summaryrefslogtreecommitdiff
path: root/jvirtmem.c
diff options
context:
space:
mode:
Diffstat (limited to 'jvirtmem.c')
-rw-r--r--jvirtmem.c548
1 files changed, 548 insertions, 0 deletions
diff --git a/jvirtmem.c b/jvirtmem.c
new file mode 100644
index 0000000..4a0627c
--- /dev/null
+++ b/jvirtmem.c
@@ -0,0 +1,548 @@
+/*
+ * jvirtmem.c
+ *
+ * Copyright (C) 1991, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides the system-dependent memory allocation routines
+ * for the case where we can rely on virtual memory to handle large arrays.
+ *
+ * This includes some MS-DOS code just for trial purposes; "big" arrays will
+ * have to be handled with temp files on MS-DOS, so a real implementation of
+ * a DOS memory manager will probably be a separate file. (See additional
+ * comments about big arrays, below.)
+ *
+ * NB: allocation routines never return NULL.
+ * They should exit to error_exit if unsuccessful.
+ */
+
+#include "jinclude.h"
+
+#ifdef __STDC__
+#include <stdlib.h> /* to declare malloc(), free() */
+#else
+extern void * malloc PP((size_t size));
+extern void free PP((void *ptr));
+#endif
+
+
+/* Insert system-specific definitions of far_malloc, far_free here. */
+
+#ifndef NEED_FAR_POINTERS /* Generic for non-braindamaged CPUs */
+
+#define far_malloc(x) malloc(x)
+#define far_free(x) free(x)
+
+#else /* NEED_FAR_POINTERS */
+
+#ifdef __TURBOC__
+/* These definitions work for Turbo C */
+#include <alloc.h> /* need farmalloc(), farfree() */
+#define far_malloc(x) farmalloc(x)
+#define far_free(x) farfree(x)
+#else
+#ifdef MSDOS
+/* These definitions work for Microsoft C and compatible compilers */
+#include <malloc.h> /* need _fmalloc(), _ffree() */
+#define far_malloc(x) _fmalloc(x)
+#define far_free(x) _ffree(x)
+#endif
+#endif
+
+#endif /* NEED_FAR_POINTERS */
+
+
+/*
+ * Some important notes:
+ * The array alloc/dealloc routines are not merely a convenience;
+ * on 80x86 machines the bottom-level pointers in an array are FAR
+ * and thus may not be allocatable by alloc_small.
+ *
+ * Also, it's not a good idea to try to merge the sarray and barray
+ * routines, even though they are textually almost the same, because
+ * samples are usually stored as bytes while coefficients are shorts.
+ * Thus, in machines where byte pointers have a different representation
+ * from word pointers, the resulting machine code could not be the same.
+ */
+
+
+static external_methods_ptr methods; /* saved for access to error_exit */
+
+
+#ifdef MEM_STATS /* optional extra stuff for statistics */
+
+#define MALLOC_OVERHEAD (SIZEOF(char *)) /* assumed overhead per request */
+#define MALLOC_FAR_OVERHEAD (SIZEOF(char FAR *)) /* for "far" storage */
+
+static long total_num_small = 0; /* total # of small objects alloced */
+static long total_bytes_small = 0; /* total bytes requested */
+static long cur_num_small = 0; /* # currently alloced */
+static long max_num_small = 0; /* max simultaneously alloced */
+
+#ifdef NEED_FAR_POINTERS
+static long total_num_medium = 0; /* total # of medium objects alloced */
+static long total_bytes_medium = 0; /* total bytes requested */
+static long cur_num_medium = 0; /* # currently alloced */
+static long max_num_medium = 0; /* max simultaneously alloced */
+#endif
+
+static long total_num_sarray = 0; /* total # of sarray objects alloced */
+static long total_bytes_sarray = 0; /* total bytes requested */
+static long cur_num_sarray = 0; /* # currently alloced */
+static long max_num_sarray = 0; /* max simultaneously alloced */
+
+static long total_num_barray = 0; /* total # of barray objects alloced */
+static long total_bytes_barray = 0; /* total bytes requested */
+static long cur_num_barray = 0; /* # currently alloced */
+static long max_num_barray = 0; /* max simultaneously alloced */
+
+
+GLOBAL void
+j_mem_stats (void)
+{
+ /* since this is only a debugging stub, we can cheat a little on the
+ * trace message mechanism... helps 'cuz trace can't handle longs.
