diff options
author | Tom Hudson <tomhudson@google.com> | 2016-05-04 13:22:56 -0400 |
---|---|---|
committer | Tom Hudson <tomhudson@google.com> | 2016-05-04 13:22:56 -0400 |
commit | 0d47d2d3a728e78676a15b1d818cc668cb7e5a9c (patch) | |
tree | 044a430eeaa2dec4d6de7b624da15fda1b8ed25f /jcdctmgr.c | |
parent | 9d35298a6223278a66423f828a949d93d94d5911 (diff) |
Update to libjpeg_turbo 1.4.90
(Duplicate of https://codereview.chromium.org/1939823002/ for landing.)
TBR=noel@chromium.org,thakis@chromium.org
BUG=608347, 398235, 591927
Review URL: https://codereview.chromium.org/1953443002 .
Diffstat (limited to 'jcdctmgr.c')
-rw-r--r-- | jcdctmgr.c | 326 |
1 files changed, 202 insertions, 124 deletions
@@ -6,8 +6,9 @@ * libjpeg-turbo Modifications: * Copyright (C) 1999-2006, MIYASAKA Masaru. * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB - * Copyright (C) 2011 D. R. Commander - * For conditions of distribution and use, see the accompanying README file. + * Copyright (C) 2011, 2014-2015, D. R. Commander. + * For conditions of distribution and use, see the accompanying README.ijg + * file. * * This file contains the forward-DCT management logic. * This code selects a particular DCT implementation to be used, @@ -18,33 +19,32 @@ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" -#include "jdct.h" /* Private declarations for DCT subsystem */ +#include "jdct.h" /* Private declarations for DCT subsystem */ #include "jsimddct.h" /* Private subobject for this module */ -typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data)); -typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data)); +typedef void (*forward_DCT_method_ptr) (DCTELEM *data); +typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data); -typedef JMETHOD(void, convsamp_method_ptr, - (JSAMPARRAY sample_data, JDIMENSION start_col, - DCTELEM * workspace)); -typedef JMETHOD(void, float_convsamp_method_ptr, - (JSAMPARRAY sample_data, JDIMENSION start_col, - FAST_FLOAT *workspace)); +typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data, + JDIMENSION start_col, + DCTELEM *workspace); +typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data, + JDIMENSION start_col, + FAST_FLOAT *workspace); -typedef JMETHOD(void, quantize_method_ptr, - (JCOEFPTR coef_block, DCTELEM * divisors, - DCTELEM * workspace)); -typedef JMETHOD(void, float_quantize_method_ptr, - (JCOEFPTR coef_block, FAST_FLOAT * divisors, - FAST_FLOAT * workspace)); +typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors, + DCTELEM *workspace); +typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block, + FAST_FLOAT *divisors, + FAST_FLOAT *workspace); METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *); typedef struct { - struct jpeg_forward_dct pub; /* public fields */ + struct jpeg_forward_dct pub; /* public fields */ /* Pointer to the DCT routine actually in use */ forward_DCT_method_ptr dct; @@ -55,27 +55,30 @@ typedef struct { * entries, because of scaling (especially for an unnormalized DCT). * Each table is given in normal array order. */ - DCTELEM * divisors[NUM_QUANT_TBLS]; + DCTELEM *divisors[NUM_QUANT_TBLS]; /* work area for FDCT subroutine */ - DCTELEM * workspace; + DCTELEM *workspace; #ifdef DCT_FLOAT_SUPPORTED /* Same as above for the floating-point case. */ float_DCT_method_ptr float_dct; float_convsamp_method_ptr float_convsamp; float_quantize_method_ptr float_quantize; - FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; - FAST_FLOAT * float_workspace; + FAST_FLOAT *float_divisors[NUM_QUANT_TBLS]; + FAST_FLOAT *float_workspace; #endif } my_fdct_controller; -typedef my_fdct_controller * my_fdct_ptr; +typedef my_fdct_controller *my_fdct_ptr; +#if BITS_IN_JSAMPLE == 8 + /* * Find the highest bit in an integer through binary search. */ + LOCAL(int) flss (UINT16 val) { @@ -106,6 +109,7 @@ flss (UINT16 val) return bit; } + /* * Compute values to do a division using reciprocal. * @@ -147,7 +151,7 @@ flss (UINT16 val) * * In order to allow SIMD implementations we also tweak the values to * allow the same calculation to be made at all times: - * + * * dctbl[0] = f rounded to nearest integer * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) * dctbl[2] = 1 << ((word size) * 2 - r) @@ -164,13 +168,27 @@ flss (UINT16 val) * of in a consecutive manner, yet again in order to allow SIMD * routines. */ + LOCAL(int) -compute_reciprocal (UINT16 divisor, DCTELEM * dtbl) +compute_reciprocal (UINT16 divisor, DCTELEM *dtbl) { UDCTELEM2 fq, fr; UDCTELEM c; int b, r; + if (divisor == 1) { + /* divisor == 1 means unquantized, so these reciprocal/correction/shift + * values will cause the C quantization algorithm to act like the + * identity