and is the same as reset. - * @return : dictionary size, in bytes (necessarily <= 64 KB) + * @return : loaded dictionary size, in bytes (necessarily <= 64 KB) */ LZ4LIB_API int LZ4_loadDict (LZ4_stream_t* streamPtr, const char* dictionary, int dictSize); /*! LZ4_compress_fast_continue() : * Compress 'src' content using data from previously compressed blocks, for better compression ratio. - * 'dst' buffer must be already allocated. + * 'dst' buffer must be already allocated. * If dstCapacity >= LZ4_compressBound(srcSize), compression is guaranteed to succeed, and runs faster. * * @return : size of compressed block @@ -288,10 +320,10 @@ LZ4LIB_API int LZ4_loadDict (LZ4_stream_t* streamPtr, const char* dictionary, in * * Note 1 : Each invocation to LZ4_compress_fast_continue() generates a new block. * Each block has precise boundaries. + * Each block must be decompressed separately, calling LZ4_decompress_*() with relevant metadata. * It's not possible to append blocks together and expect a single invocation of LZ4_decompress_*() to decompress them together. - * Each block must be decompressed separately, calling LZ4_decompress_*() with associated metadata. * - * Note 2 : The previous 64KB of source data is __assumed__ to remain present, unmodified, at same address in memory! + * Note 2 : The previous 64KB of source data is __assumed__ to remain present, unmodified, at same address in memory ! * * Note 3 : When input is structured as a double-buffer, each buffer can have any size, including < 64 KB. * Make sure that buffers are separated, by at least one byte. @@ -299,7 +331,7 @@ LZ4LIB_API int LZ4_loadDict (LZ4_stream_t* streamPtr, const char* dictionary, in * * Note 4 : If input buffer is a ring-buffer, it can have any size, including < 64 KB. * - * Note 5 : After an error, the stream status is invalid, it can only be reset or freed. + * Note 5 : After an error, the stream status is undefined (invalid), it can only be reset or freed. */ LZ4LIB_API int LZ4_compress_fast_continue (LZ4_stream_t* streamPtr, const char* src, char* dst, int srcSize, int dstCapacity, int acceleration); @@ -335,7 +367,7 @@ LZ4LIB_API int LZ4_freeStreamDecode (LZ4_streamDecode_t* LZ4_str */ LZ4LIB_API int LZ4_setStreamDecode (LZ4_streamDecode_t* LZ4_streamDecode, const char* dictionary, int dictSize); -/*! LZ4_decoderRingBufferSize() : v1.8.2 +/*! LZ4_decoderRingBufferSize() : v1.8.2+ * Note : in a ring buffer scenario (optional), * blocks are presumed decompressed next to each other * up to the moment there is not enough remaining space for next block (remainingSize < maxBlockSize), @@ -347,7 +379,7 @@ LZ4LIB_API int LZ4_setStreamDecode (LZ4_streamDecode_t* LZ4_streamDecode, const * or 0 if there is an error (invalid maxBlockSize). */ LZ4LIB_API int LZ4_decoderRingBufferSize(int maxBlockSize); -#define LZ4_DECODER_RING_BUFFER_SIZE(mbs) (65536 + 14 + (mbs)) /* for static allocation; mbs presumed valid */ +#define LZ4_DECODER_RING_BUFFER_SIZE(maxBlockSize) (65536 + 14 + (maxBlockSize)) /* for static allocation; maxBlockSize presumed valid */ /*! LZ4_decompress_*_continue() : * These decoding functions allow decompression of consecutive blocks in "streaming" mode. @@ -375,83 +407,72 @@ LZ4LIB_API int LZ4_decoderRingBufferSize(int maxBlockSize); * then indicate where this data is saved using LZ4_setStreamDecode(), before decompressing next block. */ LZ4LIB_API int LZ4_decompress_safe_continue (LZ4_streamDecode_t* LZ4_streamDecode, const char* src, char* dst, int srcSize, int dstCapacity); -LZ4LIB_API int LZ4_decompress_fast_continue (LZ4_streamDecode_t* LZ4_streamDecode, const char* src, char* dst, int originalSize); /*! LZ4_decompress_*_usingDict() : * These decoding functions work the same as * a combination of LZ4_setStreamDecode() followed by LZ4_decompress_*_continue() * They are stand-alone, and don't need an LZ4_streamDecode_t structure. - * Dictionary is presumed stable : it must remain accessible and unmodified during next decompression. + * Dictionary is presumed stable : it must remain accessible