+ */
+ fprintf(stderr, "total_num_small = %ld\n", total_num_small);
+ fprintf(stderr, "total_bytes_small = %ld\n", total_bytes_small);
+ if (cur_num_small)
+ fprintf(stderr, "CUR_NUM_SMALL = %ld\n", cur_num_small);
+ fprintf(stderr, "max_num_small = %ld\n", max_num_small);
+
+#ifdef NEED_FAR_POINTERS
+ fprintf(stderr, "total_num_medium = %ld\n", total_num_medium);
+ fprintf(stderr, "total_bytes_medium = %ld\n", total_bytes_medium);
+ if (cur_num_medium)
+ fprintf(stderr, "CUR_NUM_MEDIUM = %ld\n", cur_num_medium);
+ fprintf(stderr, "max_num_medium = %ld\n", max_num_medium);
+#endif
+
+ fprintf(stderr, "total_num_sarray = %ld\n", total_num_sarray);
+ fprintf(stderr, "total_bytes_sarray = %ld\n", total_bytes_sarray);
+ if (cur_num_sarray)
+ fprintf(stderr, "CUR_NUM_SARRAY = %ld\n", cur_num_sarray);
+ fprintf(stderr, "max_num_sarray = %ld\n", max_num_sarray);
+
+ fprintf(stderr, "total_num_barray = %ld\n", total_num_barray);
+ fprintf(stderr, "total_bytes_barray = %ld\n", total_bytes_barray);
+ if (cur_num_barray)
+ fprintf(stderr, "CUR_NUM_BARRAY = %ld\n", cur_num_barray);
+ fprintf(stderr, "max_num_barray = %ld\n", max_num_barray);
+}
+
+#endif /* MEM_STATS */
+
+
+LOCAL void
+out_of_memory (int which)
+/* Report an out-of-memory error and stop execution */
+/* If we compiled MEM_STATS support, report alloc requests before dying */
+{
+#ifdef MEM_STATS
+ j_mem_stats();
+#endif
+ ERREXIT1(methods, "Insufficient memory (case %d)", which);
+}
+
+
+
+METHODDEF void *
+alloc_small (size_t sizeofobject)
+/* Allocate a "small" (all-in-memory) object */
+{
+ void * result;
+
+#ifdef MEM_STATS
+ total_num_small++;
+ total_bytes_small += sizeofobject + MALLOC_OVERHEAD;
+ cur_num_small++;
+ if (cur_num_small > max_num_small) max_num_small = cur_num_small;
+#endif
+
+ result = malloc(sizeofobject);
+ if (result == NULL)
+ out_of_memory(1);
+ return result;
+}
+
+
+METHODDEF void
+free_small (void *ptr)
+/* Free a "small" (all-in-memory) object */
+{
+ free(ptr);
+
+#ifdef MEM_STATS
+ cur_num_small--;
+#endif
+}
+
+
+#ifdef NEED_FAR_POINTERS
+
+METHODDEF void FAR *
+alloc_medium (size_t sizeofobject)
+/* Allocate a "medium" (all in memory, but in far heap) object */
+{
+ void FAR * result;
+
+#ifdef MEM_STATS
+ total_num_medium++;
+ total_bytes_medium += sizeofobject + MALLOC_FAR_OVERHEAD;
+ cur_num_medium++;
+ if (cur_num_medium > max_num_medium) max_num_medium = cur_num_medium;
+#endif
+
+ result = far_malloc(sizeofobject);
+ if (result == NULL)
+ out_of_memory(2);
+ return result;
+}
+
+
+METHODDEF void
+free_medium (void FAR *ptr)
+/* Free a "medium" (all in memory, but in far heap) object */
+{
+ far_free(ptr);
+
+#ifdef MEM_STATS
+ cur_num_medium--;
+#endif
+}
+
+#endif /* NEED_FAR_POINTERS */
+
+
+METHODDEF JSAMPARRAY
+alloc_small_sarray (long samplesperrow, long numrows)
+/* Allocate a "small" (all-in-memory) 2-D sample array */
+{
+ JSAMPARRAY result;
+ long i;
+
+#ifdef MEM_STATS
+ total_num_sarray++;
+ total_bytes_sarray += (samplesperrow * SIZEOF(JSAMPLE) + MALLOC_FAR_OVERHEAD)
+ * numrows;
+ cur_num_sarray++;
+ if (cur_num_sarray > max_num_sarray) max_num_sarray = cur_num_sarray;
+#endif
+
