summaryrefslogtreecommitdiff
path: root/jchuff.c
diff options
context:
space:
mode:
Diffstat (limited to 'jchuff.c')
-rw-r--r--jchuff.c689
1 files changed, 689 insertions, 0 deletions
diff --git a/jchuff.c b/jchuff.c
new file mode 100644
index 0000000..531bc75
--- /dev/null
+++ b/jchuff.c
@@ -0,0 +1,689 @@
+/*
+ * jchuff.c
+ *
+ * Copyright (C) 1991, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains Huffman entropy encoding routines.
+ * These routines are invoked via the methods entropy_encode,
+ * entropy_encoder_init/term, and entropy_optimize.
+ */
+
+#include "jinclude.h"
+
+
+/* Static variables to avoid passing 'round extra parameters */
+
+static compress_info_ptr cinfo;
+
+static INT32 huff_put_buffer; /* current bit-accumulation buffer */
+static int huff_put_bits; /* # of bits now in it */
+
+static char * output_buffer; /* output buffer */
+static int bytes_in_buffer;
+
+
+
+LOCAL void
+fix_huff_tbl (HUFF_TBL * htbl)
+/* Compute derived values for a Huffman table */
+{
+ int p, i, l, lastp, si;
+ char huffsize[257];
+ UINT16 huffcode[257];
+ UINT16 code;
+
+ /* Figure 7.3.5.4.2.1: make table of Huffman code length for each symbol */
+ /* Note that this is in code-length order. */
+
+ p = 0;
+ for (l = 1; l <= 16; l++) {
+ for (i = 1; i <= htbl->bits[l]; i++)
+ huffsize[p++] = l;
+ }
+ huffsize[p] = 0;
+ lastp = p;
+
+ /* Figure 7.3.5.4.2.2: generate the codes themselves */
+ /* Note that this is in code-length order. */
+
+ code = 0;
+ si = huffsize[0];
+ p = 0;
+ while (huffsize[p]) {
+ while (huffsize[p] == si) {
+ huffcode[p++] = code;
+ code++;
+ }
+ code <<= 1;
+ si++;
+ }
+
+ /* Figure 7.3.5.4.2.3: generate encoding tables */
+ /* These are code and size indexed by symbol value */
+
+ for (p = 0; p < lastp; p++) {
+ htbl->ehufco[htbl->huffval[p]] = huffcode[p];
+ htbl->ehufsi[htbl->huffval[p]] = huffsize[p];
+ }
+
+ /* Figure 13.4.2.3.1: generate decoding tables */
+
+ p = 0;
+ for (l = 1; l <= 16; l++) {
+ if (htbl->bits[l]) {
+ htbl->valptr[l] = p; /* huffval[] index of 1st sym of code len l */
+ htbl->mincode[l] = huffcode[p]; /* minimum code of length l */
+ p += htbl->bits[l];
+ htbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
+ } else {
+ htbl->maxcode[l] = -1;
+ }
+ }
+}
+
+
+/* Outputting bytes to the file */
+
+LOCAL void
+flush_bytes (void)
+{
+ if (bytes_in_buffer)
+ (*cinfo->methods->entropy_output) (cinfo, output_buffer, bytes_in_buffer);
+ bytes_in_buffer = 0;
+}
+
+
+#define emit_byte(val) ((bytes_in_buffer >= JPEG_BUF_SIZE ? \
+ (flush_bytes(), 0) : 0), \
+ output_buffer[bytes_in_buffer] = (val), \
+ bytes_in_buffer++)
+
+
+
+/* Outputting bits to the file */
+
+/* Only the right 24 bits of huff_put_buffer are used; the valid bits are
+ * left-justified in this part. At most 16 bits can be passed to emit_bits
+ * in one call, and we never retain more than 7 bits in huff_put_buffer
+ * between calls, so 24 bits are sufficient.