and unmodified during decompression. + * Performance tip : Decompression speed can be substantially increased + * when dst == dictStart + dictSize. */ LZ4LIB_API int LZ4_decompress_safe_usingDict (const char* src, char* dst, int srcSize, int dstCapcity, const char* dictStart, int dictSize); -LZ4LIB_API int LZ4_decompress_fast_usingDict (const char* src, char* dst, int originalSize, const char* dictStart, int dictSize); + +#endif /* LZ4_H_2983827168210 */ -/*^********************************************** +/*^************************************* * !!!!!! STATIC LINKING ONLY !!!!!! - ***********************************************/ + ***************************************/ -/*-************************************ - * Unstable declarations - ************************************** - * Declarations in this section should be considered unstable. - * Use at your own peril, etc., etc. - * They may be removed in the future. - * Their signatures may change. - **************************************/ +/*-**************************************************************************** + * Experimental section + * + * Symbols declared in this section must be considered unstable. Their + * signatures or semantics may change, or they may be removed altogether in the + * future. They are therefore only safe to depend on when the caller is + * statically linked against the library. + * + * To protect against unsafe usage, not only are the declarations guarded, + * the definitions are hidden by default + * when building LZ4 as a shared/dynamic library. + * + * In order to access these declarations, + * define LZ4_STATIC_LINKING_ONLY in your application + * before including LZ4's headers. + * + * In order to make their implementations accessible dynamically, you must + * define LZ4_PUBLISH_STATIC_FUNCTIONS when building the LZ4 library. + ******************************************************************************/ #ifdef LZ4_STATIC_LINKING_ONLY -/*! LZ4_resetStream_fast() : - * Use this, like LZ4_resetStream(), to prepare a context for a new chain of - * calls to a streaming API (e.g., LZ4_compress_fast_continue()). - * - * Note: - * Using this in advance of a non- streaming-compression function is redundant, - * and potentially bad for performance, since they all perform their own custom - * reset internally. - * - * Differences from LZ4_resetStream(): - * When an LZ4_stream_t is known to be in a internally coherent state, - * it can often be prepared for a new compression with almost no work, only - * sometimes falling back to the full, expensive reset that is always required - * when the stream is in an indeterminate state (i.e., the reset performed by - * LZ4_resetStream()). - * - * LZ4_streams are guaranteed to be in a valid state when: - * - returned from LZ4_createStream() - * - reset by LZ4_resetStream() - * - memset(stream, 0, sizeof(LZ4_stream_t)), though this is discouraged - * - the stream was in a valid state and was reset by LZ4_resetStream_fast() - * - the stream was in a valid state and was then used in any compression call - * that returned success - * - the stream was in an indeterminate state and was used in a compression - * call that fully reset the state (e.g., LZ4_compress_fast_extState()) and - * that returned success - * - * When a stream isn't known to be in a valid state, it is not safe to pass to - * any fastReset or streaming function. It must first be cleansed by the full - * LZ4_resetStream(). - */ -LZ4LIB_API void LZ4_resetStream_fast (LZ4_stream_t* streamPtr); +#ifndef LZ4_STATIC_3504398509 +#define LZ4_STATIC_3504398509 + +#ifdef LZ4_PUBLISH_STATIC_FUNCTIONS +#define LZ4LIB_STATIC_API LZ4LIB_API +#else +#define LZ4LIB_STATIC_API +#endif + /*! LZ4_compress_fast_extState_fastReset() : * A variant of LZ4_compress_fast_extState(). * - * Using this variant avoids an expensive initialization step. It is only safe - * to call if the state buffer is known to be correctly initialized already - * (see above comment on LZ4_resetStream_fast() for a definition of "correctly - * initialized"). From a high level, the difference is that this function - * initializes the provided state with a call to something like - * LZ4_resetStream_fast() while LZ4_compress_fast_extState() starts with a - * call to LZ4_resetStream(). + * Using this variant avoids an expensive initialization step. + * It is only safe to call if the state buffer is known to be correctly initialized already + * (see above comment on LZ4_resetStream_fast() for a definition of "correctly initialized"). + * From a high level, the difference is that + * this function initializes the provided state with a call to something like LZ4_resetStream_fast() + * while LZ4_compress_fast_extState() starts with a call to LZ4_resetStream(). */ -LZ4LIB_API int LZ4_compress_fast_extState_fastReset (void* state, const char* src, char* dst, int srcSize, int dstCapacity, int acceleration); +LZ4LIB_STATIC_API int LZ4_compress_fast_extState_fastReset (void* state, const char* src, char* dst, int srcSize, int dstCapacity, int acceleration); /*! LZ4_attach_dictionary() : - * This is an experimental API that allows for the efficient use of a - * static dictionary many times. + * This is an experimental API that allows + * efficient use of a static dictionary many times. * * Rather than re-loading the dictionary buffer into a working context before * each compression, or copying a pre-loaded dictionary's LZ4_stream_t into a @@ -462,8 +483,8 @@ LZ4LIB_API int LZ4_compress_fast_extState_fastReset (void* state, const char* sr * Currently, only streams which have been prepared by LZ4_loadDict() should * be expected to work. * - * Alternatively, the provided dictionary stream pointer may be NULL, in which - * case any existing dictionary stream is unset. + * Alternatively, the provided dictionaryStream may be NULL, + * in which case any existing dictionary stream is unset. * * If a dictionary is provided, it replaces any pre-existing stream history. * The dictionary contents are the only history that can be referenced and @@ -475,89 +496,163 @@ LZ4LIB_API int LZ4_compress_fast_extState_fastReset (void* state, const char* sr * stream (and source buffer) must remain in-place / accessible / unchanged * through the completion of the first compression call on the stream. */ -LZ4LIB_API void LZ4_attach_dictionary(LZ4_stream_t *working_stream, const LZ4_stream_t *dictionary_stream); +LZ4LIB_STATIC_API void LZ4_attach_dictionary(LZ4_stream_t* workingStream, const LZ4_stream_t* dictionaryStream); + + +/*! In-place compression and decompression + * + * It's possible to have input and output sharing the same buffer, + * for highly contrained memory environments. + * In both cases, it requires input to lay at the end of the buffer, + * and decompression to start at beginning of the buffer. + * Buffer size must feature some margin, hence be larger than final size. + * + * |<------------------------buffer--------------------------------->| + * |<-----------compressed data--------->| + * |<-----------decompressed size------------------>| + * |<----margin---->| + * + * This technique is more useful for decompression, + * since decompressed size is typically larger, + * and margin is short. + * + * In-place decompression will work inside any buffer + * which size is >= LZ4_DECOMPRESS_INPLACE_BUFFER_SIZE(decompressedSize). + * This presumes that decompressedSize > compressedSize. + * Otherwise, it means compression actually expanded data, + * and it would be more efficient to store such data with a flag indicating it's not compressed. + * This can happen when data is not compressible (already compressed, or encrypted). + * + * For in-place compression, margin is larger, as it must be able to cope with both + * history preservation, requiring input data to remain unmodified up to LZ4_DISTANCE_MAX, + * and data expansion, which can happen when input is not compressible. + * As a consequence, buffer size requirements are much higher, + * and memory savings offered by in-place compression are more limited. + * + * There are ways to limit this