+ /* Get space for row pointers; this is always "near" on 80x86 */
+ result = (JSAMPARRAY) alloc_small((size_t) (numrows * SIZEOF(JSAMPROW)));
+
+ /* Get the rows themselves; on 80x86 these are "far" */
+ for (i = 0; i < numrows; i++) {
+ result[i] = (JSAMPROW) far_malloc((size_t) (samplesperrow * SIZEOF(JSAMPLE)));
+ if (result[i] == NULL)
+ out_of_memory(3);
+ }
+
+ return result;
+}
+
+
+METHODDEF void
+free_small_sarray (JSAMPARRAY ptr, long numrows)
+/* Free a "small" (all-in-memory) 2-D sample array */
+{
+ long i;
+
+ /* Free the rows themselves; on 80x86 these are "far" */
+ for (i = 0; i < numrows; i++) {
+ far_free((void FAR *) ptr[i]);
+ }
+
+ /* Free space for row pointers; this is always "near" on 80x86 */
+ free_small((void *) ptr);
+
+#ifdef MEM_STATS
+ cur_num_sarray--;
+#endif
+}
+
+
+METHODDEF JBLOCKARRAY
+alloc_small_barray (long blocksperrow, long numrows)
+/* Allocate a "small" (all-in-memory) 2-D coefficient-block array */
+{
+ JBLOCKARRAY result;
+ long i;
+
+#ifdef MEM_STATS
+ total_num_barray++;
+ total_bytes_barray += (blocksperrow * SIZEOF(JBLOCK) + MALLOC_FAR_OVERHEAD)
+ * numrows;
+ cur_num_barray++;
+ if (cur_num_barray > max_num_barray) max_num_barray = cur_num_barray;
+#endif
+
+ /* Get space for row pointers; this is always "near" on 80x86 */
+ result = (JBLOCKARRAY) alloc_small((size_t) (numrows * SIZEOF(JBLOCKROW)));
+
+ /* Get the rows themselves; on 80x86 these are "far" */
+ for (i = 0; i < numrows; i++) {
+ result[i] = (JBLOCKROW) far_malloc((size_t) (blocksperrow * SIZEOF(JBLOCK)));
+ if (result[i] == NULL)
+ out_of_memory(4);
+ }
+
+ return result;
+}
+
+
+METHODDEF void
+free_small_barray (JBLOCKARRAY ptr, long numrows)
+/* Free a "small" (all-in-memory) 2-D coefficient-block array */
+{
+ long i;
+
+ /* Free the rows themselves; on 80x86 these are "far" */
+ for (i = 0; i < numrows; i++) {
+ far_free((void FAR *) ptr[i]);
+ }
+
+ /* Free space for row pointers; this is always "near" on 80x86 */
+ free_small((void *) ptr);
+
+#ifdef MEM_STATS
+ cur_num_barray--;
+#endif
+}
+
+
+
+/*
+ * About "big" array management:
+ *
+ * To allow machines with limited memory to handle large images,
+ * all processing in the JPEG system is done a few pixel or block rows
+ * at a time. The above "small" array routines are only used to allocate
+ * strip buffers (as wide as the image, but just a few rows high).
+ * In some cases multiple passes must be made over the data. In these
+ * cases the "big" array routines are used. The array is still accessed
+ * a strip at a time, but the memory manager must save the whole array
+ * for repeated accesses. The intended implementation is that there is
+ * a strip buffer in memory (as high as is possible given the desired memory
+ * limit), plus a backing file that holds the rest of the array.
+ *
+ * The request_big_array routines are told the total size of the image (in case
+ * it is useful to know the total file size that will be needed). They are
+ * also given the unit height, which is the number of rows that will be
+ * accessed at once; the in-memory buffer should usually be made a multiple of
+ * this height for best efficiency.