function. Since only the C quantization algorithm is used in + * these cases, the scale value is irrelevant. + */ + dtbl[DCTSIZE2 * 0] = (DCTELEM) 1; /* reciprocal */ + dtbl[DCTSIZE2 * 1] = (DCTELEM) 0; /* correction */ + dtbl[DCTSIZE2 * 2] = (DCTELEM) 1; /* scale */ + dtbl[DCTSIZE2 * 3] = -(DCTELEM) (sizeof(DCTELEM) * 8); /* shift */ + return 0; + } + b = flss(divisor) - 1; r = sizeof(DCTELEM) * 8 + b; @@ -191,13 +209,20 @@ compute_reciprocal (UINT16 divisor, DCTELEM * dtbl) dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */ dtbl[DCTSIZE2 * 1] = (DCTELEM) c; /* correction + roundfactor */ +#ifdef WITH_SIMD dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r)); /* scale */ +#else + dtbl[DCTSIZE2 * 2] = 1; +#endif dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */ if(r <= 16) return 0; else return 1; } +#endif + + /* * Initialize for a processing pass. * Verify that all referenced Q-tables are present, and set up @@ -213,15 +238,15 @@ start_pass_fdctmgr (j_compress_ptr cinfo) my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; int ci, qtblno, i; jpeg_component_info *compptr; - JQUANT_TBL * qtbl; - DCTELEM * dtbl; + JQUANT_TBL *qtbl; + DCTELEM *dtbl; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { qtblno = compptr->quant_tbl_no; /* Make sure specified quantization table is present */ if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || - cinfo->quant_tbl_ptrs[qtblno] == NULL) + cinfo->quant_tbl_ptrs[qtblno] == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); qtbl = cinfo->quant_tbl_ptrs[qtblno]; /* Compute divisors for this quant table */ @@ -233,91 +258,102 @@ start_pass_fdctmgr (j_compress_ptr cinfo) * coefficients multiplied by 8 (to counteract scaling). */ if (fdct->divisors[qtblno] == NULL) { - fdct->divisors[qtblno] = (DCTELEM *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (DCTSIZE2 * 4) * SIZEOF(DCTELEM)); + fdct->divisors[qtblno] = (DCTELEM *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + (DCTSIZE2 * 4) * sizeof(DCTELEM)); } dtbl = fdct->divisors[qtblno]; for (i = 0; i < DCTSIZE2; i++) { - if(!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) - && fdct->quantize == jsimd_quantize) - fdct->quantize = quantize; +#if BITS_IN_JSAMPLE == 8 + if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && + fdct->quantize == jsimd_quantize) + fdct->quantize = quantize; +#else + dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; +#endif } break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: { - /* For AA&N IDCT method, divisors are equal to quantization - * coefficients scaled by scalefactor[row]*scalefactor[col], where - * scalefactor[0] = 1 - * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 - * We apply a further scale factor of 8. - */ + /* For AA&N IDCT method, divisors are equal to quantization + * coefficients scaled by scalefactor[row]*scalefactor[col], where + * scalefactor[0] = 1 + * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 + * We apply a further scale factor of 8. + */ #define CONST_BITS 14 - static const INT16 aanscales[DCTSIZE2] = { - /* precomputed values scaled up by 14 bits */ - 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, - 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, - 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, - 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, - 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, - 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, - 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, - 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 - }; - SHIFT_TEMPS - - if (fdct->divisors[qtblno] == NULL) { - fdct->divisors[qtblno] = (DCTELEM *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - (DCTSIZE2 * 4) * SIZEOF(DCTELEM)); - } - dtbl = fdct->divisors[qtblno]; - for (i = 0; i < DCTSIZE2; i++) { - if(!compute_reciprocal( - DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], - (INT32) aanscales[i]), - CONST_BITS-3), &dtbl[i]) - && fdct->quantize == jsimd_quantize) - fdct->quantize = quantize; - } + static const INT16 aanscales[DCTSIZE2] = { + /* precomputed values scaled up by 14 bits */ + 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, + 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, + 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, + 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, + 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, + 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, + 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, + 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 + }; + SHIFT_TEMPS + + if (fdct->divisors[qtblno] == NULL) { + fdct->divisors[qtblno] = (DCTELEM *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + (DCTSIZE2 * 4) * sizeof(DCTELEM)); + } + dtbl = fdct->divisors[qtblno]; + for (i = 0; i < DCTSIZE2; i++) { +#if BITS_IN_JSAMPLE == 8 + if (!compute_reciprocal( + DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i], + (JLONG) aanscales[i]), + CONST_BITS-3), &dtbl[i]) && + fdct->quantize == jsimd_quantize) + fdct->quantize = quantize; +#else + dtbl[i] = (DCTELEM) + DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i], + (JLONG) aanscales[i]), + CONST_BITS-3); +#endif + } } break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: { - /* For float AA&N IDCT method, divisors are equal to quantization - * coefficients scaled by scalefactor[row]*scalefactor[col], where - * scalefactor[0] = 1 - * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 - * We apply a further scale factor of 8. - * What's actually stored is 1/divisor so that the inner loop can - * use a multiplication rather than a division. - */ - FAST_FLOAT * fdtbl; - int row, col; - static const double aanscalefactor[DCTSIZE] = { - 1.0, 1.387039845, 1.306562965, 1.175875602, - 1.0, 0.785694958, 0.541196100, 0.275899379 - }; - - if (fdct->float_divisors[qtblno] == NULL) { - fdct->float_divisors[qtblno] = (FAST_FLOAT *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - DCTSIZE2 * SIZEOF(FAST_FLOAT)); - } - fdtbl = fdct->float_divisors[qtblno]; - i = 0; - for (row = 0; row < DCTSIZE; row++) { - for (col = 0; col < DCTSIZE; col++) { - fdtbl[i] = (FAST_FLOAT) - (1.0 / (((double) qtbl->quantval[i] * - aanscalefactor[row] * aanscalefactor[col] * 8.0))); - i++; - } - } + /* For float AA&N IDCT method, divisors are equal to quantization + * coefficients scaled by scalefactor[row]*scalefactor[col], where + * scalefactor[0] = 1 + * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 + * We apply a further scale factor of 8. + * What's actually stored is 1/divisor so that the inner loop can + * use a multiplication rather than a division. + */ + FAST_FLOAT *fdtbl; + int row, col; + static const double aanscalefactor[DCTSIZE] = { + 1.0, 1.387039845, 1.306562965, 1.175875602, + 1.0, 0.785694958, 0.541196100, 0.275899379 + }; + + if (fdct->float_divisors[qtblno] == NULL) { + fdct->float_divisors[qtblno] = (FAST_FLOAT *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + DCTSIZE2 * sizeof(FAST_FLOAT)); + } + fdtbl = fdct->float_divisors[qtblno]; + i = 0; + for (row = 0; row < DCTSIZE; row++) { + for (col = 0; col < DCTSIZE; col++) { + fdtbl[i] = (FAST_FLOAT) + (1.0 / (((double) qtbl->quantval[i] * + aanscalefactor[row] * aanscalefactor[col] * 8.0))); + i++; + } + } } break; #endif @@ -334,7 +370,7 @@ start_pass_fdctmgr (j_compress_ptr cinfo) */ METHODDEF(void) -convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) +convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { register DCTELEM *workspaceptr; register JSAMPROW elemptr; @@ -344,7 +380,7 @@ convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) for (elemr = 0; elemr < DCTSIZE; elemr++) { elemptr = sample_data[elemr] + start_col; -#if DCTSIZE == 8 /* unroll the inner loop */ +#if DCTSIZE == 8 /* unroll the inner loop */ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; @@ -369,14 +405,18 @@ convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) */ METHODDEF(void) -quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) +quantize (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { int i; DCTELEM temp; - UDCTELEM recip, corr, shift; - UDCTELEM2 product; JCOEFPTR output_ptr = coef_block; +#if BITS_IN_JSAMPLE == 8 + + UDCTELEM recip, corr; + int shift; + UDCTELEM2 product; + for (i = 0; i < DCTSIZE2; i++) { temp = workspace[i]; recip = divisors[i + DCTSIZE2 * 0]; @@ -387,16 +427,54 @@ quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) temp = -temp; product = (UDCTELEM2)(temp + corr) * recip; product >>= shift + sizeof(DCTELEM)*8; - temp = product; + temp = (DCTELEM)product; temp = -temp; } else { product = (UDCTELEM2)(temp + corr) * recip; product >>= shift + sizeof(DCTELEM)*8; - temp = product; + temp = (DCTELEM)product; } + output_ptr[i] = (JCOEF) temp; + } + +#else + + register DCTELEM qval; + for (i = 0; i < DCTSIZE2; i++) { + qval = divisors[i]; + temp = workspace[i]; + /* Divide the coefficient value by qval, ensuring proper rounding. + * Since C does not specify the direction of rounding for negative + * quotients, we have to force the dividend positive for portability. + * + * In most files, at least half of the output values will be zero + * (at default quantization settings, more like three-quarters...) + * so we should ensure that this case is fast. On many machines, + * a comparison is enough