summaryrefslogtreecommitdiff
path: root/libc/dns/resolv/res_cache.c
diff options
context:
space:
mode:
Diffstat (limited to 'libc/dns/resolv/res_cache.c')
-rw-r--r--libc/dns/resolv/res_cache.c2664
1 files changed, 2664 insertions, 0 deletions
diff --git a/libc/dns/resolv/res_cache.c b/libc/dns/resolv/res_cache.c
new file mode 100644
index 000000000..5e2bb5cea
--- /dev/null
+++ b/libc/dns/resolv/res_cache.c
@@ -0,0 +1,2664 @@
+/*
+ * Copyright (C) 2008 The Android Open Source Project
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
+ * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include "resolv_cache.h"
+#include <resolv.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+#include "pthread.h"
+
+#include <errno.h>
+#include "arpa_nameser.h"
+#include <sys/system_properties.h>
+#include <net/if.h>
+#include <netdb.h>
+#include <linux/if.h>
+
+#include <arpa/inet.h>
+#include "resolv_private.h"
+#include "resolv_iface.h"
+#include "res_private.h"
+
+/* This code implements a small and *simple* DNS resolver cache.
+ *
+ * It is only used to cache DNS answers for a time defined by the smallest TTL
+ * among the answer records in order to reduce DNS traffic. It is not supposed
+ * to be a full DNS cache, since we plan to implement that in the future in a
+ * dedicated process running on the system.
+ *
+ * Note that its design is kept simple very intentionally, i.e.:
+ *
+ * - it takes raw DNS query packet data as input, and returns raw DNS
+ * answer packet data as output
+ *
+ * (this means that two similar queries that encode the DNS name
+ * differently will be treated distinctly).
+ *
+ * the smallest TTL value among the answer records are used as the time
+ * to keep an answer in the cache.
+ *
+ * this is bad, but we absolutely want to avoid parsing the answer packets
+ * (and should be solved by the later full DNS cache process).
+ *
+ * - the implementation is just a (query-data) => (answer-data) hash table
+ * with a trivial least-recently-used expiration policy.
+ *
+ * Doing this keeps the code simple and avoids to deal with a lot of things
+ * that a full DNS cache is expected to do.
+ *
+ * The API is also very simple:
+ *
+ * - the client calls _resolv_cache_get() to obtain a handle to the cache.
+ * this will initialize the cache on first usage. the result can be NULL
+ * if the cache is disabled.
+ *
+ * - the client calls _resolv_cache_lookup() before performing a query
+ *
+ * if the function returns RESOLV_CACHE_FOUND, a copy of the answer data
+ * has been copied into the client-provided answer buffer.
+ *
+ * if the function returns RESOLV_CACHE_NOTFOUND, the client should perform
+ * a request normally, *then* call _resolv_cache_add() to add the received
+ * answer to the cache.
+ *
+ * if the function returns RESOLV_CACHE_UNSUPPORTED, the client should
+ * perform a request normally, and *not* call _resolv_cache_add()
+ *
+ * note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
+ * is too short to accomodate the cached result.
+ *
+ * - when network settings change, the cache must be flushed since the list
+ * of DNS servers probably changed. this is done by calling
+ * _resolv_cache_reset()
+ *
+ * the parameter to this function must be an ever-increasing generation
+ * number corresponding to the current network settings state.
+ *
+ * This is done because several threads could detect the same network
+ * settings change (but at different times) and will all end up calling the
+ * same function. Comparing with the last used generation number ensures
+ * that the cache is only flushed once per network change.
+ */
+
+/* the name of an environment variable that will be checked the first time
+ * this code is called if its value is "0", then the resolver cache is
+ * disabled.
+ */
+#define CONFIG_ENV "BIONIC_DNSCACHE"
+
+/* entries older than CONFIG_SECONDS seconds are always discarded.
+ */
+#define CONFIG_SECONDS (60*10) /* 10 minutes */
+
+/* default number of entries kept in the cache. This value has been
+ * determined by browsing through various sites and counting the number
+ * of corresponding requests. Keep in mind that our framework is currently
+ * performing two requests per name lookup (one for IPv4, the other for IPv6)
+ *
+ * www.google.com 4
+ * www.ysearch.com 6
+ * www.amazon.com 8
+ * www.nytimes.com 22
+ * www.espn.com 28
+ * www.msn.com 28
+ * www.lemonde.fr 35
+ *
+ * (determined in 2009-2-17 from Paris, France, results may vary depending
+ * on location)
+ *
+ * most high-level websites use lots of media/ad servers with different names
+ * but these are generally reused when browsing through the site.
+ *
+ * As such, a value of 64 should be relatively comfortable at the moment.
+ *
+ * ******************************************
+ * * NOTE - this has changed.
+ * * 1) we've added IPv6 support so each dns query results in 2 responses
+ * * 2) we've made this a system-wide cache, so the cost is less (it's not
+ * * duplicated in each process) and the need is greater (more processes
+ * * making different requests).
+ * * Upping by 2x for IPv6
+ * * Upping by another 5x for the centralized nature
+ * *****************************************
+ */
+#define CONFIG_MAX_ENTRIES 64 * 2 * 5
+/* name of the system property that can be used to set the cache size */
+
+/****************************************************************************/
+/****************************************************************************/
+/***** *****/
+/***** *****/
+/***** *****/
+/****************************************************************************/
+/****************************************************************************/
+
+/* set to 1 to debug cache operations */
+#define DEBUG 0
+
+/* set to 1 to debug query data */
+#define DEBUG_DATA 0
+
+#undef XLOG
+#if DEBUG
+# include "private/libc_logging.h"
+# define XLOG(...) __libc_format_log(ANDROID_LOG_DEBUG,"libc",__VA_ARGS__)
+
+#include <stdio.h>
+#include <stdarg.h>
+
+/** BOUNDED BUFFER FORMATTING
+ **/
+
+/* technical note:
+ *
+ * the following debugging routines are used to append data to a bounded
+ * buffer they take two parameters that are:
+ *
+ * - p : a pointer to the current cursor position in the buffer
+ * this value is initially set to the buffer's address.
+ *
+ * - end : the address of the buffer's limit, i.e. of the first byte
+ * after the buffer. this address should never be touched.
+ *
+ * IMPORTANT: it is assumed that end > buffer_address, i.e.
+ * that the buffer is at least one byte.
+ *
+ * the _bprint_() functions return the new value of 'p' after the data
+ * has been appended, and also ensure the following:
+ *
+ * - the returned value will never be strictly greater than 'end'
+ *
+ * - a return value equal to 'end' means that truncation occured
+ * (in which case, end[-1] will be set to 0)
+ *
+ * - after returning from a _bprint_() function, the content of the buffer
+ * is always 0-terminated, even in the event of truncation.
+ *
+ * these conventions allow you to call _bprint_ functions multiple times and
+ * only check for truncation at the end of the sequence, as in:
+ *
+ * char buff[1000], *p = buff, *end = p + sizeof(buff);
+ *
+ * p = _bprint_c(p, end, '"');
+ * p = _bprint_s(p, end, my_string);
+ * p = _bprint_c(p, end, '"');
+ *
+ * if (p >= end) {
+ * // buffer was too small
+ * }
+ *
+ * printf( "%s", buff );
+ */
+
+/* add a char to a bounded buffer */
+static char*
+_bprint_c( char* p, char* end, int c )
+{
+ if (p < end) {
+ if (p+1 == end)
+ *p++ = 0;
+ else {
+ *p++ = (char) c;
+ *p = 0;
+ }
+ }
+ return p;
+}
+
+/* add a sequence of bytes to a bounded buffer */
+static char*
+_bprint_b( char* p, char* end, const char* buf, int len )
+{
+ int avail = end - p;
+
+ if (avail <= 0 || len <= 0)
+ return p;
+
+ if (avail > len)
+ avail = len;
+
+ memcpy( p, buf, avail );
+ p += avail;
+
+ if (p < end)
+ p[0] = 0;
+ else
+ end[-1] = 0;
+
+ return p;
+}
+
+/* add a string to a bounded buffer */
+static char*
+_bprint_s( char* p, char* end, const char* str )
+{
+ return _bprint_b(p, end, str, strlen(str));
+}
+
+/* add a formatted string to a bounded buffer */
+static char*
+_bprint( char* p, char* end, const char* format, ... )
+{
+ int avail, n;
+ va_list args;
+
+ avail = end - p;
+
+ if (avail <= 0)
+ return p;
+
+ va_start(args, format);
+ n = vsnprintf( p, avail, format, args);
+ va_end(args);
+
+ /* certain C libraries return -1 in case of truncation */
+ if (n < 0 || n > avail)
+ n = avail;
+
+ p += n;
+ /* certain C libraries do not zero-terminate in case of truncation */
+ if (p == end)