+ *
+ * The request routines create control blocks (and may open backing files),
+ * but they don't create the in-memory buffers. This is postponed until
+ * alloc_big_arrays is called. At that time the total amount of space needed
+ * is known (approximately, anyway), so free memory can be divided up fairly.
+ *
+ * The access_big_array routines are responsible for making a specific strip
+ * area accessible (after reading or writing the backing file, if necessary).
+ * Note that the access routines are told whether the caller intends to modify
+ * the accessed strip; during a read-only pass this saves having to rewrite
+ * data to disk.
+ *
+ * The typical access pattern is one top-to-bottom pass to write the data,
+ * followed by one or more read-only top-to-bottom passes. However, other
+ * access patterns may occur while reading. For example, translation of image
+ * formats that use bottom-to-top scan order will require bottom-to-top read
+ * passes. The memory manager need not support multiple write passes nor
+ * funny write orders (meaning that rearranging rows must be handled while
+ * reading data out of the big array, not while putting it in).
+ *
+ * In current usage, the access requests are always for nonoverlapping strips;
+ * that is, successive access start_row numbers always differ by exactly the
+ * unitheight. This allows fairly simple buffer dump/reload logic if the
+ * in-memory buffer is made a multiple of the unitheight. It would be
+ * possible to keep subsampled rather than fullsize data in the "big" arrays,
+ * thus reducing temp file size, if we supported overlapping strip access
+ * (access requests differing by less than the unitheight). At the moment
+ * I don't believe this is worth the extra complexity.
+ *
+ * This particular implementation doesn't use temp files; the whole of a big
+ * array is allocated in (virtual) memory, and any swapping is done behind the
+ * scenes by the operating system.
+ */
+
+
+
+/* The control blocks for virtual arrays.
+ * These are pretty minimal in this implementation.
+ * Note: in this implementation we could realize big arrays
+ * at request time and make alloc_big_arrays a no-op;
+ * however, doing it separately keeps callers honest.
+ */
+
+struct big_sarray_control {
+ JSAMPARRAY mem_buffer; /* memory buffer (the whole thing, here) */
+ long rows_in_mem; /* Height of memory buffer */
+ long samplesperrow; /* Width of memory buffer */
+ long unitheight; /* # of rows accessed by access_big_sarray() */
+ big_sarray_ptr next; /* list link for unrealized arrays */
+};
+
+struct big_barray_control {
+ JBLOCKARRAY mem_buffer; /* memory buffer (the whole thing, here) */
+ long rows_in_mem; /* Height of memory buffer */
+ long blocksperrow; /* Width of memory buffer */
+ long unitheight; /* # of rows accessed by access_big_barray() */
+ big_barray_ptr next; /* list link for unrealized arrays */
+};
+
+
+/* Headers of lists of control blocks for unrealized big arrays */
+static big_sarray_ptr unalloced_sarrays;
+static big_barray_ptr unalloced_barrays;
+
+
+METHODDEF big_sarray_ptr
+request_big_sarray (long samplesperrow, long numrows, long unitheight)
+/* Request a "big" (virtual-memory) 2-D sample array */
+{
+ big_sarray_ptr result;
+
+ /* get control block */
+ result = (big_sarray_ptr) alloc_small(SIZEOF(struct big_sarray_control));
+
+ result->mem_buffer = NULL; /* lets access routine spot premature access */
+ result->rows_in_mem = numrows;
+ result->samplesperrow = samplesperrow;
+ result->unitheight = unitheight;
+ result->next = unalloced_sarrays; /* add to list of unallocated arrays */
+ unalloced_sarrays = result;
+
+ return result;
+}
+
+
+METHODDEF big_barray_ptr
+request_big_barray (long blocksperrow, long numrows, long unitheight)
+/* Request a "big" (virtual-memory) 2-D coefficient-block array */
+{
+ big_barray_ptr result;
+
+ /* get control block */
+ result = (big_barray_ptr) alloc_small(SIZEOF(struct big_barray_control));