cheaper than a divide to make a special test + * a win. Since both inputs will be nonnegative, we need only test + * for a < b to discover whether a/b is 0. + * If your machine's division is fast enough, define FAST_DIVIDE. + */ +#ifdef FAST_DIVIDE +#define DIVIDE_BY(a,b) a /= b +#else +#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 +#endif + if (temp < 0) { + temp = -temp; + temp += qval>>1; /* for rounding */ + DIVIDE_BY(temp, qval); + temp = -temp; + } else { + temp += qval>>1; /* for rounding */ + DIVIDE_BY(temp, qval); + } output_ptr[i] = (JCOEF) temp; } + +#endif + } @@ -409,16 +487,16 @@ quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) */ METHODDEF(void) -forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY sample_data, JBLOCKROW coef_blocks, - JDIMENSION start_row, JDIMENSION start_col, - JDIMENSION num_blocks) +forward_DCT (j_compress_ptr cinfo, jpeg_component_info *compptr, + JSAMPARRAY sample_data, JBLOCKROW coef_blocks, + JDIMENSION start_row, JDIMENSION start_col, + JDIMENSION num_blocks) /* This version is used for integer DCT implementations. */ { /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; - DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; - DCTELEM * workspace; + DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no]; + DCTELEM *workspace; JDIMENSION bi; /* Make sure the compiler doesn't look up these every pass */ @@ -427,7 +505,7 @@ forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, quantize_method_ptr do_quantize = fdct->quantize; workspace = fdct->workspace; - sample_data += start_row; /* fold in the vertical offset once */ + sample_data += start_row; /* fold in the vertical offset once */ for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { /* Load data into workspace, applying unsigned->signed conversion */ @@ -446,7 +524,7 @@ forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, METHODDEF(void) -convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace) +convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) { register FAST_FLOAT *workspaceptr; register JSAMPROW elemptr; @@ -455,7 +533,7 @@ convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * works workspaceptr = workspace; for (elemr = 0; elemr < DCTSIZE; elemr++) { elemptr = sample_data[elemr] + start_col; -#if DCTSIZE == 8 /* unroll the inner loop */ +#if DCTSIZE == 8 /* unroll the inner loop */ *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); @@ -477,7 +555,7 @@ convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * works METHODDEF(void) -quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace) +quantize_float (JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) { register FAST_FLOAT temp; register int i; @@ -499,16 +577,16 @@ quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspa METHODDEF(void) -forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, - JSAMPARRAY sample_data, JBLOCKROW coef_blocks, - JDIMENSION start_row, JDIMENSION start_col, - JDIMENSION num_blocks) +forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info *compptr, + JSAMPARRAY sample_data, JBLOCKROW coef_blocks, + JDIMENSION start_row, JDIMENSION start_col, + JDIMENSION num_blocks) /* This version is used for floating-point DCT implementations. */ { /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; - FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; - FAST_FLOAT * workspace; + FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no]; + FAST_FLOAT *workspace; JDIMENSION bi; @@ -518,7 +596,7 @@ forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, float_quantize_method_ptr do_quantize = fdct->float_quantize; workspace = fdct->float_workspace; - sample_data += start_row; /* fold in the vertical offset once */ + sample_data += start_row; /* fold in the vertical offset once */ for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { /* Load data into workspace, applying unsigned->signed conversion */ @@ -547,7 +625,7 @@ jinit_forward_dct (j_compress_ptr cinfo) fdct = (my_fdct_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(my_fdct_controller)); + sizeof(my_fdct_controller)); cinfo->fdct = (struct jpeg_forward_dct *) fdct; fdct->pub.start_pass = start_pass_fdctmgr; @@ -626,12 +704,12 @@ jinit_forward_dct (j_compress_ptr cinfo) if (cinfo->dct_method == JDCT_FLOAT) fdct->float_workspace = (FAST_FLOAT *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(FAST_FLOAT) * DCTSIZE2); + sizeof(FAST_FLOAT) * DCTSIZE2); else #endif fdct->workspace = (DCTELEM *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - SIZEOF(DCTELEM) * DCTSIZE2); + sizeof(DCTELEM) * DCTSIZE2); /* Mark divisor tables unallocated */ for (i = 0; i < NUM_QUANT_TBLS; i++) { |