cost for compression : + * - Reduce history size, by modifying LZ4_DISTANCE_MAX. + * Note that it is a compile-time constant, so all compressions will apply this limit. + * Lower values will reduce compression ratio, except when input_size < LZ4_DISTANCE_MAX, + * so it's a reasonable trick when inputs are known to be small. + * - Require the compressor to deliver a "maximum compressed size". + * This is the `dstCapacity` parameter in `LZ4_compress*()`. + * When this size is < LZ4_COMPRESSBOUND(inputSize), then compression can fail, + * in which case, the return code will be 0 (zero). + * The caller must be ready for these cases to happen, + * and typically design a backup scheme to send data uncompressed. + * The combination of both techniques can significantly reduce + * the amount of margin required for in-place compression. + * + * In-place compression can work in any buffer + * which size is >= (maxCompressedSize) + * with maxCompressedSize == LZ4_COMPRESSBOUND(srcSize) for guaranteed compression success. + * LZ4_COMPRESS_INPLACE_BUFFER_SIZE() depends on both maxCompressedSize and LZ4_DISTANCE_MAX, + * so it's possible to reduce memory requirements by playing with them. + */ + +#define LZ4_DECOMPRESS_INPLACE_MARGIN(compressedSize) (((compressedSize) >> 8) + 32) +#define LZ4_DECOMPRESS_INPLACE_BUFFER_SIZE(decompressedSize) ((decompressedSize) + LZ4_DECOMPRESS_INPLACE_MARGIN(decompressedSize)) /**< note: presumes that compressedSize < decompressedSize. note2: margin is overestimated a bit, since it could use compressedSize instead */ +#ifndef LZ4_DISTANCE_MAX /* history window size; can be user-defined at compile time */ +# define LZ4_DISTANCE_MAX 65535 /* set to maximum value by default */ #endif -/*-************************************ - * Private definitions - ************************************** - * Do not use these definitions. - * They are exposed to allow static allocation of `LZ4_stream_t` and `LZ4_streamDecode_t`. - * Using these definitions will expose code to API and/or ABI break in future versions of the library. - **************************************/ +#define LZ4_COMPRESS_INPLACE_MARGIN (LZ4_DISTANCE_MAX + 32) /* LZ4_DISTANCE_MAX can be safely replaced by srcSize when it's smaller */ +#define LZ4_COMPRESS_INPLACE_BUFFER_SIZE(maxCompressedSize) ((maxCompressedSize) + LZ4_COMPRESS_INPLACE_MARGIN) /**< maxCompressedSize is generally LZ4_COMPRESSBOUND(inputSize), but can be set to any lower value, with the risk that compression can fail (return code 0(zero)) */ + +#endif /* LZ4_STATIC_3504398509 */ +#endif /* LZ4_STATIC_LINKING_ONLY */ + + + +#ifndef LZ4_H_98237428734687 +#define LZ4_H_98237428734687 + +/*-************************************************************ + * Private Definitions + ************************************************************** + * Do not use these definitions directly. + * They are only exposed to allow static allocation of `LZ4_stream_t` and `LZ4_streamDecode_t`. + * Accessing members will expose user code to API and/or ABI break in future versions of the library. + **************************************************************/ #define LZ4_HASHLOG (LZ4_MEMORY_USAGE-2) #define LZ4_HASHTABLESIZE (1 << LZ4_MEMORY_USAGE) #define LZ4_HASH_SIZE_U32 (1 << LZ4_HASHLOG) /* required as macro for static allocation */ #if defined(__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) -#include <stdint.h> - -typedef struct LZ4_stream_t_internal LZ4_stream_t_internal; -struct LZ4_stream_t_internal { - uint32_t hashTable[LZ4_HASH_SIZE_U32]; - uint32_t currentOffset; - uint16_t initCheck; - uint16_t tableType; - const uint8_t* dictionary; - const LZ4_stream_t_internal* dictCtx; - uint32_t dictSize; -}; - -typedef struct { - const uint8_t* externalDict; - size_t extDictSize; - const uint8_t* prefixEnd; - size_t prefixSize; -} LZ4_streamDecode_t_internal; - +# include <stdint.h> + typedef int8_t LZ4_i8; + typedef uint8_t LZ4_byte; + typedef uint16_t LZ4_u16; + typedef uint32_t LZ4_u32; #else + typedef signed char LZ4_i8; + typedef unsigned char