+ p[-1] = 0;
+
+ return p;
+}
+
+/* add a hex value to a bounded buffer, up to 8 digits */
+static char*
+_bprint_hex( char* p, char* end, unsigned value, int numDigits )
+{
+ char text[sizeof(unsigned)*2];
+ int nn = 0;
+
+ while (numDigits-- > 0) {
+ text[nn++] = "0123456789abcdef"[(value >> (numDigits*4)) & 15];
+ }
+ return _bprint_b(p, end, text, nn);
+}
+
+/* add the hexadecimal dump of some memory area to a bounded buffer */
+static char*
+_bprint_hexdump( char* p, char* end, const uint8_t* data, int datalen )
+{
+ int lineSize = 16;
+
+ while (datalen > 0) {
+ int avail = datalen;
+ int nn;
+
+ if (avail > lineSize)
+ avail = lineSize;
+
+ for (nn = 0; nn < avail; nn++) {
+ if (nn > 0)
+ p = _bprint_c(p, end, ' ');
+ p = _bprint_hex(p, end, data[nn], 2);
+ }
+ for ( ; nn < lineSize; nn++ ) {
+ p = _bprint_s(p, end, " ");
+ }
+ p = _bprint_s(p, end, " ");
+
+ for (nn = 0; nn < avail; nn++) {
+ int c = data[nn];
+
+ if (c < 32 || c > 127)
+ c = '.';
+
+ p = _bprint_c(p, end, c);
+ }
+ p = _bprint_c(p, end, '\n');
+
+ data += avail;
+ datalen -= avail;
+ }
+ return p;
+}
+
+/* dump the content of a query of packet to the log */
+static void
+XLOG_BYTES( const void* base, int len )
+{
+ char buff[1024];
+ char* p = buff, *end = p + sizeof(buff);
+
+ p = _bprint_hexdump(p, end, base, len);
+ XLOG("%s",buff);
+}
+
+#else /* !DEBUG */
+# define XLOG(...) ((void)0)
+# define XLOG_BYTES(a,b) ((void)0)
+#endif
+
+static time_t
+_time_now( void )
+{
+ struct timeval tv;
+
+ gettimeofday( &tv, NULL );
+ return tv.tv_sec;
+}
+
+/* reminder: the general format of a DNS packet is the following:
+ *
+ * HEADER (12 bytes)
+ * QUESTION (variable)
+ * ANSWER (variable)
+ * AUTHORITY (variable)
+ * ADDITIONNAL (variable)
+ *
+ * the HEADER is made of:
+ *
+ * ID : 16 : 16-bit unique query identification field
+ *
+ * QR : 1 : set to 0 for queries, and 1 for responses
+ * Opcode : 4 : set to 0 for queries
+ * AA : 1 : set to 0 for queries
+ * TC : 1 : truncation flag, will be set to 0 in queries
+ * RD : 1 : recursion desired
+ *
+ * RA : 1 : recursion available (0 in queries)
+ * Z : 3 : three reserved zero bits
+ * RCODE : 4 : response code (always 0=NOERROR in queries)
+ *
+ * QDCount: 16 : question count
+ * ANCount: 16 : Answer count (0 in queries)
+ * NSCount: 16: Authority Record count (0 in queries)
+ * ARCount: 16: Additionnal Record count (0 in queries)
+ *
+ * the QUESTION is made of QDCount Question Record (QRs)
+ * the ANSWER is made of ANCount RRs
+ * the AUTHORITY is made of NSCount RRs
+ * the ADDITIONNAL is made of ARCount RRs
+ *
+ * Each Question Record (QR) is made of:
+ *
+ * QNAME : variable : Query DNS NAME
+ * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
+ * CLASS : 16 : class of query (IN=1)
+ *
+ * Each Resource Record (RR) is made of:
+ *
+ * NAME : variable : DNS NAME
+ * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
+ * CLASS : 16 : class of query (IN=1)
+ * TTL : 32 : seconds to cache this RR (0=none)
+ * RDLENGTH: 16 : size of RDDATA in bytes
+ * RDDATA : variable : RR data (depends on TYPE)
+ *
+ * Each QNAME contains a domain name encoded as a sequence of 'labels'
+ * terminated by a zero. Each label has the following format:
+ *
+ * LEN : 8 : lenght of label (MUST be < 64)
+ * NAME : 8*LEN : label length (must exclude dots)
+ *
+ * A value of 0 in the encoding is interpreted as the 'root' domain and
+ * terminates the encoding. So 'www.android.com' will be encoded as:
+ *
+ * <3>www<7>android<3>com<0>
+ *
+ * Where <n> represents the byte with value 'n'
+ *
+ * Each NAME reflects the QNAME of the question, but has a slightly more
+ * complex encoding in order to provide message compression. This is achieved
+ * by using a 2-byte pointer, with format:
+ *
+ * TYPE : 2 : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
+ * OFFSET : 14 : offset to another part of the DNS packet
+ *
+ * The offset is relative to the start of the DNS packet and must point
+ * A pointer terminates the encoding.
+ *
+ * The NAME can be encoded in one of the following formats:
+ *
+ * - a sequence of simple labels terminated by 0 (like QNAMEs)
+ * - a single pointer
+ * - a sequence of simple labels terminated by a pointer
+ *
+ * A pointer shall always point to either a pointer of a sequence of
+ * labels (which can themselves be terminated by either a 0 or a pointer)
+ *
+ * The expanded length of a given domain name should not exceed 255 bytes.
+ *
+ * NOTE: we don't parse the answer packets, so don't need to deal with NAME
+ * records, only QNAMEs.
+ */
+
+#define DNS_HEADER_SIZE 12
+
+#define DNS_TYPE_A "\00\01" /* big-endian decimal 1 */
+#define DNS_TYPE_PTR "\00\014" /* big-endian decimal 12 */
+#define DNS_TYPE_MX "\00\017" /* big-endian decimal 15 */
+#define DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
+#define DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
+
+#define DNS_CLASS_IN "\00\01" /* big-endian decimal 1 */
+
+typedef struct {
+ const uint8_t* base;
+ const uint8_t* end;
+ const uint8_t* cursor;
+} DnsPacket;
+
+static void
+_dnsPacket_init( DnsPacket* packet, const uint8_t* buff, int bufflen )
+{
+ packet->base = buff;
+ packet->end = buff + bufflen;
+ packet->cursor = buff;
+}
+
+static void
+_dnsPacket_rewind( DnsPacket* packet )
+{
+ packet->cursor = packet->base;
+}
+
+static void
+_dnsPacket_skip( DnsPacket* packet, int count )
+{
+ const uint8_t* p = packet->cursor + count;
+
+ if (p > packet->end)
+ p = packet->end;
+
+ packet->cursor = p;
+}
+
+static int
+_dnsPacket_readInt16( DnsPacket* packet )
+{
+ const uint8_t* p = packet->cursor;
+
+ if (p+2 > packet->end)
+ return -1;
+
+ packet->cursor = p+2;
+ return (p[0]<< 8) | p[1];
+}
+
+/** QUERY CHECKING
+ **/
+
+/* check bytes in a dns packet. returns 1 on success, 0 on failure.
+ * the cursor is only advanced in the case of success
+ */
+static int
+_dnsPacket_checkBytes( DnsPacket* packet, int numBytes, const void* bytes )
+{
+ const uint8_t* p = packet->cursor;
+
+ if (p + numBytes > packet->end)
+ return 0;
+
+ if (memcmp(p, bytes, numBytes) != 0)
+ return 0;
+
+ packet->cursor = p + numBytes;
+ return 1;
+}
+
+/* parse and skip a given QNAME stored in a query packet,
+ * from the current cursor position. returns 1 on success,
+ * or 0 for malformed data.
+ */
+static int
+_dnsPacket_checkQName( DnsPacket* packet )
+{
+ const uint8_t* p = packet->cursor;
+ const uint8_t* end = packet->end;
+
+ for (;;) {
+ int c;
+
+ if (p >= end)
+ break;
+
+ c = *p++;
+
+ if (c == 0) {
+ packet->cursor = p;
+ return 1;
+ }
+
+ /* we don't expect label compression in QNAMEs */
+ if (c >= 64)
+ break;
+
+ p += c;
+ /* we rely on the bound check at the start
+ * of the loop here */
+ }
+ /* malformed data */
+ XLOG("malformed QNAME");
+ return 0;
+}
+
+/* parse and skip a given QR stored in a packet.
+ * returns 1 on success, and 0 on failure
+ */
+static int
+_dnsPacket_checkQR( DnsPacket* packet )
+{
+ if (!_dnsPacket_checkQName(packet))
+ return 0;
+
+ /* TYPE must be one of the things we support */
+ if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
+ !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
+ !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
+ !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
+ !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL))
+ {
+ XLOG("unsupported TYPE");
+ return 0;
+ }
+ /* CLASS must be IN */
+ if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
+ XLOG("unsupported CLASS");
+ return 0;
+ }
+
+ return 1;
+}
+
+/* check the header of a DNS Query packet, return 1 if it is one
+ * type of query we can cache, or 0 otherwise
+ */
+static int
+_dnsPacket_checkQuery( DnsPacket* packet )
+{
+ const uint8_t* p = packet->base;
+ int qdCount, anCount, dnCount, arCount;
+
+ if (p + DNS_HEADER_SIZE > packet->end) {
+ XLOG("query packet too small");
+ return 0;
+ }
+
+ /* QR must be set to 0, opcode must be 0 and AA must be 0 */
+ /* RA, Z, and RCODE must be 0 */
+ if ((p[2] & 0xFC) != 0 || p[3] != 0) {
+ XLOG("query packet flags unsupported");
+ return 0;
+ }
+
+ /* Note that we ignore the TC and RD bits here for the
+ * following reasons:
+ *
+ * - there is no point for a query packet sent to a server
+ * to have the TC bit set, but the implementation might
+ * set the bit in the query buffer for its own needs
+ * between a _resolv_cache_lookup and a
+ * _resolv_cache_add. We should not freak out if this
+ * is the case.
+ *
+ * - we consider that the result from a RD=0 or a RD=1
+ * query might be different, hence that the RD bit
+ * should be used to differentiate cached result.
