diff options
author | Tom Hudson <tomhudson@google.com> | 2016-05-04 13:22:56 -0400 |
---|---|---|
committer | Tom Hudson <tomhudson@google.com> | 2016-05-04 13:22:56 -0400 |
commit | 0d47d2d3a728e78676a15b1d818cc668cb7e5a9c (patch) | |
tree | 044a430eeaa2dec4d6de7b624da15fda1b8ed25f /jquant2.c | |
parent | 9d35298a6223278a66423f828a949d93d94d5911 (diff) |
Update to libjpeg_turbo 1.4.90
(Duplicate of https://codereview.chromium.org/1939823002/ for landing.)
TBR=noel@chromium.org,thakis@chromium.org
BUG=608347, 398235, 591927
Review URL: https://codereview.chromium.org/1953443002 .
Diffstat (limited to 'jquant2.c')
-rw-r--r-- | jquant2.c | 416 |
1 files changed, 202 insertions, 214 deletions
@@ -4,8 +4,9 @@ * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: - * Copyright (C) 2009, D. R. Commander. - * For conditions of distribution and use, see the accompanying README file. + * Copyright (C) 2009, 2014-2015, D. R. Commander. + * For conditions of distribution and use, see the accompanying README.ijg + * file. * * This file contains 2-pass color quantization (color mapping) routines. * These routines provide selection of a custom color map for an image, @@ -43,7 +44,7 @@ * color space, and repeatedly splits the "largest" remaining box until we * have as many boxes as desired colors. Then the mean color in each * remaining box becomes one of the possible output colors. - * + * * The second pass over the image maps each input pixel to the closest output * color (optionally after applying a Floyd-Steinberg dithering correction). * This mapping is logically trivial, but making it go fast enough requires @@ -72,9 +73,9 @@ * probably need to change these scale factors. */ -#define R_SCALE 2 /* scale R distances by this much */ -#define G_SCALE 3 /* scale G distances by this much */ -#define B_SCALE 1 /* and B by this much */ +#define R_SCALE 2 /* scale R distances by this much */ +#define G_SCALE 3 /* scale G distances by this much */ +#define B_SCALE 1 /* and B by this much */ static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE}; #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]] @@ -102,9 +103,7 @@ static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE}; * machines, we can't just allocate the histogram in one chunk. Instead * of a true 3-D array, we use a row of pointers to 2-D arrays. Each * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and - * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that - * on 80x86 machines, the pointer row is in near memory but the actual - * arrays are in far memory (same arrangement as we use for image arrays). + * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. */ #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ @@ -112,9 +111,9 @@ static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE}; /* These will do the right thing for either R,G,B or B,G,R color order, * but you may not like the results for other color orders. */ -#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ -#define HIST_C1_BITS 6 /* bits of precision in G histogram */ -#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ +#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ +#define HIST_C1_BITS 6 /* bits of precision in G histogram */ +#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ /* Number of elements along histogram axes. */ #define HIST_C0_ELEMS (1<<HIST_C0_BITS) @@ -127,13 +126,13 @@ static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE}; #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) -typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ +typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ -typedef histcell FAR * histptr; /* for pointers to histogram cells */ +typedef histcell *histptr; /* for pointers to histogram cells */ typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ -typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */ -typedef hist2d * hist3d; /* type for top-level pointer */ +typedef hist1d *hist2d; /* type for the 2nd-level pointers */ +typedef hist2d *hist3d; /* type for top-level pointer */ /* Declarations for Floyd-Steinberg dithering. @@ -141,8 +140,8 @@ typedef hist2d * hist3d; /* type for top-level pointer */ * Errors are accumulated into the array fserrors[], at a resolution of * 1/16th of a pixel count. The error at a given pixel is propagated * to its not-yet-processed