LZ4_byte; + typedef unsigned short LZ4_u16; + typedef unsigned int LZ4_u32; +#endif typedef struct LZ4_stream_t_internal LZ4_stream_t_internal; struct LZ4_stream_t_internal { - unsigned int hashTable[LZ4_HASH_SIZE_U32]; - unsigned int currentOffset; - unsigned short initCheck; - unsigned short tableType; - const unsigned char* dictionary; + LZ4_u32 hashTable[LZ4_HASH_SIZE_U32]; + LZ4_u32 currentOffset; + LZ4_u32 tableType; + const LZ4_byte* dictionary; const LZ4_stream_t_internal* dictCtx; - unsigned int dictSize; + LZ4_u32 dictSize; }; typedef struct { - const unsigned char* externalDict; + const LZ4_byte* externalDict; size_t extDictSize; - const unsigned char* prefixEnd; + const LZ4_byte* prefixEnd; size_t prefixSize; } LZ4_streamDecode_t_internal; -#endif -/*! - * LZ4_stream_t : - * information structure to track an LZ4 stream. - * init this structure before first use. - * note : only use in association with static linking ! - * this definition is not API/ABI safe, - * it may change in a future version ! +/*! LZ4_stream_t : + * Do not use below internal definitions directly ! + * Declare or allocate an LZ4_stream_t instead. + * LZ4_stream_t can also be created using LZ4_createStream(), which is recommended. + * The structure definition can be convenient for static allocation + * (on stack, or as part of larger structure). + * Init this structure with LZ4_initStream() before first use. + * note : only use this definition in association with static linking ! + * this definition is not API/ABI safe, and may change in future versions. */ -#define LZ4_STREAMSIZE_U64 ((1 << (LZ4_MEMORY_USAGE-3)) + 4) -#define LZ4_STREAMSIZE (LZ4_STREAMSIZE_U64 * sizeof(unsigned long long)) +#define LZ4_STREAMSIZE 16416 /* static size, for inter-version compatibility */ +#define LZ4_STREAMSIZE_VOIDP (LZ4_STREAMSIZE / sizeof(void*)) union LZ4_stream_u { - unsigned long long table[LZ4_STREAMSIZE_U64]; + void* table[LZ4_STREAMSIZE_VOIDP]; LZ4_stream_t_internal internal_donotuse; -} ; /* previously typedef'd to LZ4_stream_t */ +}; /* previously typedef'd to LZ4_stream_t */ -/*! - * LZ4_streamDecode_t : - * information structure to track an LZ4 stream during decompression. - * init this structure using LZ4_setStreamDecode (or memset()) before first use - * note : only use in association with static linking ! - * this definition is not API/ABI safe, - * and may change in a future version ! +/*! LZ4_initStream() : v1.9.0+ + * An LZ4_stream_t structure must be initialized at least once. + * This is automatically done when invoking LZ4_createStream(), + * but it's not when the structure is simply declared on stack (for example). + * + * Use LZ4_initStream() to properly initialize a newly declared LZ4_stream_t. + * It can also initialize any arbitrary buffer of sufficient size, + * and will @return a pointer of proper type upon initialization. + * + * Note : initialization fails if size and alignment conditions are not respected. + * In which case, the function will @return NULL. + * Note2: An LZ4_stream_t structure guarantees correct alignment and size. + * Note3: Before v1.9.0, use LZ4_resetStream() instead */ -#define LZ4_STREAMDECODESIZE_U64 4 +LZ4LIB_API LZ4_stream_t* LZ4_initStream (void* buffer, size_t size); + + +/*! LZ4_streamDecode_t : + * information structure to track an LZ4 stream during decompression. + * init this structure using LZ4_setStreamDecode() before first use. + * note : only use in association with static linking ! + * this definition is not API/ABI safe, + * and may change in a future version ! + */ +#define LZ4_STREAMDECODESIZE_U64 (4 + ((sizeof(void*)==16) ? 