+ *
+ * this implies that RD is checked when hashing or
+ * comparing query packets, but not TC
+ */
+
+ /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
+ qdCount = (p[4] << 8) | p[5];
+ anCount = (p[6] << 8) | p[7];
+ dnCount = (p[8] << 8) | p[9];
+ arCount = (p[10]<< 8) | p[11];
+
+ if (anCount != 0 || dnCount != 0 || arCount != 0) {
+ XLOG("query packet contains non-query records");
+ return 0;
+ }
+
+ if (qdCount == 0) {
+ XLOG("query packet doesn't contain query record");
+ return 0;
+ }
+
+ /* Check QDCOUNT QRs */
+ packet->cursor = p + DNS_HEADER_SIZE;
+
+ for (;qdCount > 0; qdCount--)
+ if (!_dnsPacket_checkQR(packet))
+ return 0;
+
+ return 1;
+}
+
+/** QUERY DEBUGGING
+ **/
+#if DEBUG
+static char*
+_dnsPacket_bprintQName(DnsPacket* packet, char* bp, char* bend)
+{
+ const uint8_t* p = packet->cursor;
+ const uint8_t* end = packet->end;
+ int first = 1;
+
+ for (;;) {
+ int c;
+
+ if (p >= end)
+ break;
+
+ c = *p++;
+
+ if (c == 0) {
+ packet->cursor = p;
+ return bp;
+ }
+
+ /* we don't expect label compression in QNAMEs */
+ if (c >= 64)
+ break;
+
+ if (first)
+ first = 0;
+ else
+ bp = _bprint_c(bp, bend, '.');
+
+ bp = _bprint_b(bp, bend, (const char*)p, c);
+
+ p += c;
+ /* we rely on the bound check at the start
+ * of the loop here */
+ }
+ /* malformed data */
+ bp = _bprint_s(bp, bend, "<MALFORMED>");
+ return bp;
+}
+
+static char*
+_dnsPacket_bprintQR(DnsPacket* packet, char* p, char* end)
+{
+#define QQ(x) { DNS_TYPE_##x, #x }
+ static const struct {
+ const char* typeBytes;
+ const char* typeString;
+ } qTypes[] =
+ {
+ QQ(A), QQ(PTR), QQ(MX), QQ(AAAA), QQ(ALL),
+ { NULL, NULL }
+ };
+ int nn;
+ const char* typeString = NULL;
+
+ /* dump QNAME */
+ p = _dnsPacket_bprintQName(packet, p, end);
+
+ /* dump TYPE */
+ p = _bprint_s(p, end, " (");
+
+ for (nn = 0; qTypes[nn].typeBytes != NULL; nn++) {
+ if (_dnsPacket_checkBytes(packet, 2, qTypes[nn].typeBytes)) {
+ typeString = qTypes[nn].typeString;
+ break;
+ }
+ }
+
+ if (typeString != NULL)
+ p = _bprint_s(p, end, typeString);
+ else {
+ int typeCode = _dnsPacket_readInt16(packet);
+ p = _bprint(p, end, "UNKNOWN-%d", typeCode);
+ }
+
+ p = _bprint_c(p, end, ')');
+
+ /* skip CLASS */
+ _dnsPacket_skip(packet, 2);
+ return p;
+}
+
+/* this function assumes the packet has already been checked */
+static char*
+_dnsPacket_bprintQuery( DnsPacket* packet, char* p, char* end )
+{
+ int qdCount;
+
+ if (packet->base[2] & 0x1) {
+ p = _bprint_s(p, end, "RECURSIVE ");
+ }
+
+ _dnsPacket_skip(packet, 4);
+ qdCount = _dnsPacket_readInt16(packet);
+ _dnsPacket_skip(packet, 6);
+
+ for ( ; qdCount > 0; qdCount-- ) {
+ p = _dnsPacket_bprintQR(packet, p, end);
+ }
+ return p;
+}
+#endif
+
+
+/** QUERY HASHING SUPPORT
+ **
+ ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
+ ** BEEN SUCCESFULLY CHECKED.
+ **/
+
+/* use 32-bit FNV hash function */
+#define FNV_MULT 16777619U
+#define FNV_BASIS 2166136261U
+
+static unsigned
+_dnsPacket_hashBytes( DnsPacket* packet, int numBytes, unsigned hash )
+{
+ const uint8_t* p = packet->cursor;
+ const uint8_t* end = packet->end;
+
+ while (numBytes > 0 && p < end) {
+ hash = hash*FNV_MULT ^ *p++;
+ }
+ packet->cursor = p;
+ return hash;
+}
+
+
+static unsigned
+_dnsPacket_hashQName( DnsPacket* packet, unsigned hash )
+{
+ const uint8_t* p = packet->cursor;
+ const uint8_t* end = packet->end;
+
+ for (;;) {
+ int c;
+
+ if (p >= end) { /* should not happen */
+ XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
+ break;
+ }
+
+ c = *p++;
+
+ if (c == 0)
+ break;
+
+ if (c >= 64) {
+ XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
+ break;
+ }
+ if (p + c >= end) {
+ XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
+ __FUNCTION__);
+ break;
+ }
+ while (c > 0) {
+ hash = hash*FNV_MULT ^ *p++;
+ c -= 1;
+ }
+ }
+ packet->cursor = p;
+ return hash;
+}
+
+static unsigned
+_dnsPacket_hashQR( DnsPacket* packet, unsigned hash )
+{
+ hash = _dnsPacket_hashQName(packet, hash);
+ hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
+ return hash;
+}
+
+static unsigned
+_dnsPacket_hashQuery( DnsPacket* packet )
+{
+ unsigned hash = FNV_BASIS;
+ int count;
+ _dnsPacket_rewind(packet);
+
+ /* we ignore the TC bit for reasons explained in
+ * _dnsPacket_checkQuery().
+ *
+ * however we hash the RD bit to differentiate
+ * between answers for recursive and non-recursive
+ * queries.
+ */
+ hash = hash*FNV_MULT ^ (packet->base[2] & 1);
+
+ /* assume: other flags are 0 */
+ _dnsPacket_skip(packet, 4);
+
+ /* read QDCOUNT */
+ count = _dnsPacket_readInt16(packet);
+
+ /* assume: ANcount, NScount, ARcount are 0 */
+ _dnsPacket_skip(packet, 6);
+
+ /* hash QDCOUNT QRs */
+ for ( ; count > 0; count-- )
+ hash = _dnsPacket_hashQR(packet, hash);
+
+ return hash;
+}
+
+
+/** QUERY COMPARISON
+ **
+ ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
+ ** BEEN SUCCESFULLY CHECKED.
+ **/
+
+static int
+_dnsPacket_isEqualDomainName( DnsPacket* pack1, DnsPacket* pack2 )
+{
+ const uint8_t* p1 = pack1->cursor;
+ const uint8_t* end1 = pack1->end;
+ const uint8_t* p2 = pack2->cursor;
+ const uint8_t* end2 = pack2->end;
+
+ for (;;) {
+ int c1, c2;
+
+ if (p1 >= end1 || p2 >= end2) {
+ XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
+ break;
+ }
+ c1 = *p1++;
+ c2 = *p2++;
+ if (c1 != c2)
+ break;
+
+ if (c1 == 0) {
+ pack1->cursor = p1;
+ pack2->cursor = p2;
+ return 1;
+ }
+ if (c1 >= 64) {
+ XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
+ break;
+ }
+ if ((p1+c1 > end1) || (p2+c1 > end2)) {
+ XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
+ __FUNCTION__);
+ break;
+ }
+ if (memcmp(p1, p2, c1) != 0)
+ break;
+ p1 += c1;
+ p2 += c1;
+ /* we rely on the bound checks at the start of the loop */
+ }
+ /* not the same, or one is malformed */
+ XLOG("different DN");
+ return 0;
+}
+
+static int
+_dnsPacket_isEqualBytes( DnsPacket* pack1, DnsPacket* pack2, int numBytes )
+{
+ const uint8_t* p1 = pack1->cursor;
+ const uint8_t* p2 = pack2->cursor;
+
+ if ( p1 + numBytes > pack1->end || p2 + numBytes > pack2->end )
+ return 0;
+
+ if ( memcmp(p1, p2, numBytes) != 0 )
+ return 0;
+
+ pack1->cursor += numBytes;
+ pack2->cursor += numBytes;
+ return 1;
+}
+
+static int
+_dnsPacket_isEqualQR( DnsPacket* pack1, DnsPacket* pack2 )
+{
+ /* compare domain name encoding + TYPE + CLASS */
+ if ( !_dnsPacket_isEqualDomainName(pack1, pack2) ||
+ !_dnsPacket_isEqualBytes(pack1, pack2, 2+2) )
+ return 0;
+
+ return 1;
+}
+
+static int
+_dnsPacket_isEqualQuery( DnsPacket* pack1, DnsPacket* pack2 )
+{
+ int count1, count2;
+
+ /* compare the headers, ignore most fields */
+ _dnsPacket_rewind(pack1);
+ _dnsPacket_rewind(pack2);
+
+ /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
+ if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
+ XLOG("different RD");
+ return 0;
+ }
+
+ /* assume: other flags are all 0 */
+ _dnsPacket_skip(pack1, 4);
+ _dnsPacket_skip(pack2, 4);
+
+ /* compare QDCOUNT */
+ count1 = _dnsPacket_readInt16(pack1);
+ count2 = _dnsPacket_readInt16(pack2);
+ if (count1 != count2 || count1 < 0) {
+ XLOG("different QDCOUNT");
+ return 0;
+ }
+
+ /* assume: ANcount, NScount and ARcount are all 0 */
+ _dnsPacket_skip(pack1, 6);
+ _dnsPacket_skip(pack2, 6);
+
+ /* compare the QDCOUNT QRs */
+ for ( ; count1 > 0; count1-- ) {
+ if (!_dnsPacket_isEqualQR(pack1, pack2)) {
+ XLOG("different QR");
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/****************************************************************************/
+/****************************************************************************/
+/***** *****/
+/***** *****/
+/***** *****/
+/****************************************************************************/
+/****************************************************************************/
+
+/* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
+ * structure though they are conceptually part of the hash table.
+ *
+ * similarly, mru_next and mru_prev are part of the global MRU list
+ */
+typedef struct Entry {
+ unsigned int hash; /* hash value */
+ struct Entry* hlink; /* next in collision chain */
+ struct Entry* mru_prev;
+ struct Entry* mru_next;
+
+ const uint8_t* query;
+ int querylen;
+ const uint8_t* answer;
+ int answerlen;
+ time_t expires; /* time_t when the entry isn't valid any more */
+ int id; /* for debugging purpose */
+} Entry;
+
+/**
+ * Find the TTL for a negative DNS result. This is defined as the minimum
+ * of the SOA records TTL and the MINIMUM-TTL field (RFC-2308).
+ *
+ * Return 0 if not found.