neighbors using the standard F-S fractions, - * ... (here) 7/16 - * 3/16 5/16 1/16 + * ... (here) 7/16 + * 3/16 5/16 1/16 * We work left-to-right on even rows, right-to-left on odd rows. * * We can get away with a single array (holding one row's worth of errors) @@ -155,20 +154,17 @@ typedef hist2d * hist3d; /* type for top-level pointer */ * The fserrors[] array has (#columns + 2) entries; the extra entry at * each end saves us from special-casing the first and last pixels. * Each entry is three values long, one value for each color component. - * - * Note: on a wide image, we might not have enough room in a PC's near data - * segment to hold the error array; so it is allocated with alloc_large. */ #if BITS_IN_JSAMPLE == 8 -typedef INT16 FSERROR; /* 16 bits should be enough */ -typedef int LOCFSERROR; /* use 'int' for calculation temps */ +typedef INT16 FSERROR; /* 16 bits should be enough */ +typedef int LOCFSERROR; /* use 'int' for calculation temps */ #else -typedef INT32 FSERROR; /* may need more than 16 bits */ -typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ +typedef JLONG FSERROR; /* may need more than 16 bits */ +typedef JLONG LOCFSERROR; /* be sure calculation temps are big enough */ #endif -typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ +typedef FSERROR *FSERRPTR; /* pointer to error array */ /* Private subobject */ @@ -177,21 +173,21 @@ typedef struct { struct jpeg_color_quantizer pub; /* public fields */ /* Space for the eventually created colormap is stashed here */ - JSAMPARRAY sv_colormap; /* colormap allocated at init time */ - int desired; /* desired # of colors = size of colormap */ + JSAMPARRAY sv_colormap; /* colormap allocated at init time */ + int desired; /* desired # of colors = size of colormap */ /* Variables for accumulating image statistics */ - hist3d histogram; /* pointer to the histogram */ + hist3d histogram; /* pointer to the histogram */ - boolean needs_zeroed; /* TRUE if next pass must zero histogram */ + boolean needs_zeroed; /* TRUE if next pass must zero histogram */ /* Variables for Floyd-Steinberg dithering */ - FSERRPTR fserrors; /* accumulated errors */ - boolean on_odd_row; /* flag to remember which row we are on */ - int * error_limiter; /* table for clamping the applied error */ + FSERRPTR fserrors; /* accumulated errors */ + boolean on_odd_row; /* flag to remember which row we are on */ + int *error_limiter; /* table for clamping the applied error */ } my_cquantizer; -typedef my_cquantizer * my_cquantize_ptr; +typedef my_cquantizer *my_cquantize_ptr; /* @@ -205,7 +201,7 @@ typedef my_cquantizer * my_cquantize_ptr; METHODDEF(void) prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, - JSAMPARRAY output_buf, int num_rows) + JSAMPARRAY output_buf, int num_rows) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; register JSAMPROW ptr; @@ -220,11 +216,11 @@ prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, for (col = width; col > 0; col--) { /* get pixel value and index into the histogram */ histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] - [GETJSAMPLE(ptr[1]) >> C1_SHIFT] - [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; + [GETJSAMPLE(ptr[1]) >> C1_SHIFT] + [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; /* increment, check for overflow and undo increment if so. */ if (++(*histp) <= 0) - (*histp)--; + (*histp)--; ptr += 3; } } @@ -244,12 +240,12 @@ typedef struct { int c1min, c1max; int c2min, c2max; /* The volume (actually 2-norm) of the box */ - INT32 volume; + JLONG volume; /* The number of nonzero histogram cells within this box */ long colorcount; } box; -typedef box * boxptr; +typedef box *boxptr; LOCAL(boxptr) @@ -261,7 +257,7 @@ find_biggest_color_pop (boxptr boxlist, int numboxes) register int i; register long maxc = 0; boxptr which = NULL; - + for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->colorcount > maxc && boxp->volume > 0) { which = boxp; @@ -279,9 +275,9 @@ find_biggest_volume (boxptr boxlist, int numboxes) { register boxptr boxp; register int i; - register INT32 maxv = 0; + register JLONG maxv = 0; boxptr which = NULL; - + for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->volume > maxv) { which = boxp; @@ -302,77 +298,77 @@ update_box (j_decompress_ptr cinfo, boxptr boxp) histptr histp; int c0,c1,c2; int c0min,c0max,c1min,c1max,c2min,c2max; - INT32 