2 : 0) /*AS-400*/ ) #define LZ4_STREAMDECODESIZE (LZ4_STREAMDECODESIZE_U64 * sizeof(unsigned long long)) union LZ4_streamDecode_u { unsigned long long table[LZ4_STREAMDECODESIZE_U64]; @@ -565,47 +660,53 @@ union LZ4_streamDecode_u { } ; /* previously typedef'd to LZ4_streamDecode_t */ + /*-************************************ * Obsolete Functions **************************************/ /*! Deprecation warnings - Should deprecation warnings be a problem, - it is generally possible to disable them, - typically with -Wno-deprecated-declarations for gcc - or _CRT_SECURE_NO_WARNINGS in Visual. - Otherwise, it's also possible to define LZ4_DISABLE_DEPRECATE_WARNINGS */ + * + * Deprecated functions make the compiler generate a warning when invoked. + * This is meant to invite users to update their source code. + * Should deprecation warnings be a problem, it is generally possible to disable them, + * typically with -Wno-deprecated-declarations for gcc + * or _CRT_SECURE_NO_WARNINGS in Visual. + * + * Another method is to define LZ4_DISABLE_DEPRECATE_WARNINGS + * before including the header file. + */ #ifdef LZ4_DISABLE_DEPRECATE_WARNINGS # define LZ4_DEPRECATED(message) /* disable deprecation warnings */ #else -# define LZ4_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) # if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */ # define LZ4_DEPRECATED(message) [[deprecated(message)]] -# elif (LZ4_GCC_VERSION >= 405) || defined(__clang__) -# define LZ4_DEPRECATED(message) __attribute__((deprecated(message))) -# elif (LZ4_GCC_VERSION >= 301) -# define LZ4_DEPRECATED(message) __attribute__((deprecated)) # elif defined(_MSC_VER) # define LZ4_DEPRECATED(message) __declspec(deprecated(message)) +# elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ * 10 + __GNUC_MINOR__ >= 45)) +# define LZ4_DEPRECATED(message) __attribute__((deprecated(message))) +# elif defined(__GNUC__) && (__GNUC__ * 10 + __GNUC_MINOR__ >= 31) +# define LZ4_DEPRECATED(message) __attribute__((deprecated)) # else -# pragma message("WARNING: You need to implement LZ4_DEPRECATED for this compiler") -# define LZ4_DEPRECATED(message) +# pragma message("WARNING: LZ4_DEPRECATED needs custom implementation for this compiler") +# define LZ4_DEPRECATED(message) /* disabled */ # endif #endif /* LZ4_DISABLE_DEPRECATE_WARNINGS */ -/* Obsolete compression functions */ -LZ4_DEPRECATED("use LZ4_compress_default() instead") LZ4LIB_API int LZ4_compress (const char* source, char* dest, int sourceSize); -LZ4_DEPRECATED("use LZ4_compress_default() instead") LZ4LIB_API int LZ4_compress_limitedOutput (const char* source, char* dest, int sourceSize, int maxOutputSize); +/*! Obsolete compression functions (since v1.7.3) */ +LZ4_DEPRECATED("use LZ4_compress_default() instead") LZ4LIB_API int LZ4_compress (const char* src, char* dest, int srcSize); +LZ4_DEPRECATED("use LZ4_compress_default() instead") LZ4LIB_API int LZ4_compress_limitedOutput (const char* src, char* dest, int srcSize, int maxOutputSize); LZ4_DEPRECATED("use LZ4_compress_fast_extState() instead") LZ4LIB_API int LZ4_compress_withState (void* state, const char* source, char* dest, int inputSize); LZ4_DEPRECATED("use LZ4_compress_fast_extState() instead") LZ4LIB_API int LZ4_compress_limitedOutput_withState (void* state, const char* source, char* dest, int inputSize, int maxOutputSize); LZ4_DEPRECATED("use LZ4_compress_fast_continue() instead") LZ4LIB_API int LZ4_compress_continue (LZ4_stream_t* LZ4_streamPtr, const char* source, char* dest, int inputSize); LZ4_DEPRECATED("use LZ4_compress_fast_continue() instead") LZ4LIB_API int LZ4_compress_limitedOutput_continue (LZ4_stream_t* LZ4_streamPtr, const char* source, char* dest, int inputSize, int maxOutputSize); -/* Obsolete decompression functions */ +/*! Obsolete decompression functions (since v1.8.0) */ LZ4_DEPRECATED("use LZ4_decompress_fast() instead") LZ4LIB_API int LZ4_uncompress (const char* source, char* dest, int outputSize); LZ4_DEPRECATED("use LZ4_decompress_safe() instead") LZ4LIB_API int LZ4_uncompress_unknownOutputSize (const char* source, char* dest, int isize, int maxOutputSize); -/* Obsolete streaming functions; degraded functionality; do not use! +/* Obsolete streaming functions (since v1.7.0) + * degraded functionality; do not use! * * In order to perform streaming compression, these functions depended on data * that is no longer tracked in the state. They have been preserved as well as @@ -616,14 +717,56 @@ LZ4_DEPRECATED("use