+ */
+
+LOCAL void
+emit_bits (UINT16 code, int size)
+{
+ /* This routine is heavily used, so it's worth coding tightly. */
+ register INT32 put_buffer = code;
+ register int put_bits = huff_put_bits;
+
+ put_buffer &= (((INT32) 1) << size) - 1; /* Mask off any excess bits in code */
+
+ put_bits += size; /* new number of bits in buffer */
+
+ put_buffer <<= 24 - put_bits; /* align incoming bits */
+
+ put_buffer |= huff_put_buffer; /* and merge with old buffer contents */
+
+ while (put_bits >= 8) {
+ int c = (int) ((put_buffer >> 16) & 0xFF);
+
+ emit_byte(c);
+ if (c == 0xFF) { /* need to stuff a zero byte? */
+ emit_byte(0);
+ }
+ put_buffer <<= 8;
+ put_bits -= 8;
+ }
+
+ huff_put_buffer = put_buffer; /* Update global variables */
+ huff_put_bits = put_bits;
+}
+
+
+LOCAL void
+flush_bits (void)
+{
+ emit_bits((UINT16) 0x7F, 7); /* fill any partial byte with ones */
+ huff_put_buffer = 0; /* and reset bit-buffer to empty */
+ huff_put_bits = 0;
+}
+
+
+
+/* Encode a single block's worth of coefficients */
+/* Note that the DC coefficient has already been converted to a difference */
+
+LOCAL void
+encode_one_block (JBLOCK block, HUFF_TBL *dctbl, HUFF_TBL *actbl)
+{
+ register INT32 temp;
+ register int nbits;
+ register int k, r, i;
+
+ /* Encode the DC coefficient difference per section 7.3.5.1 */
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ temp = block[0];
+ if (temp < 0) temp = -temp;
+
+ nbits = 0;
+ while (temp) {
+ nbits++;
+ temp >>= 1;
+ }
+
+ /* Emit the Huffman-coded symbol for the number of bits */
+ emit_bits(dctbl->ehufco[nbits], dctbl->ehufsi[nbits]);
+
+ /* If positive, emit nbits low order bits; */
+ /* if negative, emit nbits low order bits of value-1 */
+ if ((temp = block[0]) < 0)
+ temp--;
+
+ emit_bits((UINT16) temp, nbits);
+
+ /* Encode the AC coefficients per section 7.3.5.2 */
+
+ r = 0; /* r = run length of zeros */
+
+ for (k = 1; k < DCTSIZE2; k++) {
+ if ((temp = block[k]) == 0) {
+ r++;
+ } else {
+ /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+ while (r > 15) {
+ emit_bits(actbl->ehufco[0xF0], actbl->ehufsi[0xF0]);
+ r -= 16;
+ }
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ if (temp < 0) temp = -temp;
+
+ nbits = 1; /* there must be at least one 1 bit */
+ while (temp >>= 1)
+ nbits++;
+
+ /* Emit Huffman symbol for run length / number of bits */
+ i = (r << 4) + nbits;
+ emit_bits(actbl->ehufco[i], actbl->ehufsi[i]);
+
+ /* If positive, emit nbits low order bits; */
+ /* if negative, emit nbits low order bits of value-1 */
+ if ((temp = block[k]) < 0)
+ temp--;
+
+ emit_bits((UINT16) temp, nbits);
+
+ r = 0;
+ }
+ }
+
+ /* If the last coef(s) were zero, emit an end-of-block code */
+ if (r > 0)
+ emit_bits(actbl->ehufco[0], actbl->ehufsi[0]);
+}
+
+
+
+/*
+ * Initialize for a Huffman-compressed scan.
+ * This is invoked after writing the SOS marker.
+ * The pipeline controller must establish the entropy_output method pointer
+ * before calling this routine.
+ */
+
+METHODDEF void
+huff_init (compress_info_ptr xinfo)
+{
+ short ci;
+ jpeg_component_info * compptr;
+
+ /* Initialize static variables */
+ cinfo = xinfo;
+ huff_put_buffer = 0;
+ huff_put_bits = 0;
+
+ /* Initialize the output buffer */
+ output_buffer = (char *) (*cinfo->emethods->alloc_small)
+ ((size_t) JPEG_BUF_SIZE);
+ bytes_in_buffer = 0;
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Make sure requested tables are present */
+ if (cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no] == NULL ||
+ cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no] == NULL)
+ ERREXIT(cinfo->emethods, "Use of undefined Huffman table");
+ /* Compute derived values for Huffman tables */
+ /* We may do this more than once for same table, but it's not a big deal */
+ fix_huff_tbl(cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no]);
+ fix_huff_tbl(cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no]);
+ /* Initialize DC predictions to 0 */
+ cinfo->last_dc_val[ci] = 0;
+ }
+
+ /* Initialize restart stuff */
+ cinfo->restarts_to_go = cinfo->restart_interval;
+ cinfo->next_restart_num = 0;
+}
+
+
+/*
+ * Emit a restart marker & resynchronize predictions.
+ */
+
+LOCAL void
+emit_restart (compress_info_ptr cinfo)
+{
+ short ci;
+
+ flush_bits();
+
+ emit_byte(0xFF);
+ emit_byte(RST0 + cinfo->next_restart_num);
+
+ /* Re-initialize DC predictions to 0 */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+ cinfo->last_dc_val[ci] = 0;
+
+ /* Update restart state */
+ cinfo->restarts_to_go = cinfo->restart_interval;
+ cinfo->next_restart_num++;
+ cinfo->next_restart_num &= 7;
+}
+
+
+/*
+ * Encode and output one MCU's worth of Huffman-compressed coefficients.