dist0,dist1,dist2; + JLONG dist0,dist1,dist2; long ccount; - + c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; - + if (c0max > c0min) for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { - histp = & histogram[c0][c1][c2min]; - for (c2 = c2min; c2 <= c2max; c2++) - if (*histp++ != 0) { - boxp->c0min = c0min = c0; - goto have_c0min; - } + histp = & histogram[c0][c1][c2min]; + for (c2 = c2min; c2 <= c2max; c2++) + if (*histp++ != 0) { + boxp->c0min = c0min = c0; + goto have_c0min; + } } have_c0min: if (c0max > c0min) for (c0 = c0max; c0 >= c0min; c0--) for (c1 = c1min; c1 <= c1max; c1++) { - histp = & histogram[c0][c1][c2min]; - for (c2 = c2min; c2 <= c2max; c2++) - if (*histp++ != 0) { - boxp->c0max = c0max = c0; - goto have_c0max; - } + histp = & histogram[c0][c1][c2min]; + for (c2 = c2min; c2 <= c2max; c2++) + if (*histp++ != 0) { + boxp->c0max = c0max = c0; + goto have_c0max; + } } have_c0max: if (c1max > c1min) for (c1 = c1min; c1 <= c1max; c1++) for (c0 = c0min; c0 <= c0max; c0++) { - histp = & histogram[c0][c1][c2min]; - for (c2 = c2min; c2 <= c2max; c2++) - if (*histp++ != 0) { - boxp->c1min = c1min = c1; - goto have_c1min; - } + histp = & histogram[c0][c1][c2min]; + for (c2 = c2min; c2 <= c2max; c2++) + if (*histp++ != 0) { + boxp->c1min = c1min = c1; + goto have_c1min; + } } have_c1min: if (c1max > c1min) for (c1 = c1max; c1 >= c1min; c1--) for (c0 = c0min; c0 <= c0max; c0++) { - histp = & histogram[c0][c1][c2min]; - for (c2 = c2min; c2 <= c2max; c2++) - if (*histp++ != 0) { - boxp->c1max = c1max = c1; - goto have_c1max; - } + histp = & histogram[c0][c1][c2min]; + for (c2 = c2min; c2 <= c2max; c2++) + if (*histp++ != 0) { + boxp->c1max = c1max = c1; + goto have_c1max; + } } have_c1max: if (c2max > c2min) for (c2 = c2min; c2 <= c2max; c2++) for (c0 = c0min; c0 <= c0max; c0++) { - histp = & histogram[c0][c1min][c2]; - for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) - if (*histp != 0) { - boxp->c2min = c2min = c2; - goto have_c2min; - } + histp = & histogram[c0][c1min][c2]; + for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) + if (*histp != 0) { + boxp->c2min = c2min = c2; + goto have_c2min; + } } have_c2min: if (c2max > c2min) for (c2 = c2max; c2 >= c2min; c2--) for (c0 = c0min; c0 <= c0max; c0++) { - histp = & histogram[c0][c1min][c2]; - for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) - if (*histp != 0) { - boxp->c2max = c2max = c2; - goto have_c2max; - } + histp = & histogram[c0][c1min][c2]; + for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) + if (*histp != 0) { + boxp->c2max = c2max = c2; + goto have_c2max; + } } have_c2max: @@ -388,16 +384,16 @@ update_box (j_decompress_ptr cinfo, boxptr boxp) dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; - + /* Now scan remaining volume of box and compute population */ ccount = 0; for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++, histp++) - if (*histp != 0) { - ccount++; - } + if (*histp != 0) { + ccount++; + } } boxp->colorcount = ccount; } @@ -405,7 +401,7 @@ update_box (j_decompress_ptr cinfo, boxptr boxp) LOCAL(int) median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, - int desired_colors) + int desired_colors) /* Repeatedly select and split the largest box until we have enough boxes */ { int n,lb; @@ -421,9 +417,9 @@ median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, } else { b1 = find_biggest_volume(boxlist, numboxes); } - if (b1 == NULL) /* no splittable boxes left! */ + if (b1 == NULL) /* no splittable boxes left! */ break; - b2 = &boxlist[numboxes]; /* where new box will go */ + b2 = &boxlist[numboxes]; /* where new box will go */ /* Copy the color bounds to the new box. */ b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; @@ -495,24 +491,24 @@ compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) long c0total = 0; long c1total = 0; long c2total = 0; - + c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; - + for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) { - if ((count = *histp++) != 0) { - total += count; - c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; - c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; - c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; - } + if ((count = *histp++) != 0) { + total += count; + c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; + c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; + c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; + } } } - + cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); @@ -529,7 +525,7 @@ select_colors (j_decompress_ptr cinfo, int desired_colors) /* Allocate workspace for box list */ boxlist = (boxptr) (*cinfo->mem->alloc_small) - ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); + ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * sizeof(box)); /* Initialize one box containing whole space */ numboxes = 1; boxlist[0].c0min = 0; @@ -576,7 +572,7 @@ select_colors (j_decompress_ptr cinfo, int desired_colors) * distance from every colormap entry to every histogram cell. Unfortunately, * it needs a work array to hold the best-distance-so-far for each histogram * cell (because the inner loop has to be over cells, not colormap entries). - * The work array elements have to be INT32s, so the work array would need + * The work array elements have to be JLONGs, so the work array would need * 256Kb at our recommended precision. This is not feasible in DOS machines. * * To get around these problems, we apply Thomas' method to compute the @@ -628,7 +624,7 @@ select_colors (j_decompress_ptr cinfo, int desired_colors) LOCAL(int) find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, - JSAMPLE colorlist[]) + JSAMPLE colorlist[]) /* Locate the colormap entries close enough to an update box to be candidates * for the nearest entry to some cell(s) in the update box. The update box * is specified by the center coordinates of its first cell. The number of @@ -642,8 +638,8 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, int maxc0, maxc1, maxc2; int centerc0, centerc1, centerc2; int i, x, ncolors; - INT32 minmaxdist, min_dist, max_dist, tdist; - INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ + JLONG minmaxdist, min_dist, max_dist, tdist; + JLONG mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ /* Compute true coordinates of update box's upper corner and center. * Actually we compute the coordinates of the center of the upper-corner @@ -685,11 +681,11 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, /* within cell range so no contribution to min_dist */ min_dist = 0; if (x <= centerc0) { - tdist = (x - maxc0) * C0_SCALE; - max_dist = tdist*tdist; + tdist = (x - maxc0) * C0_SCALE; + max_dist = tdist*tdist; } else { - tdist = (x - minc0) * C0_SCALE; - max_dist = tdist*tdist; + tdist = (x - minc0) * C0_SCALE; + max_dist = tdist*tdist; } } @@ -707,11 +703,11 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, } else { /* within cell range so no contribution to min_dist */ if (x <= centerc1) { - tdist = (x - maxc1) * C1_SCALE; - max_dist += tdist*tdist; + tdist = (x - maxc1) * C1_SCALE; + max_dist += tdist*tdist; } else { - tdist = (x - minc1) * C1_SCALE; - max_dist += tdist*tdist; + tdist = (x - minc1) * C1_SCALE; + max_dist += tdist*tdist; } } @@ -729,15 +725,15 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, } else { /* within cell range so no contribution to min_dist */ if (x <= centerc2) { - tdist = (x - maxc2) * C2_SCALE; - max_dist += tdist*tdist; + tdist = (x - maxc2) * C2_SCALE; + max_dist += tdist*tdist; } else { - tdist = (x - minc2) * C2_SCALE; - max_dist += tdist*tdist; + tdist = (x - minc2) * C2_SCALE; + max_dist += tdist*tdist; } } - mindist[i] = min_dist; /* save away the results */ + mindist[i] = min_dist; /* save away the results */ if (max_dist < minmaxdist) minmaxdist = max_dist; } @@ -757,7 +753,7 @@ find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, LOCAL(void) find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, - int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) + int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) /* Find the closest colormap entry for each cell in the update box, * given the list of candidate colors prepared by find_nearby_colors. * Return the indexes of the closest entries in the bestcolor[] array. @@ -767,31 +763,31 @@ find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, { int ic0, ic1, ic2; int i, icolor; - register INT32 * bptr; /* pointer into bestdist[] array */ - JSAMPLE * cptr; /* pointer into bestcolor[] array */ - INT32 dist0, dist1; /* initial distance values */ - register INT32 dist2; /* current distance in inner loop */ - INT32 xx0, xx1; /* distance increments */ - register INT32 xx2; - INT32 inc0, inc1, inc2; /* initial