+ */
+static u_long
+answer_getNegativeTTL(ns_msg handle) {
+ int n, nscount;
+ u_long result = 0;
+ ns_rr rr;
+
+ nscount = ns_msg_count(handle, ns_s_ns);
+ for (n = 0; n < nscount; n++) {
+ if ((ns_parserr(&handle, ns_s_ns, n, &rr) == 0) && (ns_rr_type(rr) == ns_t_soa)) {
+ const u_char *rdata = ns_rr_rdata(rr); // find the data
+ const u_char *edata = rdata + ns_rr_rdlen(rr); // add the len to find the end
+ int len;
+ u_long ttl, rec_result = ns_rr_ttl(rr);
+
+ // find the MINIMUM-TTL field from the blob of binary data for this record
+ // skip the server name
+ len = dn_skipname(rdata, edata);
+ if (len == -1) continue; // error skipping
+ rdata += len;
+
+ // skip the admin name
+ len = dn_skipname(rdata, edata);
+ if (len == -1) continue; // error skipping
+ rdata += len;
+
+ if (edata - rdata != 5*NS_INT32SZ) continue;
+ // skip: serial number + refresh interval + retry interval + expiry
+ rdata += NS_INT32SZ * 4;
+ // finally read the MINIMUM TTL
+ ttl = ns_get32(rdata);
+ if (ttl < rec_result) {
+ rec_result = ttl;
+ }
+ // Now that the record is read successfully, apply the new min TTL
+ if (n == 0 || rec_result < result) {
+ result = rec_result;
+ }
+ }
+ }
+ return result;
+}
+
+/**
+ * Parse the answer records and find the appropriate
+ * smallest TTL among the records. This might be from
+ * the answer records if found or from the SOA record
+ * if it's a negative result.
+ *
+ * The returned TTL is the number of seconds to
+ * keep the answer in the cache.
+ *
+ * In case of parse error zero (0) is returned which
+ * indicates that the answer shall not be cached.
+ */
+static u_long
+answer_getTTL(const void* answer, int answerlen)
+{
+ ns_msg handle;
+ int ancount, n;
+ u_long result, ttl;
+ ns_rr rr;
+
+ result = 0;
+ if (ns_initparse(answer, answerlen, &handle) >= 0) {
+ // get number of answer records
+ ancount = ns_msg_count(handle, ns_s_an);
+
+ if (ancount == 0) {
+ // a response with no answers? Cache this negative result.
+ result = answer_getNegativeTTL(handle);
+ } else {
+ for (n = 0; n < ancount; n++) {
+ if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
+ ttl = ns_rr_ttl(rr);
+ if (n == 0 || ttl < result) {
+ result = ttl;
+ }
+ } else {
+ XLOG("ns_parserr failed ancount no = %d. errno = %s\n", n, strerror(errno));
+ }
+ }
+ }
+ } else {
+ XLOG("ns_parserr failed. %s\n", strerror(errno));
+ }
+
+ XLOG("TTL = %d\n", result);
+
+ return result;
+}
+
+static void
+entry_free( Entry* e )
+{
+ /* everything is allocated in a single memory block */
+ if (e) {
+ free(e);
+ }
+}
+
+static __inline__ void
+entry_mru_remove( Entry* e )
+{
+ e->mru_prev->mru_next = e->mru_next;
+ e->mru_next->mru_prev = e->mru_prev;
+}
+
+static __inline__ void
+entry_mru_add( Entry* e, Entry* list )
+{
+ Entry* first = list->mru_next;
+
+ e->mru_next = first;
+ e->mru_prev = list;
+
+ list->mru_next = e;
+ first->mru_prev = e;
+}
+
+/* compute the hash of a given entry, this is a hash of most
+ * data in the query (key) */
+static unsigned
+entry_hash( const Entry* e )
+{
+ DnsPacket pack[1];
+
+ _dnsPacket_init(pack, e->query, e->querylen);
+ return _dnsPacket_hashQuery(pack);
+}
+
+/* initialize an Entry as a search key, this also checks the input query packet
+ * returns 1 on success, or 0 in case of unsupported/malformed data */
+static int
+entry_init_key( Entry* e, const void* query, int querylen )
+{
+ DnsPacket pack[1];
+
+ memset(e, 0, sizeof(*e));
+
+ e->query = query;
+ e->querylen = querylen;
+ e->hash = entry_hash(e);
+
+ _dnsPacket_init(pack, query, querylen);
+
+ return _dnsPacket_checkQuery(pack);
+}
+
+/* allocate a new entry as a cache node */
+static Entry*
+entry_alloc( const Entry* init, const void* answer, int answerlen )
+{
+ Entry* e;
+ int size;
+
+ size = sizeof(*e) + init->querylen + answerlen;
+ e = calloc(size, 1);
+ if (e == NULL)
+ return e;
+
+ e->hash = init->hash;
+ e->query = (const uint8_t*)(e+1);
+ e->querylen = init->querylen;
+
+ memcpy( (char*)e->query, init->query, e->querylen );
+
+ e->answer = e->query + e->querylen;
+ e->answerlen = answerlen;
+
+ memcpy( (char*)e->answer, answer, e->answerlen );
+
+ return e;
+}
+
+static int
+entry_equals( const Entry* e1, const Entry* e2 )
+{
+ DnsPacket pack1[1], pack2[1];
+
+ if (e1->querylen != e2->querylen) {
+ return 0;
+ }
+ _dnsPacket_init(pack1, e1->query, e1->querylen);
+ _dnsPacket_init(pack2, e2->query, e2->querylen);
+
+ return _dnsPacket_isEqualQuery(pack1, pack2);
+}
+
+/****************************************************************************/
+/****************************************************************************/
+/***** *****/
+/***** *****/
+/***** *****/
+/****************************************************************************/
+/****************************************************************************/
+
+/* We use a simple hash table with external collision lists
+ * for simplicity, the hash-table fields 'hash' and 'hlink' are
+ * inlined in the Entry structure.
+ */
+
+/* Maximum time for a thread to wait for an pending request */
+#define PENDING_REQUEST_TIMEOUT 20;
+
+typedef struct pending_req_info {
+ unsigned int hash;
+ pthread_cond_t cond;
+ struct pending_req_info* next;
+} PendingReqInfo;
+
+typedef struct resolv_cache {
+ int max_entries;
+ int num_entries;
+ Entry mru_list;
+ pthread_mutex_t lock;
+ unsigned generation;
+ int last_id;
+ Entry* entries;
+ PendingReqInfo pending_requests;
+} Cache;
+
+typedef struct resolv_cache_info {
+ char ifname[IF_NAMESIZE + 1];
+ struct in_addr ifaddr;
+ Cache* cache;
+ struct resolv_cache_info* next;
+ char* nameservers[MAXNS +1];
+ struct addrinfo* nsaddrinfo[MAXNS + 1];
+ char defdname[256];
+ int dnsrch_offset[MAXDNSRCH+1]; // offsets into defdname
+} CacheInfo;
+
+typedef struct resolv_pidiface_info {
+ int pid;
+ char ifname[IF_NAMESIZE + 1];
+ struct resolv_pidiface_info* next;
+} PidIfaceInfo;
+typedef struct resolv_uidiface_info {
+ int uid_start;
+ int uid_end;
+ char ifname[IF_NAMESIZE + 1];
+ struct resolv_uidiface_info* next;
+} UidIfaceInfo;
+
+#define HTABLE_VALID(x) ((x) != NULL && (x) != HTABLE_DELETED)
+
+static void
+_cache_flush_pending_requests_locked( struct resolv_cache* cache )
+{
+ struct pending_req_info *ri, *tmp;
+ if (cache) {
+ ri = cache->pending_requests.next;
+
+ while (ri) {
+ tmp = ri;
+ ri = ri->next;
+ pthread_cond_broadcast(&tmp->cond);
+
+ pthread_cond_destroy(&tmp->cond);
+ free(tmp);
+ }
+
+ cache->pending_requests.next = NULL;
+ }
+}
+
+/* return 0 if no pending request is found matching the key
+ * if a matching request is found the calling thread will wait
+ * and return 1 when released */
+static int
+_cache_check_pending_request_locked( struct resolv_cache* cache, Entry* key )
+{
+ struct pending_req_info *ri, *prev;
+ int exist = 0;
+
+ if (cache && key) {
+ ri = cache->pending_requests.next;
+ prev = &cache->pending_requests;
+ while (ri) {
+ if (ri->hash == key->hash) {
+ exist = 1;
+ break;
+ }
+ prev = ri;
+ ri = ri->next;
+ }
+
+ if (!exist) {
+ ri = calloc(1, sizeof(struct pending_req_info));
+ if (ri) {
+ ri->hash = key->hash;
+ pthread_cond_init(&ri->cond, NULL);
+ prev->next = ri;
+ }
+ } else {
+ struct timespec ts = {0,0};
+ XLOG("Waiting for previous request");
+ ts.tv_sec = _time_now() + PENDING_REQUEST_TIMEOUT;
+ pthread_cond_timedwait(&ri->cond, &cache->lock, &ts);
+ }
+ }
+
+ return exist;
+}
+
+/* notify any waiting thread that waiting on a request
+ * matching the key has been added to the cache */
+static void
+_cache_notify_waiting_tid_locked( struct resolv_cache* cache, Entry* key )
+{
+ struct pending_req_info *ri, *prev;
+
+ if (cache && key) {
+ ri = cache->pending_requests.next;
+ prev = &cache->pending_requests;
+ while (ri) {
+ if (ri->hash == key->hash) {
+ pthread_cond_broadcast(&ri->cond);
+ break;
+ }
+ prev = ri;
+ ri = ri->next;
+ }
+
+ // remove item from list and destroy
+ if (ri) {
+ prev->next = ri->next;
+ pthread_cond_destroy(&ri->cond);
+ free(ri);
+ }
+ }
+}
+
+/* notify the cache that the query failed */
+void
+_resolv_cache_query_failed( struct resolv_cache* cache,
+ const void* query,
+ int querylen)
+{
+ Entry key[1];
+
+ if (cache && entry_init_key(key, query, querylen)) {
+ pthread_mutex_lock(&cache->lock);
+ _cache_notify_waiting_tid_locked(cache, key);
+ pthread_mutex_unlock(&cache->lock);
+ }
+}
+
+static void
+_cache_flush_locked( Cache* cache )
+{
+ int nn;
+
+ for (nn = 0; nn < cache->max_entries; nn++)
+ {
+ Entry** pnode = (Entry**) &cache->entries[nn];
+
+ while (*pnode != NULL) {
+ Entry* node = *pnode;
+ *pnode = node->hlink;
+ entry_free(node);
+ }
+ }
+
+ // flush pending request
+ _cache_flush_pending_requests_locked(cache);
+
+ cache->mru_list.mru_next = cache->mru_list.mru_prev = &cache->mru_list;
+ cache->num_entries = 0;
+ cache->last_id = 0;
+
+ XLOG("*************************\n"
+ "*** DNS CACHE FLUSHED ***\n"
+ "*************************");
+}
+
+static int
+_res_cache_get_max_entries( void )
+{
+ int cache_size = CONFIG_MAX_ENTRIES;
+
+ const char* cache_mode = getenv("ANDROID_DNS_MODE");
+ if (cache_mode == NULL || strcmp(cache_mode, "local") != 0) {
+ // Don't use the cache in local mode. This is used by the proxy itself.