+ */
+
+METHODDEF void
+huff_encode (compress_info_ptr cinfo, JBLOCK *MCU_data)
+{
+ short blkn, ci;
+ jpeg_component_info * compptr;
+ JCOEF temp;
+
+ /* Account for restart interval, emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (cinfo->restarts_to_go == 0)
+ emit_restart(cinfo);
+ cinfo->restarts_to_go--;
+ }
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ /* Convert DC value to difference, update last_dc_val */
+ temp = MCU_data[blkn][0];
+ MCU_data[blkn][0] -= cinfo->last_dc_val[ci];
+ cinfo->last_dc_val[ci] = temp;
+ encode_one_block(MCU_data[blkn],
+ cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no],
+ cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no]);
+ }
+}
+
+
+/*
+ * Finish up at the end of a Huffman-compressed scan.
+ */
+
+METHODDEF void
+huff_term (compress_info_ptr cinfo)
+{
+ /* Flush out the last data */
+ flush_bits();
+ flush_bytes();
+ /* Release the I/O buffer */
+ (*cinfo->emethods->free_small) ((void *) output_buffer);
+}
+
+
+
+
+/*
+ * Huffman coding optimization.
+ *
+ * This actually is optimization, in the sense that we find the best possible
+ * Huffman table(s) for the given data. We first scan the supplied data and
+ * count the number of uses of each symbol that is to be Huffman-coded.
+ * (This process must agree with the code above.) Then we build an
+ * optimal Huffman coding tree for the observed counts.
+ */
+
+#ifdef ENTROPY_OPT_SUPPORTED
+
+
+/* These are static so htest_one_block can find 'em */
+static long * dc_count_ptrs[NUM_HUFF_TBLS];
+static long * ac_count_ptrs[NUM_HUFF_TBLS];
+
+
+LOCAL void
+gen_huff_coding (compress_info_ptr cinfo, HUFF_TBL *htbl, long freq[])
+/* Generate the optimal coding for the given counts */
+{
+#define MAX_CLEN 32 /* assumed maximum initial code length */
+ UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
+ short codesize[257]; /* codesize[k] = code length of symbol k */
+ short others[257]; /* next symbol in current branch of tree */
+ int c1, c2;
+ int p, i, j;
+ long v;
+
+ /* This algorithm is explained in section 13.2 of JPEG-8-R8 */
+
+ MEMZERO((void *) bits, SIZEOF(bits));
+ MEMZERO((void *) codesize, SIZEOF(codesize));
+ for (i = 0; i < 257; i++)
+ others[i] = -1; /* init links to empty */
+
+ freq[256] = 1; /* make sure there is a nonzero count */
+ /* including the pseudo-symbol 256 in the Huffman procedure guarantees
+ * that no real symbol is given code-value of all ones, because 256
+ * will be placed in the largest codeword category.
+ */
+
+ /* Huffman's basic algorithm to assign optimal code lengths to symbols */
+
+ for (;;) {
+ /* Find the smallest nonzero frequency, set c1 = its symbol */
+ /* In case of ties, take the larger symbol number */
+ c1 = -1;
+ v = 1000000000L;
+ for (i = 0; i <= 256; i++) {
+ if (freq[i] && freq[i] <= v) {
+ v = freq[i];
+ c1 = i;
+ }
+ }
+
+ /* Find the next smallest nonzero frequency, set c2 = its symbol */
+ /* In case of ties, take the larger symbol number */
+ c2 = -1;
+ v = 1000000000L;
+ for (i = 0; i <= 256; i++) {
+ if (freq[i] && freq[i] <= v && i != c1) {
+ v = freq[i];
+ c2 = i;
+ }
+ }
+
+ /* Done if we've merged everything into one frequency */
+ if (c2 < 0)
+ break;
+
+ /* Else merge the two counts/trees */
+ freq[c1] += freq[c2];
+ freq[c2] = 0;
+
+ /* Increment the codesize of everything in c1's tree branch */
+ codesize[c1]++;
+ while (others[c1] >= 0) {
+ c1 = others[c1];
+ codesize[c1]++;
+ }
+
+ others[c1] = c2; /* chain c2 onto c1's tree branch */
+
+ /* Increment the codesize of everything in c2's tree branch */
+ codesize[c2]++;
+ while (others[c2] >= 0) {
+ c2 = others[c2];
+ codesize[c2]++;
+ }
+ }
+
+ /* Now count the number of symbols of each code length */
+ for (i = 0; i <= 256; i++) {
+ if (codesize[i]) {
+ /* The JPEG standard seems to think that this can't happen, */
+ /* but I'm paranoid... */
+ if (codesize[i] > MAX_CLEN)
+ ERREXIT(cinfo->emethods, "Huffman code size table overflow");
+
+ bits[codesize[i]]++;
+ }
+ }
+
+ /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
+ * Huffman procedure assigned any such lengths, we must adjust the coding.
