summaryrefslogtreecommitdiff
path: root/runtime/gc/accounting/space_bitmap.cc
blob: 3c5688d5bd02d78edb9245553012cc81b9c0f452 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "space_bitmap-inl.h"

#include "android-base/stringprintf.h"

#include "art_field-inl.h"
#include "base/mem_map.h"
#include "dex/dex_file-inl.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array.h"

namespace art {
namespace gc {
namespace accounting {

using android::base::StringPrintf;

template<size_t kAlignment>
size_t SpaceBitmap<kAlignment>::ComputeBitmapSize(uint64_t capacity) {
  // Number of space (heap) bytes covered by one bitmap word.
  // (Word size in bytes = `sizeof(intptr_t)`, which is expected to be
  // 4 on a 32-bit architecture and 8 on a 64-bit one.)
  const uint64_t kBytesCoveredPerWord = kAlignment * kBitsPerIntPtrT;
  // Calculate the number of words required to cover a space (heap)
  // having a size of `capacity` bytes.
  return (RoundUp(capacity, kBytesCoveredPerWord) / kBytesCoveredPerWord) * sizeof(intptr_t);
}

template<size_t kAlignment>
size_t SpaceBitmap<kAlignment>::ComputeHeapSize(uint64_t bitmap_bytes) {
  return bitmap_bytes * kBitsPerByte * kAlignment;
}

template<size_t kAlignment>
SpaceBitmap<kAlignment> SpaceBitmap<kAlignment>::CreateFromMemMap(
    const std::string& name, MemMap&& mem_map, uint8_t* heap_begin, size_t heap_capacity) {
  CHECK(mem_map.IsValid());
  uintptr_t* bitmap_begin = reinterpret_cast<uintptr_t*>(mem_map.Begin());
  const size_t bitmap_size = ComputeBitmapSize(heap_capacity);
  return { name, std::move(mem_map), bitmap_begin, bitmap_size, heap_begin, heap_capacity };
}

template<size_t kAlignment>
SpaceBitmap<kAlignment>::SpaceBitmap(const std::string& name,
                                     MemMap&& mem_map,
                                     uintptr_t* bitmap_begin,
                                     size_t bitmap_size,
                                     const void* heap_begin,
                                     size_t heap_capacity)
    : mem_map_(std::move(mem_map)),
      bitmap_begin_(reinterpret_cast<Atomic<uintptr_t>*>(bitmap_begin)),
      bitmap_size_(bitmap_size),
      heap_begin_(reinterpret_cast<uintptr_t>(heap_begin)),
      heap_limit_(reinterpret_cast<uintptr_t>(heap_begin) + heap_capacity),
      name_(name) {
  CHECK(bitmap_begin_ != nullptr);
  CHECK_NE(bitmap_size, 0U);
}

template<size_t kAlignment>
SpaceBitmap<kAlignment>::~SpaceBitmap() {}

template<size_t kAlignment>
SpaceBitmap<kAlignment> SpaceBitmap<kAlignment>::Create(
    const std::string& name, uint8_t* heap_begin, size_t heap_capacity) {
  // Round up since `heap_capacity` is not necessarily a multiple of `kAlignment * kBitsPerIntPtrT`
  // (we represent one word as an `intptr_t`).
  const size_t bitmap_size = ComputeBitmapSize(heap_capacity);
  std::string error_msg;
  MemMap mem_map = MemMap::MapAnonymous(name.c_str(),
                                        bitmap_size,
                                        PROT_READ | PROT_WRITE,
                                        /*low_4gb=*/ false,
                                        &error_msg);
  if (UNLIKELY(!mem_map.IsValid())) {
    LOG(ERROR) << "Failed to allocate bitmap " << name << ": " << error_msg;
    return SpaceBitmap<kAlignment>();
  }
  return CreateFromMemMap(name, std::move(mem_map), heap_begin, heap_capacity);
}

template<size_t kAlignment>
void SpaceBitmap<kAlignment>::SetHeapLimit(uintptr_t new_end) {
  DCHECK_ALIGNED(new_end, kBitsPerIntPtrT * kAlignment);
  size_t new_size = OffsetToIndex(new_end - heap_begin_) * sizeof(intptr_t);
  if (new_size < bitmap_size_) {
    bitmap_size_ = new_size;
  }
  heap_limit_ = new_end;
  // Not sure if doing this trim is necessary, since nothing past the end of the heap capacity
  // should be marked.
}

template<size_t kAlignment>
std::string SpaceBitmap<kAlignment>::Dump() const {
  return StringPrintf("%s: %p-%p", name_.c_str(), reinterpret_cast<void*>(HeapBegin()),
                      reinterpret_cast<void*>(HeapLimit()));
}

template<size_t kAlignment>
void SpaceBitmap<kAlignment>::Clear() {
  if (bitmap_begin_ != nullptr) {
    mem_map_.MadviseDontNeedAndZero();
  }
}