+ cache_size = 0;
+ }
+
+ XLOG("cache size: %d", cache_size);
+ return cache_size;
+}
+
+static struct resolv_cache*
+_resolv_cache_create( void )
+{
+ struct resolv_cache* cache;
+
+ cache = calloc(sizeof(*cache), 1);
+ if (cache) {
+ cache->max_entries = _res_cache_get_max_entries();
+ cache->entries = calloc(sizeof(*cache->entries), cache->max_entries);
+ if (cache->entries) {
+ cache->generation = ~0U;
+ pthread_mutex_init( &cache->lock, NULL );
+ cache->mru_list.mru_prev = cache->mru_list.mru_next = &cache->mru_list;
+ XLOG("%s: cache created\n", __FUNCTION__);
+ } else {
+ free(cache);
+ cache = NULL;
+ }
+ }
+ return cache;
+}
+
+
+#if DEBUG
+static void
+_dump_query( const uint8_t* query, int querylen )
+{
+ char temp[256], *p=temp, *end=p+sizeof(temp);
+ DnsPacket pack[1];
+
+ _dnsPacket_init(pack, query, querylen);
+ p = _dnsPacket_bprintQuery(pack, p, end);
+ XLOG("QUERY: %s", temp);
+}
+
+static void
+_cache_dump_mru( Cache* cache )
+{
+ char temp[512], *p=temp, *end=p+sizeof(temp);
+ Entry* e;
+
+ p = _bprint(temp, end, "MRU LIST (%2d): ", cache->num_entries);
+ for (e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next)
+ p = _bprint(p, end, " %d", e->id);
+
+ XLOG("%s", temp);
+}
+
+static void
+_dump_answer(const void* answer, int answerlen)
+{
+ res_state statep;
+ FILE* fp;
+ char* buf;
+ int fileLen;
+
+ fp = fopen("/data/reslog.txt", "w+");
+ if (fp != NULL) {
+ statep = __res_get_state();
+
+ res_pquery(statep, answer, answerlen, fp);
+
+ //Get file length
+ fseek(fp, 0, SEEK_END);
+ fileLen=ftell(fp);
+ fseek(fp, 0, SEEK_SET);
+ buf = (char *)malloc(fileLen+1);
+ if (buf != NULL) {
+ //Read file contents into buffer
+ fread(buf, fileLen, 1, fp);
+ XLOG("%s\n", buf);
+ free(buf);
+ }
+ fclose(fp);
+ remove("/data/reslog.txt");
+ }
+ else {
+ errno = 0; // else debug is introducing error signals
+ XLOG("_dump_answer: can't open file\n");
+ }
+}
+#endif
+
+#if DEBUG
+# define XLOG_QUERY(q,len) _dump_query((q), (len))
+# define XLOG_ANSWER(a, len) _dump_answer((a), (len))
+#else
+# define XLOG_QUERY(q,len) ((void)0)
+# define XLOG_ANSWER(a,len) ((void)0)
+#endif
+
+/* This function tries to find a key within the hash table
+ * In case of success, it will return a *pointer* to the hashed key.
+ * In case of failure, it will return a *pointer* to NULL
+ *
+ * So, the caller must check '*result' to check for success/failure.
+ *
+ * The main idea is that the result can later be used directly in
+ * calls to _resolv_cache_add or _resolv_cache_remove as the 'lookup'
+ * parameter. This makes the code simpler and avoids re-searching
+ * for the key position in the htable.
+ *
+ * The result of a lookup_p is only valid until you alter the hash
+ * table.
+ */
+static Entry**
+_cache_lookup_p( Cache* cache,
+ Entry* key )
+{
+ int index = key->hash % cache->max_entries;
+ Entry** pnode = (Entry**) &cache->entries[ index ];
+
+ while (*pnode != NULL) {
+ Entry* node = *pnode;
+
+ if (node == NULL)
+ break;
+
+ if (node->hash == key->hash && entry_equals(node, key))
+ break;
+
+ pnode = &node->hlink;
+ }
+ return pnode;
+}
+
+/* Add a new entry to the hash table. 'lookup' must be the
+ * result of an immediate previous failed _lookup_p() call
+ * (i.e. with *lookup == NULL), and 'e' is the pointer to the
+ * newly created entry
+ */
+static void
+_cache_add_p( Cache* cache,
+ Entry** lookup,
+ Entry* e )
+{
+ *lookup = e;
+ e->id = ++cache->last_id;
+ entry_mru_add(e, &cache->mru_list);
+ cache->num_entries += 1;
+
+ XLOG("%s: entry %d added (count=%d)", __FUNCTION__,
+ e->id, cache->num_entries);
+}
+
+/* Remove an existing entry from the hash table,
+ * 'lookup' must be the result of an immediate previous
+ * and succesful _lookup_p() call.
+ */
+static void
+_cache_remove_p( Cache* cache,
+ Entry** lookup )
+{
+ Entry* e = *lookup;
+
+ XLOG("%s: entry %d removed (count=%d)", __FUNCTION__,
+ e->id, cache->num_entries-1);
+
+ entry_mru_remove(e);
+ *lookup = e->hlink;
+ entry_free(e);
+ cache->num_entries -= 1;
+}
+
+/* Remove the oldest entry from the hash table.
+ */
+static void
+_cache_remove_oldest( Cache* cache )
+{
+ Entry* oldest = cache->mru_list.mru_prev;
+ Entry** lookup = _cache_lookup_p(cache, oldest);
+
+ if (*lookup == NULL) { /* should not happen */
+ XLOG("%s: OLDEST NOT IN HTABLE ?", __FUNCTION__);
+ return;
+ }
+ if (DEBUG) {
+ XLOG("Cache full - removing oldest");
+ XLOG_QUERY(oldest->query, oldest->querylen);
+ }
+ _cache_remove_p(cache, lookup);
+}
+
+/* Remove all expired entries from the hash table.
+ */
+static void _cache_remove_expired(Cache* cache) {
+ Entry* e;
+ time_t now = _time_now();
+
+ for (e = cache->mru_list.mru_next; e != &cache->mru_list;) {
+ // Entry is old, remove
+ if (now >= e->expires) {
+ Entry** lookup = _cache_lookup_p(cache, e);
+ if (*lookup == NULL) { /* should not happen */
+ XLOG("%s: ENTRY NOT IN HTABLE ?", __FUNCTION__);
+ return;
+ }
+ e = e->mru_next;
+ _cache_remove_p(cache, lookup);
+ } else {
+ e = e->mru_next;
+ }
+ }
+}
+
+ResolvCacheStatus
+_resolv_cache_lookup( struct resolv_cache* cache,
+ const void* query,
+ int querylen,
+ void* answer,
+ int answersize,
+ int *answerlen )
+{
+ Entry key[1];
+ Entry** lookup;
+ Entry* e;
+ time_t now;
+
+ ResolvCacheStatus result = RESOLV_CACHE_NOTFOUND;
+
+ XLOG("%s: lookup", __FUNCTION__);
+ XLOG_QUERY(query, querylen);
+
+ /* we don't cache malformed queries */
+ if (!entry_init_key(key, query, querylen)) {
+ XLOG("%s: unsupported query", __FUNCTION__);
+ return RESOLV_CACHE_UNSUPPORTED;
+ }
+ /* lookup cache */
+ pthread_mutex_lock( &cache->lock );
+
+ /* see the description of _lookup_p to understand this.
+ * the function always return a non-NULL pointer.