LZ4_decompress_safe() instead") LZ4LIB_API int LZ4_uncompres */ LZ4_DEPRECATED("Use LZ4_createStream() instead") LZ4LIB_API void* LZ4_create (char* inputBuffer); LZ4_DEPRECATED("Use LZ4_createStream() instead") LZ4LIB_API int LZ4_sizeofStreamState(void); -LZ4_DEPRECATED("Use LZ4_resetStream() instead") LZ4LIB_API int LZ4_resetStreamState(void* state, char* inputBuffer); -LZ4_DEPRECATED("Use LZ4_saveDict() instead") LZ4LIB_API char* LZ4_slideInputBuffer (void* state); +LZ4_DEPRECATED("Use LZ4_resetStream() instead") LZ4LIB_API int LZ4_resetStreamState(void* state, char* inputBuffer); +LZ4_DEPRECATED("Use LZ4_saveDict() instead") LZ4LIB_API char* LZ4_slideInputBuffer (void* state); -/* Obsolete streaming decoding functions */ +/*! Obsolete streaming decoding functions (since v1.7.0) */ LZ4_DEPRECATED("use LZ4_decompress_safe_usingDict() instead") LZ4LIB_API int LZ4_decompress_safe_withPrefix64k (const char* src, char* dst, int compressedSize, int maxDstSize); LZ4_DEPRECATED("use LZ4_decompress_fast_usingDict() instead") LZ4LIB_API int LZ4_decompress_fast_withPrefix64k (const char* src, char* dst, int originalSize); -#endif /* LZ4_H_2983827168210 */ +/*! Obsolete LZ4_decompress_fast variants (since v1.9.0) : + * These functions used to be faster than LZ4_decompress_safe(), + * but this is no longer the case. They are now slower. + * This is because LZ4_decompress_fast() doesn't know the input size, + * and therefore must progress more cautiously into the input buffer to not read beyond the end of block. + * On top of that `LZ4_decompress_fast()` is not protected vs malformed or malicious inputs, making it a security liability. + * As a consequence, LZ4_decompress_fast() is strongly discouraged, and deprecated. + * + * The last remaining LZ4_decompress_fast() specificity is that + * it can decompress a block without knowing its compressed size. + * Such functionality can be achieved in a more secure manner + * by employing LZ4_decompress_safe_partial(). + * + * Parameters: + * originalSize : is the uncompressed size to regenerate. + * `dst` must be already allocated, its size must be >= 'originalSize' bytes. + * @return : number of bytes read from source buffer (== compressed size). + * The function expects to finish at block's end exactly. + * If the source stream is detected malformed, the function stops decoding and returns a negative result. + * note : LZ4_decompress_fast*() requires originalSize. Thanks to this information, it never writes past the output buffer. + * However, since it doesn't know its 'src' size, it may read an unknown amount of input, past input buffer bounds. + * Also, since match offsets are not validated, match reads from 'src' may underflow too. + * These issues never happen if input (compressed) data is correct. + * But they may happen if input data is invalid (error or intentional tampering). + * As a consequence, use these functions in trusted environments with trusted data **only**. + */ +LZ4_DEPRECATED("This function is deprecated and unsafe. Consider using LZ4_decompress_safe() instead") +LZ4LIB_API int LZ4_decompress_fast (const char* src, char* dst, int originalSize); +LZ4_DEPRECATED("This function is deprecated and unsafe. Consider using LZ4_decompress_safe_continue() instead") +LZ4LIB_API int LZ4_decompress_fast_continue (LZ4_streamDecode_t* LZ4_streamDecode, const char* src, char* dst, int originalSize); +LZ4_DEPRECATED("This function is deprecated and unsafe. Consider using LZ4_decompress_safe_usingDict() instead") +LZ4LIB_API int LZ4_decompress_fast_usingDict (const char* src, char* dst, int originalSize, const char* dictStart, int dictSize); + +/*! LZ4_resetStream() : + * An LZ4_stream_t structure must be initialized at least once. + * This is done with LZ4_initStream(), or LZ4_resetStream(). + * Consider switching to LZ4_initStream(), + * invoking LZ4_resetStream() will trigger deprecation warnings in the future. + */ +LZ4LIB_API void LZ4_resetStream (LZ4_stream_t* streamPtr); + + +#endif /* LZ4_H_98237428734687 */ #if defined (__cplusplus) |