+ * Here is what the JPEG spec says about how this next bit works:
+ * Since symbols are paired for the longest Huffman code, the symbols are
+ * removed from this length category two at a time. The prefix for the pair
+ * (which is one bit shorter) is allocated to one of the pair; then,
+ * skipping the BITS entry for that prefix length, a code word from the next
+ * shortest nonzero BITS entry is converted into a prefix for two code words
+ * one bit longer.
+ */
+
+ for (i = MAX_CLEN; i > 16; i--) {
+ while (bits[i] > 0) {
+ j = i - 2; /* find length of new prefix to be used */
+ while (bits[j] == 0)
+ j--;
+
+ bits[i] -= 2; /* remove two symbols */
+ bits[i-1]++; /* one goes in this length */
+ bits[j+1] += 2; /* two new symbols in this length */
+ bits[j]--; /* symbol of this length is now a prefix */
+ }
+ }
+
+ /* Remove the count for the pseudo-symbol 256 from the largest codelength */
+ while (bits[i] == 0) /* find largest codelength still in use */
+ i--;
+ bits[i]--;
+
+ /* Return final symbol counts (only for lengths 0..16) */
+ memcpy((void *) htbl->bits, (void *) bits, SIZEOF(htbl->bits));
+
+ /* Return a list of the symbols sorted by code length */
+ /* It's not real clear to me why we don't need to consider the codelength
+ * changes made above, but the JPEG spec seems to think this works.
+ */
+ p = 0;
+ for (i = 1; i <= MAX_CLEN; i++) {
+ for (j = 0; j <= 255; j++) {
+ if (codesize[j] == i) {
+ htbl->huffval[p] = j;
+ p++;
+ }
+ }
+ }
+}
+
+
+/* Process a single block's worth of coefficients */
+/* Note that the DC coefficient has already been converted to a difference */
+
+LOCAL void
+htest_one_block (JBLOCK block, JCOEF block0,
+ long dc_counts[], long ac_counts[])
+{
+ register INT32 temp;
+ register int nbits;
+ register int k, r;
+
+ /* Encode the DC coefficient difference per section 7.3.5.1 */
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ temp = block0;
+ if (temp < 0) temp = -temp;
+
+ for (nbits = 0; temp; nbits++)
+ temp >>= 1;
+
+ /* Count the Huffman symbol for the number of bits */
+ dc_counts[nbits]++;
+
+ /* Encode the AC coefficients per section 7.3.5.2 */
+
+ r = 0; /* r = run length of zeros */
+
+ for (k = 1; k < DCTSIZE2; k++) {
+ if ((temp = block[k]) == 0) {
+ r++;
+ } else {
+ /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+ while (r > 15) {
+ ac_counts[0xF0]++;
+ r -= 16;
+ }
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ if (temp < 0) temp = -temp;
+
+ for (nbits = 0; temp; nbits++)
+ temp >>= 1;
+
+ /* Count Huffman symbol for run length / number of bits */
+ ac_counts[(r << 4) + nbits]++;
+
+ r = 0;
+ }
+ }
+
+ /* If the last coef(s) were zero, emit an end-of-block code */
+ if (r > 0)
+ ac_counts[0]++;
+}
+
+
+
+/*
+ * Trial-encode one MCU's worth of Huffman-compressed coefficients.
+ */
+
+LOCAL void
+htest_encode (compress_info_ptr cinfo, JBLOCK *MCU_data)
+{
+ short blkn, ci;
+ jpeg_component_info * compptr;
+
+ /* Take care of restart intervals if needed */
+ if (cinfo->restart_interval) {
+ if (cinfo->restarts_to_go == 0) {
+ /* Re-initialize DC predictions to 0 */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+ cinfo->last_dc_val[ci] = 0;
+ /* Update restart state */
+ cinfo->restarts_to_go = cinfo->restart_interval;
+ }
+ cinfo->restarts_to_go--;
+ }
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ /* NB: unlike the real entropy encoder, we may not change the input data */
+ htest_one_block(MCU_data[blkn],
+ (JCOEF) (MCU_data[blkn][0] - cinfo->last_dc_val[ci]),
+ dc_count_ptrs[compptr->dc_tbl_no],
+ ac_count_ptrs[compptr->ac_tbl_no]);
+ cinfo->last_dc_val[ci] = MCU_data[blkn][0];
+ }
+}
+
+
+
+/*
+ * Find the best coding parameters for a Huffman-coded scan.