+ */
+ lookup = _cache_lookup_p(cache, key);
+ e = *lookup;
+
+ if (e == NULL) {
+ XLOG( "NOT IN CACHE");
+ // calling thread will wait if an outstanding request is found
+ // that matching this query
+ if (!_cache_check_pending_request_locked(cache, key)) {
+ goto Exit;
+ } else {
+ lookup = _cache_lookup_p(cache, key);
+ e = *lookup;
+ if (e == NULL) {
+ goto Exit;
+ }
+ }
+ }
+
+ now = _time_now();
+
+ /* remove stale entries here */
+ if (now >= e->expires) {
+ XLOG( " NOT IN CACHE (STALE ENTRY %p DISCARDED)", *lookup );
+ XLOG_QUERY(e->query, e->querylen);
+ _cache_remove_p(cache, lookup);
+ goto Exit;
+ }
+
+ *answerlen = e->answerlen;
+ if (e->answerlen > answersize) {
+ /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
+ result = RESOLV_CACHE_UNSUPPORTED;
+ XLOG(" ANSWER TOO LONG");
+ goto Exit;
+ }
+
+ memcpy( answer, e->answer, e->answerlen );
+
+ /* bump up this entry to the top of the MRU list */
+ if (e != cache->mru_list.mru_next) {
+ entry_mru_remove( e );
+ entry_mru_add( e, &cache->mru_list );
+ }
+
+ XLOG( "FOUND IN CACHE entry=%p", e );
+ result = RESOLV_CACHE_FOUND;
+
+Exit:
+ pthread_mutex_unlock( &cache->lock );
+ return result;
+}
+
+
+void
+_resolv_cache_add( struct resolv_cache* cache,
+ const void* query,
+ int querylen,
+ const void* answer,
+ int answerlen )
+{
+ Entry key[1];
+ Entry* e;
+ Entry** lookup;
+ u_long ttl;
+
+ /* don't assume that the query has already been cached
+ */
+ if (!entry_init_key( key, query, querylen )) {
+ XLOG( "%s: passed invalid query ?", __FUNCTION__);
+ return;
+ }
+
+ pthread_mutex_lock( &cache->lock );
+
+ XLOG( "%s: query:", __FUNCTION__ );
+ XLOG_QUERY(query,querylen);
+ XLOG_ANSWER(answer, answerlen);
+#if DEBUG_DATA
+ XLOG( "answer:");
+ XLOG_BYTES(answer,answerlen);
+#endif
+
+ lookup = _cache_lookup_p(cache, key);
+ e = *lookup;
+
+ if (e != NULL) { /* should not happen */
+ XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
+ __FUNCTION__, e);
+ goto Exit;
+ }
+
+ if (cache->num_entries >= cache->max_entries) {
+ _cache_remove_expired(cache);
+ if (cache->num_entries >= cache->max_entries) {
+ _cache_remove_oldest(cache);
+ }
+ /* need to lookup again */
+ lookup = _cache_lookup_p(cache, key);
+ e = *lookup;
+ if (e != NULL) {
+ XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
+ __FUNCTION__, e);
+ goto Exit;
+ }
+ }
+
+ ttl = answer_getTTL(answer, answerlen);
+ if (ttl > 0) {
+ e = entry_alloc(key, answer, answerlen);
+ if (e != NULL) {
+ e->expires = ttl + _time_now();
+ _cache_add_p(cache, lookup, e);
+ }
+ }
+#if DEBUG
+ _cache_dump_mru(cache);
+#endif
+Exit:
+ _cache_notify_waiting_tid_locked(cache, key);
+ pthread_mutex_unlock( &cache->lock );
+}
+
+/****************************************************************************/
+/****************************************************************************/
+/***** *****/
+/***** *****/
+/***** *****/
+/****************************************************************************/
+/****************************************************************************/
+
+static pthread_once_t _res_cache_once = PTHREAD_ONCE_INIT;
+
+// Head of the list of caches. Protected by _res_cache_list_lock.
+static struct resolv_cache_info _res_cache_list;
+
+// List of pid iface pairs
+static struct resolv_pidiface_info _res_pidiface_list;
+
+// List of uid iface pairs
+static struct resolv_uidiface_info _res_uidiface_list;
+
+// name of the current default inteface
+static char _res_default_ifname[IF_NAMESIZE + 1];
+
+// lock protecting everything in the _resolve_cache_info structs (next ptr, etc)
+static pthread_mutex_t _res_cache_list_lock;
+
+// lock protecting the _res_pid_iface_list
+static pthread_mutex_t _res_pidiface_list_lock;
+
+// lock protecting the _res_uidiface_list
+static pthread_mutex_t _res_uidiface_list_lock;
+
+/* lookup the default interface name */
+static char *_get_default_iface_locked();
+/* find the first cache that has an associated interface and return the name of the interface */
+static char* _find_any_iface_name_locked( void );
+
+/* insert resolv_cache_info into the list of resolv_cache_infos */
+static void _insert_cache_info_locked(struct resolv_cache_info* cache_info);
+/* creates a resolv_cache_info */
+static struct resolv_cache_info* _create_cache_info( void );
+/* gets cache associated with an interface name, or NULL if none exists */
+static struct resolv_cache* _find_named_cache_locked(const char* ifname);
+/* gets a resolv_cache_info associated with an interface name, or NULL if not found */
+static struct resolv_cache_info* _find_cache_info_locked(const char* ifname);
+/* look up the named cache, and creates one if needed */
+static struct resolv_cache* _get_res_cache_for_iface_locked(const char* ifname);
+/* empty the named cache */
+static void _flush_cache_for_iface_locked(const char* ifname);
+/* empty the nameservers set for the named cache */
+static void _free_nameservers_locked(struct resolv_cache_info* cache_info);
+/* lookup the namserver for the name interface */
+static int _get_nameserver_locked(const char* ifname, int n, char* addr, int addrLen);
+/* lookup the addr of the nameserver for the named interface */
+static struct addrinfo* _get_nameserver_addr_locked(const char* ifname, int n);
+/* lookup the inteface's address */
+static struct in_addr* _get_addr_locked(const char * ifname);
+/* return 1 if the provided list of name servers differs from the list of name servers
+ * currently attached to the provided cache_info */
+static int _resolv_is_nameservers_equal_locked(struct resolv_cache_info* cache_info,
+ const char** servers, int numservers);
+/* remove a resolv_pidiface_info structure from _res_pidiface_list */
+static void _remove_pidiface_info_locked(int pid);
+/* get a resolv_pidiface_info structure from _res_pidiface_list with a certain pid */
+static struct resolv_pidiface_info* _get_pid_iface_info_locked(int pid);
+
+/* remove a resolv_pidiface_info structure from _res_uidiface_list */
+static int _remove_uidiface_info_locked(int uid_start, int uid_end);
+/* check if a range [low,high] overlaps with any already existing ranges in the uid=>iface map*/
+static int _resolv_check_uid_range_overlap_locked(int uid_start, int uid_end);
+/* get a resolv_uidiface_info structure from _res_uidiface_list with a certain uid */
+static struct resolv_uidiface_info* _get_uid_iface_info_locked(int uid);
+
+static void
+_res_cache_init(void)
+{
+ const char* env = getenv(CONFIG_ENV);
+
+ if (env && atoi(env) == 0) {
+ /* the cache is disabled */
+ return;
+ }
+
+ memset(&_res_default_ifname, 0, sizeof(_res_default_ifname));
+ memset(&_res_cache_list, 0, sizeof(_res_cache_list));
+ memset(&_res_pidiface_list, 0, sizeof(_res_pidiface_list));
+ memset(&_res_uidiface_list, 0, sizeof(_res_uidiface_list));
+ pthread_mutex_init(&_res_cache_list_lock, NULL);
+ pthread_mutex_init(&_res_pidiface_list_lock, NULL);
+ pthread_mutex_init(&_res_uidiface_list_lock, NULL);
+}
+
+struct resolv_cache*
+__get_res_cache(const char* ifname)
+{
+ struct resolv_cache *cache;
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+
+ char* iface;
+ if (ifname == NULL || ifname[0] == '\0') {
+ iface = _get_default_iface_locked();
+ if (iface[0] == '\0') {
+ char* tmp = _find_any_iface_name_locked();
+ if (tmp) {
+ iface = tmp;
+ }
+ }
+ } else {
+ iface = (char *) ifname;
+ }
+
+ cache = _get_res_cache_for_iface_locked(iface);
+
+ pthread_mutex_unlock(&_res_cache_list_lock);
+ XLOG("_get_res_cache: iface = %s, cache=%p\n", iface, cache);
+ return cache;
+}
+
+static struct resolv_cache*
+_get_res_cache_for_iface_locked(const char* ifname)
+{
+ if (ifname == NULL)
+ return NULL;
+
+ struct resolv_cache* cache = _find_named_cache_locked(ifname);
+ if (!cache) {
+ struct resolv_cache_info* cache_info = _create_cache_info();
+ if (cache_info) {
+ cache = _resolv_cache_create();
+ if (cache) {
+ int len = sizeof(cache_info->ifname);
+ cache_info->cache = cache;
+ strncpy(cache_info->ifname, ifname, len - 1);
+ cache_info->ifname[len - 1] = '\0';
+
+ _insert_cache_info_locked(cache_info);
+ } else {
+ free(cache_info);
+ }
+ }
+ }
+ return cache;
+}
+
+void
+_resolv_cache_reset(unsigned generation)
+{
+ XLOG("%s: generation=%d", __FUNCTION__, generation);
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+
+ char* ifname = _get_default_iface_locked();
+ // if default interface not set then use the first cache
+ // associated with an interface as the default one.