values for increments */ + register JLONG *bptr; /* pointer into bestdist[] array */ + JSAMPLE *cptr; /* pointer into bestcolor[] array */ + JLONG dist0, dist1; /* initial distance values */ + register JLONG dist2; /* current distance in inner loop */ + JLONG xx0, xx1; /* distance increments */ + register JLONG xx2; + JLONG inc0, inc1, inc2; /* initial values for increments */ /* This array holds the distance to the nearest-so-far color for each cell */ - INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; + JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; /* Initialize best-distance for each cell of the update box */ bptr = bestdist; for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) *bptr++ = 0x7FFFFFFFL; - + /* For each color selected by find_nearby_colors, * compute its distance to the center of each cell in the box. * If that's less than best-so-far, update best distance and color number. */ - + /* Nominal steps between cell centers ("x" in Thomas article) */ #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) - + for (i = 0; i < numcolors; i++) { icolor = GETJSAMPLE(colorlist[i]); /* Compute (square of) distance from minc0/c1/c2 to this color */ @@ -813,20 +809,20 @@ find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, dist1 = dist0; xx1 = inc1; for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { - dist2 = dist1; - xx2 = inc2; - for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { - if (dist2 < *bptr) { - *bptr = dist2; - *cptr = (JSAMPLE) icolor; - } - dist2 += xx2; - xx2 += 2 * STEP_C2 * STEP_C2; - bptr++; - cptr++; - } - dist1 += xx1; - xx1 += 2 * STEP_C1 * STEP_C1; + dist2 = dist1; + xx2 = inc2; + for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { + if (dist2 < *bptr) { + *bptr = dist2; + *cptr = (JSAMPLE) icolor; + } + dist2 += xx2; + xx2 += 2 * STEP_C2 * STEP_C2; + bptr++; + cptr++; + } + dist1 += xx1; + xx1 += 2 * STEP_C1 * STEP_C1; } dist0 += xx0; xx0 += 2 * STEP_C0 * STEP_C0; @@ -843,13 +839,13 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; hist3d histogram = cquantize->histogram; - int minc0, minc1, minc2; /* lower left corner of update box */ + int minc0, minc1, minc2; /* lower left corner of update box */ int ic0, ic1, ic2; - register JSAMPLE * cptr; /* pointer into bestcolor[] array */ - register histptr cachep; /* pointer into main cache array */ + register JSAMPLE *cptr; /* pointer into bestcolor[] array */ + register histptr cachep; /* pointer into main cache array */ /* This array lists the candidate colormap indexes. */ JSAMPLE colorlist[MAXNUMCOLORS]; - int numcolors; /* number of candidate colors */ + int numcolors; /* number of candidate colors */ /* This array holds the actually closest colormap index for each cell. */ JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; @@ -865,7 +861,7 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); - + /* Determine which colormap entries are close enough to be candidates * for the nearest entry to some cell in the update box. */ @@ -873,10 +869,10 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) /* Determine the actually nearest colors. */ find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, - bestcolor); + bestcolor); /* Save the best color numbers (plus 1) in the main cache array */ - c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ + c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ c1 <<= BOX_C1_LOG; c2 <<= BOX_C2_LOG; cptr = bestcolor; @@ -884,7 +880,7 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { cachep = & histogram[c0+ic0][c1+ic1][c2]; for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { - *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); + *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); } } } @@ -897,7 +893,7 @@ fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) METHODDEF(void) pass2_no_dither (j_decompress_ptr cinfo, - JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) + JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* This version performs no dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; @@ -921,7 +917,7 @@ pass2_no_dither (j_decompress_ptr cinfo, /* If we have not seen this color before, find nearest colormap entry */ /* and update the cache */ if (*cachep == 0) - fill_inverse_cmap(cinfo, c0,c1,c2); + fill_inverse_cmap(cinfo, c0,c1,c2); /* Now emit the colormap index