+ * When called, the scan data has already been converted to a sequence of
+ * MCU groups of quantized coefficients, which are stored in a "big" array.
+ * The source_method knows how to iterate through that array.
+ * On return, the MCU data is unmodified, but the Huffman tables referenced
+ * by the scan components may have been altered.
+ */
+
+METHODDEF void
+huff_optimize (compress_info_ptr cinfo, MCU_output_caller_ptr source_method)
+/* Optimize Huffman-coding parameters (Huffman symbol table) */
+{
+ int i, tbl;
+ HUFF_TBL **htblptr;
+
+ /* Allocate and zero the count tables */
+ /* Note that gen_huff_coding expects 257 entries in each table! */
+
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ dc_count_ptrs[i] = NULL;
+ ac_count_ptrs[i] = NULL;
+ }
+
+ for (i = 0; i < cinfo->comps_in_scan; i++) {
+ /* Create DC table */
+ tbl = cinfo->cur_comp_info[i]->dc_tbl_no;
+ if (dc_count_ptrs[tbl] == NULL) {
+ dc_count_ptrs[tbl] = (long *) (*cinfo->emethods->alloc_small)
+ (257 * SIZEOF(long));
+ MEMZERO((void *) dc_count_ptrs[tbl], 257 * SIZEOF(long));
+ }
+ /* Create AC table */
+ tbl = cinfo->cur_comp_info[i]->ac_tbl_no;
+ if (ac_count_ptrs[tbl] == NULL) {
+ ac_count_ptrs[tbl] = (long *) (*cinfo->emethods->alloc_small)
+ (257 * SIZEOF(long));
+ MEMZERO((void *) ac_count_ptrs[tbl], 257 * SIZEOF(long));
+ }
+ }
+
+ /* Initialize DC predictions to 0 */
+ for (i = 0; i < cinfo->comps_in_scan; i++) {
+ cinfo->last_dc_val[i] = 0;
+ }
+ /* Initialize restart stuff */
+ cinfo->restarts_to_go = cinfo->restart_interval;
+
+ /* Scan the MCU data, count symbol uses */
+ (*source_method) (cinfo, htest_encode);
+
+ /* Now generate optimal Huffman tables */
+ for (tbl = 0; tbl < NUM_HUFF_TBLS; tbl++) {
+ if (dc_count_ptrs[tbl] != NULL) {
+ htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
+ if (*htblptr == NULL)
+ *htblptr = (*cinfo->emethods->alloc_small) (SIZEOF(HUFF_TBL));
+ /* Set sent_table FALSE so updated table will be written to JPEG file. */
+ (*htblptr)->sent_table = FALSE;
+ /* Compute the optimal Huffman encoding */
+ gen_huff_coding(cinfo, *htblptr, dc_count_ptrs[tbl]);
+ /* Release the count table */
+ (*cinfo->emethods->free_small) ((void *) dc_count_ptrs[tbl]);
+ }
+ if (ac_count_ptrs[tbl] != NULL) {
+ htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
+ if (*htblptr == NULL)
+ *htblptr = (*cinfo->emethods->alloc_small) (SIZEOF(HUFF_TBL));
+ /* Set sent_table FALSE so updated table will be written to JPEG file. */
+ (*htblptr)->sent_table = FALSE;
+ /* Compute the optimal Huffman encoding */
+ gen_huff_coding(cinfo, *htblptr, ac_count_ptrs[tbl]);
+ /* Release the count table */
+ (*cinfo->emethods->free_small) ((void *) ac_count_ptrs[tbl]);
+ }
+ }
+}
+
+
+#endif /* ENTROPY_OPT_SUPPORTED */
+
+
+/*
+ * The method selection routine for Huffman entropy encoding.
+ */
+
+GLOBAL void
+jselchuffman (compress_info_ptr cinfo)
+{
+ if (! cinfo->arith_code) {
+ cinfo->methods->entropy_encoder_init = huff_init;
+ cinfo->methods->entropy_encode = huff_encode;
+ cinfo->methods->entropy_encoder_term = huff_term;
+#ifdef ENTROPY_OPT_SUPPORTED
+ cinfo->methods->entropy_optimize = huff_optimize;
+#endif
+ }
+}