+ // Note: Copied the code from __get_res_cache since this
+ // method will be deleted/obsolete when cache per interface
+ // implemented all over
+ if (ifname[0] == '\0') {
+ struct resolv_cache_info* cache_info = _res_cache_list.next;
+ while (cache_info) {
+ if (cache_info->ifname[0] != '\0') {
+ ifname = cache_info->ifname;
+ break;
+ }
+
+ cache_info = cache_info->next;
+ }
+ }
+ struct resolv_cache* cache = _get_res_cache_for_iface_locked(ifname);
+
+ if (cache != NULL) {
+ pthread_mutex_lock( &cache->lock );
+ if (cache->generation != generation) {
+ _cache_flush_locked(cache);
+ cache->generation = generation;
+ }
+ pthread_mutex_unlock( &cache->lock );
+ }
+
+ pthread_mutex_unlock(&_res_cache_list_lock);
+}
+
+void
+_resolv_flush_cache_for_default_iface(void)
+{
+ char* ifname;
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+
+ ifname = _get_default_iface_locked();
+ _flush_cache_for_iface_locked(ifname);
+
+ pthread_mutex_unlock(&_res_cache_list_lock);
+}
+
+void
+_resolv_flush_cache_for_iface(const char* ifname)
+{
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+
+ _flush_cache_for_iface_locked(ifname);
+
+ pthread_mutex_unlock(&_res_cache_list_lock);
+}
+
+static void
+_flush_cache_for_iface_locked(const char* ifname)
+{
+ struct resolv_cache* cache = _find_named_cache_locked(ifname);
+ if (cache) {
+ pthread_mutex_lock(&cache->lock);
+ _cache_flush_locked(cache);
+ pthread_mutex_unlock(&cache->lock);
+ }
+}
+
+static struct resolv_cache_info*
+_create_cache_info(void)
+{
+ struct resolv_cache_info* cache_info;
+
+ cache_info = calloc(sizeof(*cache_info), 1);
+ return cache_info;
+}
+
+static void
+_insert_cache_info_locked(struct resolv_cache_info* cache_info)
+{
+ struct resolv_cache_info* last;
+
+ for (last = &_res_cache_list; last->next; last = last->next);
+
+ last->next = cache_info;
+
+}
+
+static struct resolv_cache*
+_find_named_cache_locked(const char* ifname) {
+
+ struct resolv_cache_info* info = _find_cache_info_locked(ifname);
+
+ if (info != NULL) return info->cache;
+
+ return NULL;
+}
+
+static struct resolv_cache_info*
+_find_cache_info_locked(const char* ifname)
+{
+ if (ifname == NULL)
+ return NULL;
+
+ struct resolv_cache_info* cache_info = _res_cache_list.next;
+
+ while (cache_info) {
+ if (strcmp(cache_info->ifname, ifname) == 0) {
+ break;
+ }
+
+ cache_info = cache_info->next;
+ }
+ return cache_info;
+}
+
+static char*
+_get_default_iface_locked(void)
+{
+
+ char* iface = _res_default_ifname;
+
+ return iface;
+}
+
+static char*
+_find_any_iface_name_locked( void ) {
+ char* ifname = NULL;
+
+ struct resolv_cache_info* cache_info = _res_cache_list.next;
+ while (cache_info) {
+ if (cache_info->ifname[0] != '\0') {
+ ifname = cache_info->ifname;
+ break;
+ }
+
+ cache_info = cache_info->next;
+ }
+
+ return ifname;
+}
+
+void
+_resolv_set_default_iface(const char* ifname)
+{
+ XLOG("_resolv_set_default_if ifname %s\n",ifname);
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+
+ int size = sizeof(_res_default_ifname);
+ memset(_res_default_ifname, 0, size);
+ strncpy(_res_default_ifname, ifname, size - 1);
+ _res_default_ifname[size - 1] = '\0';
+
+ pthread_mutex_unlock(&_res_cache_list_lock);
+}
+
+void
+_resolv_set_nameservers_for_iface(const char* ifname, const char** servers, int numservers,
+ const char *domains)
+{
+ int i, rt, index;
+ struct addrinfo hints;
+ char sbuf[NI_MAXSERV];
+ register char *cp;
+ int *offset;
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+
+ // creates the cache if not created
+ _get_res_cache_for_iface_locked(ifname);
+
+ struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
+
+ if (cache_info != NULL &&
+ !_resolv_is_nameservers_equal_locked(cache_info, servers, numservers)) {
+ // free current before adding new
+ _free_nameservers_locked(cache_info);
+
+ memset(&hints, 0, sizeof(hints));
+ hints.ai_family = PF_UNSPEC;
+ hints.ai_socktype = SOCK_DGRAM; /*dummy*/
+ hints.ai_flags = AI_NUMERICHOST;
+ sprintf(sbuf, "%u", NAMESERVER_PORT);
+
+ index = 0;
+ for (i = 0; i < numservers && i < MAXNS; i++) {
+ rt = getaddrinfo(servers[i], sbuf, &hints, &cache_info->nsaddrinfo[index]);
+ if (rt == 0) {
+ cache_info->nameservers[index] = strdup(servers[i]);
+ index++;
+ XLOG("_resolv_set_nameservers_for_iface: iface = %s, addr = %s\n",
+ ifname, servers[i]);
+ } else {
+ cache_info->nsaddrinfo[index] = NULL;
+ }
+ }
+
+ // code moved from res_init.c, load_domain_search_list
+ strlcpy(cache_info->defdname, domains, sizeof(cache_info->defdname));
+ if ((cp = strchr(cache_info->defdname, '\n')) != NULL)
+ *cp = '\0';
+ cp = cache_info->defdname;
+ offset = cache_info->dnsrch_offset;
+ while (offset < cache_info->dnsrch_offset + MAXDNSRCH) {
+ while (*cp == ' ' || *cp == '\t') /* skip leading white space */
+ cp++;
+ if (*cp == '\0') /* stop if nothing more to do */
+ break;
+ *offset++ = cp - cache_info->defdname; /* record this search domain */
+ while (*cp) { /* zero-terminate it */
+ if (*cp == ' '|| *cp == '\t') {
+ *cp++ = '\0';
+ break;
+ }
+ cp++;
+ }
+ }
+ *offset = -1; /* cache_info->dnsrch_offset has MAXDNSRCH+1 items */
+
+ // flush cache since new settings
+ _flush_cache_for_iface_locked(ifname);
+
+ }
+
+ pthread_mutex_unlock(&_res_cache_list_lock);
+}
+
+static int
+_resolv_is_nameservers_equal_locked(struct resolv_cache_info* cache_info,
+ const char** servers, int numservers)
+{
+ int i;
+ char** ns;
+ int equal = 1;
+
+ // compare each name server against current name servers
+ if (numservers > MAXNS) numservers = MAXNS;
+ for (i = 0; i < numservers && equal; i++) {
+ ns = cache_info->nameservers;
+ equal = 0;
+ while(*ns) {
+ if (strcmp(*ns, servers[i]) == 0) {
+ equal = 1;
+ break;
+ }
+ ns++;
+ }
+ }
+
+ return equal;
+}
+
+static void
+_free_nameservers_locked(struct resolv_cache_info* cache_info)
+{
+ int i;
+ for (i = 0; i <= MAXNS; i++) {
+ free(cache_info->nameservers[i]);
+ cache_info->nameservers[i] = NULL;
+ if (cache_info->nsaddrinfo[i] != NULL) {
+ freeaddrinfo(cache_info->nsaddrinfo[i]);
+ cache_info->nsaddrinfo[i] = NULL;
+ }
+ }
+}
+
+int
+_resolv_cache_get_nameserver(int n, char* addr, int addrLen)
+{
+ char *ifname;
+ int result = 0;
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+
+ ifname = _get_default_iface_locked();
+ result = _get_nameserver_locked(ifname, n, addr, addrLen);
+
+ pthread_mutex_unlock(&_res_cache_list_lock);
+ return result;
+}
+
+static int
+_get_nameserver_locked(const char* ifname, int n, char* addr, int addrLen)
+{
+ int len = 0;
+ char* ns;
+ struct resolv_cache_info* cache_info;
+
+ if (n < 1 || n > MAXNS || !addr)
+ return 0;
+
+ cache_info = _find_cache_info_locked(ifname);
+ if (cache_info) {
+ ns = cache_info->nameservers[n - 1];
+ if (ns) {
+ len = strlen(ns);
+ if (len < addrLen) {
+ strncpy(addr, ns, len);
+ addr[len] = '\0';
+ } else {
+ len = 0;
+ }
+ }
+ }
+
+ return len;
+}
+
+struct addrinfo*
+_cache_get_nameserver_addr(int n)
+{
+ struct addrinfo *result;
+ char* ifname;
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+
+ ifname = _get_default_iface_locked();
+
+ result = _get_nameserver_addr_locked(ifname, n);
+ pthread_mutex_unlock(&_res_cache_list_lock);
+ return result;
+}
+
+static struct addrinfo*
+_get_nameserver_addr_locked(const char* ifname, int n)
+{
+ struct addrinfo* ai = NULL;
+ struct resolv_cache_info* cache_info;
+
+ if (n < 1 || n > MAXNS)
+ return NULL;
+
+ cache_info = _find_cache_info_locked(ifname);
+ if (cache_info) {
+ ai = cache_info->nsaddrinfo[n - 1];
+ }
+ return ai;
+}
+
+void
+_resolv_set_addr_of_iface(const char* ifname, struct in_addr* addr)
+{
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+ struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
+ if (cache_info) {
+ memcpy(&cache_info->ifaddr, addr, sizeof(*addr));
+
+ if (DEBUG) {
+ XLOG("address of interface %s is %s\n",
+ ifname, inet_ntoa(cache_info->ifaddr));
+ }
+ }
+ pthread_mutex_unlock(&_res_cache_list_lock);
+}
+
+struct in_addr*
+_resolv_get_addr_of_default_iface(void)
+{
+ struct in_addr* ai = NULL;
+ char* ifname;
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+ ifname = _get_default_iface_locked();
+ ai = _get_addr_locked(ifname);
+ pthread_mutex_unlock(&_res_cache_list_lock);
+
+ return ai;
+}
+
+struct in_addr*
+_resolv_get_addr_of_iface(const char* ifname)
+{
+ struct in_addr* ai = NULL;
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+ ai =_get_addr_locked(ifname);
+ pthread_mutex_unlock(&_res_cache_list_lock);
+ return ai;
+}
+
+static struct in_addr*
+_get_addr_locked(const char * ifname)
+{
+ struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
+ if (cache_info) {
+ return &cache_info->ifaddr;
+ }
+ return NULL;
+}
+
+static void
+_remove_pidiface_info_locked(int pid) {
+ struct resolv_pidiface_info* result = &_res_pidiface_list;