template<size_t kAlignment>
void SpaceBitmap<kAlignment>::ClearRange(const mirror::Object* begin, const mirror::Object* end) {
  uintptr_t begin_offset = reinterpret_cast<uintptr_t>(begin) - heap_begin_;
  uintptr_t end_offset = reinterpret_cast<uintptr_t>(end) - heap_begin_;
  // Align begin and end to bitmap word boundaries.
  while (begin_offset < end_offset && OffsetBitIndex(begin_offset) != 0) {
    Clear(reinterpret_cast<mirror::Object*>(heap_begin_ + begin_offset));
    begin_offset += kAlignment;
  }
  while (begin_offset < end_offset && OffsetBitIndex(end_offset) != 0) {
    end_offset -= kAlignment;
    Clear(reinterpret_cast<mirror::Object*>(heap_begin_ + end_offset));
  }
  // Bitmap word boundaries.
  const uintptr_t start_index = OffsetToIndex(begin_offset);
  const uintptr_t end_index = OffsetToIndex(end_offset);
  ZeroAndReleasePages(reinterpret_cast<uint8_t*>(&bitmap_begin_[start_index]),
                      (end_index - start_index) * sizeof(*bitmap_begin_));
}

template<size_t kAlignment>
void SpaceBitmap<kAlignment>::CopyFrom(SpaceBitmap* source_bitmap) {
  DCHECK_EQ(Size(), source_bitmap->Size());
  const size_t count = source_bitmap->Size() / sizeof(intptr_t);
  Atomic<uintptr_t>* const src = source_bitmap->Begin();
  Atomic<uintptr_t>* const dest = Begin();
  for (size_t i = 0; i < count; ++i) {
    dest[i].store(src[i].load(std::memory_order_relaxed), std::memory_order_relaxed);
  }
}

template<size_t kAlignment>
void SpaceBitmap<kAlignment>::SweepWalk(const SpaceBitmap<kAlignment>& live_bitmap,
                                        const SpaceBitmap<kAlignment>& mark_bitmap,
                                        uintptr_t sweep_begin, uintptr_t sweep_end,
                                        SpaceBitmap::SweepCallback* callback, void* arg) {
  CHECK(live_bitmap.bitmap_begin_ != nullptr);
  CHECK(mark_bitmap.bitmap_begin_ != nullptr);
  CHECK_EQ(live_bitmap.heap_begin_, mark_bitmap.heap_begin_);
  CHECK_EQ(live_bitmap.bitmap_size_, mark_bitmap.bitmap_size_);
  CHECK(callback != nullptr);
  CHECK_LE(sweep_begin, sweep_end);
  CHECK_GE(sweep_begin, live_bitmap.heap_begin_);

  if (sweep_end <= sweep_begin) {
    return;
  }

  size_t buffer_size = sizeof(intptr_t) * kBitsPerIntPtrT;
  Atomic<uintptr_t>* live = live_bitmap.bitmap_begin_;
  Atomic<uintptr_t>* mark = mark_bitmap.bitmap_begin_;
  const size_t start = OffsetToIndex(sweep_begin - live_bitmap.heap_begin_);
  const size_t end = OffsetToIndex(sweep_end - live_bitmap.heap_begin_ - 1);
  CHECK_LT(end, live_bitmap.Size() / sizeof(intptr_t));

  if (Runtime::Current()->IsRunningOnMemoryTool()) {
    // For memory tool, make the buffer large enough to hold all allocations. This is done since
    // we get the size of objects (and hence read the class) inside of the freeing logic. This can
    // cause crashes for unloaded classes since the class may get zeroed out before it is read.
    // See b/131542326
    for (size_t i = start; i <= end; i++) {
      uintptr_t garbage =
          live[i].load(std::memory_order_relaxed) & ~mark[i].load(std::memory_order_relaxed);
      buffer_size += POPCOUNT(garbage);
    }
  }
  std::vector<mirror::Object*> pointer_buf(buffer_size);
  mirror::Object** cur_pointer = &pointer_buf[0];
  mirror::Object** pointer_end = cur_pointer + (buffer_size - kBitsPerIntPtrT);

  for (size_t i = start; i <= end; i++) {
    uintptr_t garbage =
        live[i].load(std::memory_order_relaxed) & ~mark[i].load(std::memory_order_relaxed);
    if (UNLIKELY(garbage != 0)) {
      uintptr_t ptr_base = IndexToOffset(i) + live_bitmap.heap_begin_;
      do {
        const size_t shift = CTZ(garbage);
        garbage ^= (static_cast<uintptr_t>(1)) << shift;
        *cur_pointer++ = reinterpret_cast<mirror::Object*>(ptr_base + shift * kAlignment);
      } while (garbage != 0);
      // Make sure that there are always enough slots available for an
      // entire word of one bits.
      if (cur_pointer >= pointer_end) {
        (*callback)(cur_pointer - &pointer_buf[0], &pointer_buf[0], arg);
        cur_pointer  = &pointer_buf[0];
      }
    }
  }
  if (cur_pointer > &pointer_buf[0]) {
    (*callback)(cur_pointer - &pointer_buf[0], &pointer_buf[0], arg);
  }
}

template class SpaceBitmap<kObjectAlignment>;
template class SpaceBitmap<kPageSize>;

}  // namespace accounting
}  // namespace gc
}  // namespace art