+
+ result->mem_buffer = NULL; /* lets access routine spot premature access */
+ result->rows_in_mem = numrows;
+ result->blocksperrow = blocksperrow;
+ result->unitheight = unitheight;
+ result->next = unalloced_barrays; /* add to list of unallocated arrays */
+ unalloced_barrays = result;
+
+ return result;
+}
+
+
+METHODDEF void
+alloc_big_arrays (long extra_small_samples, long extra_small_blocks,
+ long extra_medium_space)
+/* Allocate the in-memory buffers for any unrealized "big" arrays */
+/* 'extra' values are upper bounds for total future small-array requests */
+/* and far-heap requests */
+{
+ /* In this implementation we just malloc the whole arrays */
+ /* and expect the system's virtual memory to worry about swapping them */
+ big_sarray_ptr sptr;
+ big_barray_ptr bptr;
+
+ for (sptr = unalloced_sarrays; sptr != NULL; sptr = sptr->next) {
+ sptr->mem_buffer = alloc_small_sarray(sptr->samplesperrow,
+ sptr->rows_in_mem);
+ }
+
+ for (bptr = unalloced_barrays; bptr != NULL; bptr = bptr->next) {
+ bptr->mem_buffer = alloc_small_barray(bptr->blocksperrow,
+ bptr->rows_in_mem);
+ }
+
+ unalloced_sarrays = NULL; /* reset for possible future cycles */
+ unalloced_barrays = NULL;
+}
+
+
+METHODDEF JSAMPARRAY
+access_big_sarray (big_sarray_ptr ptr, long start_row, boolean writable)
+/* Access the part of a "big" sample array starting at start_row */
+/* and extending for ptr->unitheight rows. writable is true if */
+/* caller intends to modify the accessed area. */
+{
+ /* debugging check */
+ if (start_row < 0 || start_row+ptr->unitheight > ptr->rows_in_mem ||
+ ptr->mem_buffer == NULL)
+ ERREXIT(methods, "Bogus access_big_sarray request");
+
+ return ptr->mem_buffer + start_row;
+}
+
+
+METHODDEF JBLOCKARRAY
+access_big_barray (big_barray_ptr ptr, long start_row, boolean writable)
+/* Access the part of a "big" coefficient-block array starting at start_row */
+/* and extending for ptr->unitheight rows. writable is true if */
+/* caller intends to modify the accessed area. */
+{
+ /* debugging check */
+ if (start_row < 0 || start_row+ptr->unitheight > ptr->rows_in_mem ||
+ ptr->mem_buffer == NULL)
+ ERREXIT(methods, "Bogus access_big_barray request");
+
+ return ptr->mem_buffer + start_row;
+}
+
+
+METHODDEF void
+free_big_sarray (big_sarray_ptr ptr)
+/* Free a "big" (virtual-memory) 2-D sample array */
+{
+ free_small_sarray(ptr->mem_buffer, ptr->rows_in_mem);
+ free_small((void *) ptr); /* free the control block too */
+}
+
+
+METHODDEF void
+free_big_barray (big_barray_ptr ptr)
+/* Free a "big" (virtual-memory) 2-D coefficient-block array */
+{
+ free_small_barray(ptr->mem_buffer, ptr->rows_in_mem);
+ free_small((void *) ptr); /* free the control block too */
+}
+
+
+
+/*
+ * The method selection routine for virtual memory systems.
+ * The system-dependent setup routine should call this routine
+ * to install the necessary method pointers in the supplied struct.
+ */
+
+GLOBAL void
+jselvirtmem (external_methods_ptr emethods)
+{
+ methods = emethods; /* save struct addr for error exit access */
+
+ emethods->alloc_small = alloc_small;
+ emethods->free_small = free_small;
+#ifdef NEED_FAR_POINTERS
+ emethods->alloc_medium = alloc_medium;
+ emethods->free_medium = free_medium;
+#endif
+ emethods->alloc_small_sarray = alloc_small_sarray;
+ emethods->free_small_sarray = free_small_sarray;
+ emethods->alloc_small_barray = alloc_small_barray;
+ emethods->free_small_barray = free_small_barray;
+ emethods->request_big_sarray = request_big_sarray;
+ emethods->request_big_barray = request_big_barray;
+ emethods->alloc_big_arrays = alloc_big_arrays;
+ emethods->access_big_sarray = access_big_sarray;
+ emethods->access_big_barray = access_big_barray;
+ emethods->free_big_sarray = free_big_sarray;
+ emethods->free_big_barray = free_big_barray;
+
+ unalloced_sarrays = NULL; /* make sure list headers are empty */
+ unalloced_barrays = NULL;
+}