+ struct resolv_pidiface_info* prev = NULL;
+
+ while (result != NULL && result->pid != pid) {
+ prev = result;
+ result = result->next;
+ }
+ if (prev != NULL && result != NULL) {
+ prev->next = result->next;
+ free(result);
+ }
+}
+
+static struct resolv_pidiface_info*
+_get_pid_iface_info_locked(int pid)
+{
+ struct resolv_pidiface_info* result = &_res_pidiface_list;
+ while (result != NULL && result->pid != pid) {
+ result = result->next;
+ }
+
+ return result;
+}
+
+void
+_resolv_set_iface_for_pid(const char* ifname, int pid)
+{
+ // make sure the pid iface list is created
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_pidiface_list_lock);
+
+ struct resolv_pidiface_info* pidiface_info = _get_pid_iface_info_locked(pid);
+ if (!pidiface_info) {
+ pidiface_info = calloc(sizeof(*pidiface_info), 1);
+ if (pidiface_info) {
+ pidiface_info->pid = pid;
+ int len = sizeof(pidiface_info->ifname);
+ strncpy(pidiface_info->ifname, ifname, len - 1);
+ pidiface_info->ifname[len - 1] = '\0';
+
+ pidiface_info->next = _res_pidiface_list.next;
+ _res_pidiface_list.next = pidiface_info;
+
+ XLOG("_resolv_set_iface_for_pid: pid %d , iface %s\n", pid, ifname);
+ } else {
+ XLOG("_resolv_set_iface_for_pid failing calloc");
+ }
+ }
+
+ pthread_mutex_unlock(&_res_pidiface_list_lock);
+}
+
+void
+_resolv_clear_iface_for_pid(int pid)
+{
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_pidiface_list_lock);
+
+ _remove_pidiface_info_locked(pid);
+
+ XLOG("_resolv_clear_iface_for_pid: pid %d\n", pid);
+
+ pthread_mutex_unlock(&_res_pidiface_list_lock);
+}
+
+int
+_resolv_get_pids_associated_interface(int pid, char* buff, int buffLen)
+{
+ int len = 0;
+
+ if (!buff) {
+ return -1;
+ }
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_pidiface_list_lock);
+
+ struct resolv_pidiface_info* pidiface_info = _get_pid_iface_info_locked(pid);
+ buff[0] = '\0';
+ if (pidiface_info) {
+ len = strlen(pidiface_info->ifname);
+ if (len < buffLen) {
+ strncpy(buff, pidiface_info->ifname, len);
+ buff[len] = '\0';
+ }
+ }
+
+ XLOG("_resolv_get_pids_associated_interface buff: %s\n", buff);
+
+ pthread_mutex_unlock(&_res_pidiface_list_lock);
+
+ return len;
+}
+
+static int
+_remove_uidiface_info_locked(int uid_start, int uid_end) {
+ struct resolv_uidiface_info* result = _res_uidiface_list.next;
+ struct resolv_uidiface_info* prev = &_res_uidiface_list;
+
+ while (result != NULL && result->uid_start != uid_start && result->uid_end != uid_end) {
+ prev = result;
+ result = result->next;
+ }
+ if (prev != NULL && result != NULL) {
+ prev->next = result->next;
+ free(result);
+ return 0;
+ }
+ errno = EINVAL;
+ return -1;
+}
+
+static struct resolv_uidiface_info*
+_get_uid_iface_info_locked(int uid)
+{
+ struct resolv_uidiface_info* result = _res_uidiface_list.next;
+ while (result != NULL && !(result->uid_start <= uid && result->uid_end >= uid)) {
+ result = result->next;
+ }
+
+ return result;
+}
+
+static int
+_resolv_check_uid_range_overlap_locked(int uid_start, int uid_end)
+{
+ struct resolv_uidiface_info* cur = _res_uidiface_list.next;
+ while (cur != NULL) {
+ if (cur->uid_start <= uid_end && cur->uid_end >= uid_start) {
+ return -1;
+ }
+ cur = cur->next;
+ }
+ return 0;
+}
+
+void
+_resolv_clear_iface_uid_range_mapping()
+{
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_uidiface_list_lock);
+ struct resolv_uidiface_info *current = _res_uidiface_list.next;
+ struct resolv_uidiface_info *next;
+ while (current != NULL) {
+ next = current->next;
+ free(current);
+ current = next;
+ }
+ _res_uidiface_list.next = NULL;
+ pthread_mutex_unlock(&_res_uidiface_list_lock);
+}
+
+void
+_resolv_clear_iface_pid_mapping()
+{
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_pidiface_list_lock);
+ struct resolv_pidiface_info *current = _res_pidiface_list.next;
+ struct resolv_pidiface_info *next;
+ while (current != NULL) {
+ next = current->next;
+ free(current);
+ current = next;
+ }
+ _res_pidiface_list.next = NULL;
+ pthread_mutex_unlock(&_res_pidiface_list_lock);
+}
+
+int
+_resolv_set_iface_for_uid_range(const char* ifname, int uid_start, int uid_end)
+{
+ int rv = 0;
+ struct resolv_uidiface_info* uidiface_info;
+ // make sure the uid iface list is created
+ pthread_once(&_res_cache_once, _res_cache_init);
+ if (uid_start > uid_end) {
+ errno = EINVAL;
+ return -1;
+ }
+ pthread_mutex_lock(&_res_uidiface_list_lock);
+ //check that we aren't adding an overlapping range
+ if (!_resolv_check_uid_range_overlap_locked(uid_start, uid_end)) {
+ uidiface_info = calloc(sizeof(*uidiface_info), 1);
+ if (uidiface_info) {
+ uidiface_info->uid_start = uid_start;
+ uidiface_info->uid_end = uid_end;
+ int len = sizeof(uidiface_info->ifname);
+ strncpy(uidiface_info->ifname, ifname, len - 1);
+ uidiface_info->ifname[len - 1] = '\0';
+
+ uidiface_info->next = _res_uidiface_list.next;
+ _res_uidiface_list.next = uidiface_info;
+
+ XLOG("_resolv_set_iface_for_uid_range: [%d,%d], iface %s\n", uid_start, uid_end,
+ ifname);
+ } else {
+ XLOG("_resolv_set_iface_for_uid_range failing calloc\n");
+ rv = -1;
+ errno = EINVAL;
+ }
+ } else {
+ XLOG("_resolv_set_iface_for_uid_range range [%d,%d] overlaps\n", uid_start, uid_end);
+ rv = -1;
+ errno = EINVAL;
+ }
+
+ pthread_mutex_unlock(&_res_uidiface_list_lock);
+ return rv;
+}
+
+int
+_resolv_clear_iface_for_uid_range(int uid_start, int uid_end)
+{
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_uidiface_list_lock);
+
+ int rv = _remove_uidiface_info_locked(uid_start, uid_end);
+
+ XLOG("_resolv_clear_iface_for_uid_range: [%d,%d]\n", uid_start, uid_end);
+
+ pthread_mutex_unlock(&_res_uidiface_list_lock);
+
+ return rv;
+}
+
+int
+_resolv_get_uids_associated_interface(int uid, char* buff, int buffLen)
+{
+ int len = 0;
+
+ if (!buff) {
+ return -1;
+ }
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_uidiface_list_lock);
+
+ struct resolv_uidiface_info* uidiface_info = _get_uid_iface_info_locked(uid);
+ buff[0] = '\0';
+ if (uidiface_info) {
+ len = strlen(uidiface_info->ifname);
+ if (len < buffLen) {
+ strncpy(buff, uidiface_info->ifname, len);
+ buff[len] = '\0';
+ }
+ }
+
+ XLOG("_resolv_get_uids_associated_interface buff: %s\n", buff);
+
+ pthread_mutex_unlock(&_res_uidiface_list_lock);
+
+ return len;
+}
+
+size_t
+_resolv_get_default_iface(char* buff, size_t buffLen)
+{
+ if (!buff || buffLen == 0) {
+ return 0;
+ }
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+
+ char* ifname = _get_default_iface_locked(); // never null, but may be empty
+
+ // if default interface not set give up.
+ if (ifname[0] == '\0') {
+ pthread_mutex_unlock(&_res_cache_list_lock);
+ return 0;
+ }
+
+ size_t len = strlen(ifname);
+ if (len < buffLen) {
+ strncpy(buff, ifname, len);
+ buff[len] = '\0';
+ } else {
+ buff[0] = '\0';
+ }
+
+ pthread_mutex_unlock(&_res_cache_list_lock);
+
+ return len;
+}
+
+void
+_resolv_populate_res_for_iface(res_state statp)
+{
+ if (statp == NULL) {
+ return;
+ }
+
+ if (statp->iface[0] == '\0') { // no interface set assign default
+ size_t if_len = _resolv_get_default_iface(statp->iface, sizeof(statp->iface));
+ if (if_len + 1 > sizeof(statp->iface)) {
+ XLOG("%s: INTERNAL_ERROR: can't fit interface name into statp->iface.\n", __FUNCTION__);
+ return;
+ }
+ if (if_len == 0) {
+ XLOG("%s: INTERNAL_ERROR: can't find any suitable interfaces.\n", __FUNCTION__);
+ return;
+ }
+ }
+
+ pthread_once(&_res_cache_once, _res_cache_init);
+ pthread_mutex_lock(&_res_cache_list_lock);
+
+ struct resolv_cache_info* info = _find_cache_info_locked(statp->iface);
+ if (info != NULL) {
+ int nserv;
+ struct addrinfo* ai;
+ XLOG("_resolv_populate_res_for_iface: %s\n", statp->iface);
+ for (nserv = 0; nserv < MAXNS; nserv++) {
+ ai = info->nsaddrinfo[nserv];
+ if (ai == NULL) {
+ break;
+ }
+
+ if ((size_t) ai->ai_addrlen <= sizeof(statp->_u._ext.ext->nsaddrs[0])) {
+ if (statp->_u._ext.ext != NULL) {
+ memcpy(&statp->_u._ext.ext->nsaddrs[nserv], ai->ai_addr, ai->ai_addrlen);
+ statp->nsaddr_list[nserv].sin_family = AF_UNSPEC;
+ } else {
+ if ((size_t) ai->ai_addrlen
+ <= sizeof(statp->nsaddr_list[0])) {
+ memcpy(&statp->nsaddr_list[nserv], ai->ai_addr,
+ ai->ai_addrlen);
+ } else {
+ statp->nsaddr_list[nserv].sin_family = AF_UNSPEC;
+ }
+ }
+ } else {
+ XLOG("_resolv_populate_res_for_iface found too long addrlen");
+ }
+ }
+ statp->nscount = nserv;
+ // now do search domains. Note that we cache the offsets as this code runs alot
+ // but the setting/offset-computer only runs when set/changed
+ strlcpy(statp->defdname, info->defdname, sizeof(statp->defdname));
+ register char **pp = statp->dnsrch;
+ register int *p = info->dnsrch_offset;
+ while (pp < statp->dnsrch + MAXDNSRCH && *p != -1) {
+ *pp++ = &statp->defdname + *p++;
+ }
+ }
+ pthread_mutex_unlock(&_res_cache_list_lock);
+}