for this cell */ *outptr++ = (JSAMPLE) (*cachep - 1); } @@ -931,20 +927,20 @@ pass2_no_dither (j_decompress_ptr cinfo, METHODDEF(void) pass2_fs_dither (j_decompress_ptr cinfo, - JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) + JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* This version performs Floyd-Steinberg dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; hist3d histogram = cquantize->histogram; - register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ + register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ - register FSERRPTR errorptr; /* => fserrors[] at column before current */ - JSAMPROW inptr; /* => current input pixel */ - JSAMPROW outptr; /* => current output pixel */ + register FSERRPTR errorptr; /* => fserrors[] at column before current */ + JSAMPROW inptr; /* => current input pixel */ + JSAMPROW outptr; /* => current output pixel */ histptr cachep; - int dir; /* +1 or -1 depending on direction */ - int dir3; /* 3*dir, for advancing inptr & errorptr */ + int dir; /* +1 or -1 depending on direction */ + int dir3; /* 3*dir, for advancing inptr & errorptr */ int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; @@ -960,7 +956,7 @@ pass2_fs_dither (j_decompress_ptr cinfo, outptr = output_buf[row]; if (cquantize->on_odd_row) { /* work right to left in this row */ - inptr += (width-1) * 3; /* so point to rightmost pixel */ + inptr += (width-1) * 3; /* so point to rightmost pixel */ outptr += width-1; dir = -1; dir3 = -3; @@ -1012,53 +1008,44 @@ pass2_fs_dither (j_decompress_ptr cinfo, /* If we have not seen this color before, find nearest colormap */ /* entry and update the cache */ if (*cachep == 0) - fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); + fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); /* Now emit the colormap index for this cell */ { register int pixcode = *cachep - 1; - *outptr = (JSAMPLE) pixcode; - /* Compute representation error for this pixel */ - cur0 -= GETJSAMPLE(colormap0[pixcode]); - cur1 -= GETJSAMPLE(colormap1[pixcode]); - cur2 -= GETJSAMPLE(colormap2[pixcode]); + *outptr = (JSAMPLE) pixcode; + /* Compute representation error for this pixel */ + cur0 -= GETJSAMPLE(colormap0[pixcode]); + cur1 -= GETJSAMPLE(colormap1[pixcode]); + cur2 -= GETJSAMPLE(colormap2[pixcode]); } /* Compute error fractions to be propagated to adjacent pixels. * Add these into the running sums, and simultaneously shift the * next-line error sums left by 1 column. */ - { register LOCFSERROR bnexterr, delta; - - bnexterr = cur0; /* Process component 0 */ - delta = cur0 * 2; - cur0 += delta; /* form error * 3 */ - errorptr[0] = (FSERROR) (bpreverr0 + cur0); - cur0 += delta; /* form error * 5 */ - bpreverr0 = belowerr0 + cur0; - belowerr0 = bnexterr; - cur0 += delta; /* form error * 7 */ - bnexterr = cur1; /* Process component 1 */ - delta = cur1 * 2; - cur1 += delta; /* form error * 3 */ - errorptr[1] = (FSERROR) (bpreverr1 + cur1); - cur1 += delta; /* form error * 5 */ - bpreverr1 = belowerr1 + cur1; - belowerr1 = bnexterr; - cur1 += delta; /* form error * 7 */ - bnexterr = cur2; /* Process component 2 */ - delta = cur2 * 2; - cur2 += delta; /* form error * 3 */ - errorptr[2] = (FSERROR) (bpreverr2 + cur2); - cur2 += delta; /* form error * 5 */ - bpreverr2 = belowerr2 + cur2; - belowerr2 = bnexterr; - cur2 += delta; /* form error * 7 */ + { register LOCFSERROR bnexterr; + + bnexterr = cur0; /* Process component 0 */ + errorptr[0] = (FSERROR) (bpreverr0 + cur0 * 3); + bpreverr0 = belowerr0 + cur0 * 5; + belowerr0 = bnexterr; + cur0 *= 7; + bnexterr = cur1; /* Process component 1 */ + errorptr[1] = (FSERROR) (bpreverr1 + cur1 * 3); + bpreverr1 = belowerr1 + cur1 * 5; + belowerr1 = bnexterr; + cur1 *= 7; + bnexterr = cur2; /* Process component 2 */ + errorptr[2] = (FSERROR) (bpreverr2 + cur2 * 3); + bpreverr2 = belowerr2 + cur2 * 5; + belowerr2 = bnexterr; + cur2 *= 7; } /* At this point curN contains the 7/16 error value to be propagated * to the next pixel on the current line, and all the errors for the * next line have been shifted over. We are therefore ready to move on. */ - inptr += dir3; /* Advance pixel pointers to next column */ + inptr += dir3; /* Advance pixel pointers to next column */ outptr += dir; - errorptr += dir3; /* advance errorptr to current column */ + errorptr += dir3; /* advance errorptr to current column */ } /* Post-loop cleanup: we must unload the final error values into the * final fserrors[] entry. Note we need not unload belowerrN because @@ -1093,12 +1080,12 @@ init_error_limit (j_decompress_ptr cinfo) /* Allocate and fill in the error_limiter table */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - int * table; + int *table; int in, out; table = (int *) (*cinfo->mem->alloc_small) - ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); - table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ + ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * sizeof(int)); + table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ cquantize->error_limiter = table; #define STEPSIZE ((MAXJSAMPLE+1)/16) @@ -1181,16 +1168,16 @@ start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) if (cinfo->dither_mode == JDITHER_FS) { size_t arraysize = (size_t) ((cinfo->output_width + 2) * - (3 * SIZEOF(FSERROR))); + (3 * sizeof(FSERROR))); /* Allocate Floyd-Steinberg workspace if we didn't already. */ if (cquantize->fserrors == NULL) - cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) - ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); + cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) + ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); /* Initialize the propagated errors to zero. */ - jzero_far((void FAR *) cquantize->fserrors, arraysize); + jzero_far((void *) cquantize->fserrors, arraysize); /* Make the error-limit table if we didn't already. */ if (cquantize->error_limiter == NULL) - init_error_limit(cinfo); + init_error_limit(cinfo); cquantize->on_odd_row = FALSE; } @@ -1198,8 +1185,8 @@ start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) /* Zero the histogram or inverse color map, if necessary */ if (cquantize->needs_zeroed) { for (i = 0; i < HIST_C0_ELEMS; i++) { - jzero_far((void FAR *) histogram[i], - HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); + jzero_far((void *) histogram[i], + HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell)); } cquantize->needs_zeroed = FALSE; } @@ -1232,11 +1219,11 @@ jinit_2pass_quantizer (j_decompress_ptr cinfo) cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_cquantizer)); + sizeof(my_cquantizer)); cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; cquantize->pub.start_pass = start_pass_2_quant; cquantize->pub.new_color_map = new_color_map_2_quant; - cquantize->fserrors = NULL; /* flag optional arrays not allocated */ + cquantize->fserrors = NULL; /* flag optional arrays not allocated */ cquantize->error_limiter = NULL; /* Make sure jdmaster didn't give me a case I can't handle */ @@ -1245,17 +1232,17 @@ jinit_2pass_quantizer (j_decompress_ptr cinfo) /* Allocate the histogram/inverse colormap storage */ cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) - ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); + ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d)); for (i = 0; i < HIST_C0_ELEMS; i++) { cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, - HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); + HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell)); } cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ /* Allocate storage for the completed colormap, if required. - * We do this now since it is FAR storage and may affect - * the memory manager's space calculations. + * We do this now since it may affect the memory manager's space + * calculations. */ if (cinfo->enable_2pass_quant) { /* Make sure color count is acceptable */ @@ -1278,14 +1265,15 @@ jinit_2pass_quantizer (j_decompress_ptr cinfo) cinfo->dither_mode = JDITHER_FS; /* Allocate Floyd-Steinberg workspace if necessary. - * This isn't really needed until pass 2, but again it is FAR storage. - * Although we will cope with a later change in dither_mode, - * we do not promise to honor max_memory_to_use if dither_mode changes. + * This isn't really needed until pass 2, but again it may affect the memory + * manager's space calculations. Although we will cope with a later change + * in dither_mode, we do not promise to honor max_memory_to_use if + * dither_mode changes. */ if (cinfo->dither_mode == JDITHER_FS) { cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); + (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR)))); /* Might as well create the error-limiting table too. */ init_error_limit(cinfo); } |