1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "inliner.h"
#include "art_method-inl.h"
#include "builder.h"
#include "class_linker.h"
#include "constant_folding.h"
#include "dead_code_elimination.h"
#include "dex/verified_method.h"
#include "dex/verification_results.h"
#include "driver/compiler_driver-inl.h"
#include "driver/compiler_options.h"
#include "driver/dex_compilation_unit.h"
#include "instruction_simplifier.h"
#include "intrinsics.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache.h"
#include "nodes.h"
#include "optimizing_compiler.h"
#include "reference_type_propagation.h"
#include "register_allocator.h"
#include "quick/inline_method_analyser.h"
#include "sharpening.h"
#include "ssa_builder.h"
#include "ssa_phi_elimination.h"
#include "scoped_thread_state_change.h"
#include "thread.h"
namespace art {
static constexpr size_t kMaximumNumberOfHInstructions = 32;
// Limit the number of dex registers that we accumulate while inlining
// to avoid creating large amount of nested environments.
static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 64;
// Avoid inlining within a huge method due to memory pressure.
static constexpr size_t kMaximumCodeUnitSize = 4096;
void HInliner::Run() {
const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions();
if ((compiler_options.GetInlineDepthLimit() == 0)
|| (compiler_options.GetInlineMaxCodeUnits() == 0)) {
return;
}
if (caller_compilation_unit_.GetCodeItem()->insns_size_in_code_units_ > kMaximumCodeUnitSize) {
return;
}
if (graph_->IsDebuggable()) {
// For simplicity, we currently never inline when the graph is debuggable. This avoids
// doing some logic in the runtime to discover if a method could have been inlined.
return;
}
const ArenaVector<HBasicBlock*>& blocks = graph_->GetReversePostOrder();
DCHECK(!blocks.empty());
HBasicBlock* next_block = blocks[0];
for (size_t i = 0; i < blocks.size(); ++i) {
// Because we are changing the graph when inlining, we need to remember the next block.
// This avoids doing the inlining work again on the inlined blocks.
if (blocks[i] != next_block) {
continue;
}
HBasicBlock* block = next_block;
next_block = (i == blocks.size() - 1) ? nullptr : blocks[i + 1];
for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
HInstruction* next = instruction->GetNext();
HInvoke* call = instruction->AsInvoke();
// As long as the call is not intrinsified, it is worth trying to inline.
if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) {
// We use the original invoke type to ensure the resolution of the called method
// works properly.
if (!TryInline(call)) {
if (kIsDebugBuild && IsCompilingWithCoreImage()) {
std::string callee_name =
PrettyMethod(call->GetDexMethodIndex(), *outer_compilation_unit_.GetDexFile());
bool should_inline = callee_name.find("$inline$") != std::string::npos;
CHECK(!should_inline) << "Could not inline " << callee_name;
}
} else {
if (kIsDebugBuild && IsCompilingWithCoreImage()) {
std::string callee_name =
PrettyMethod(call->GetDexMethodIndex(), *outer_compilation_unit_.GetDexFile());
bool must_not_inline = callee_name.find("$noinline$") != std::string::npos;
CHECK(!must_not_inline) << "Should not have inlined " << callee_name;
}
}
}
instruction = next;
}
}
}
static bool IsMethodOrDeclaringClassFinal(ArtMethod* method)
SHARED_REQUIRES(Locks::mutator_lock_) {
return method->IsFinal() || method->GetDeclaringClass()->IsFinal();
}
/**
* Given the `resolved_method` looked up in the dex cache, try to find
* the actual runtime target of an interface or virtual call.
* Return nullptr if the runtime target cannot be proven.
*/
static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ArtMethod* resolved_method)
SHARED_REQUIRES(Locks::mutator_lock_) {
if (IsMethodOrDeclaringClassFinal(resolved_method)) {
// No need to lookup further, the resolved method will be the target.
return resolved_method;
}
HInstruction* receiver = invoke->InputAt(0);
if (receiver->IsNullCheck()) {
// Due to multiple levels of inlining within the same pass, it might be that
// null check does not have the reference type of the actual receiver.
receiver = receiver->InputAt(0);
}
ReferenceTypeInfo info = receiver->GetReferenceTypeInfo();
DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName();
if (!info.IsExact()) {
// We currently only support inlining with known receivers.
// TODO: Remove this check, we should be able to inline final methods
// on unknown receivers.
return nullptr;
} else if (info.GetTypeHandle()->IsInterface()) {
// Statically knowing that the receiver has an interface type cannot
// help us find what is the target method.
return nullptr;
} else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) {
// The method that we're trying to call is not in the receiver's class or super classes.
return nullptr;
} else if (info.GetTypeHandle()->IsErroneous()) {
// If the type is erroneous, do not go further, as we are going to query the vtable or
// imt table, that we can only safely do on non-erroneous classes.
return nullptr;
}
ClassLinker* cl = Runtime::Current()->GetClassLinker();
size_t pointer_size = cl->GetImagePointerSize();
if (invoke->IsInvokeInterface()) {
resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface(
resolved_method, pointer_size);
} else {
DCHECK(invoke->IsInvokeVirtual());
resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual(
resolved_method, pointer_size);
}
if (resolved_method == nullptr) {
// The information we had on the receiver was not enough to find
// the target method. Since we check above the exact type of the receiver,
// the only reason this can happen is an IncompatibleClassChangeError.
return nullptr;
} else if (!resolved_method->IsInvokable()) {
// The information we had on the receiver was not enough to find
// the target method. Since we check above the exact type of the receiver,
// the only reason this can happen is an IncompatibleClassChangeError.
return nullptr;
} else if (IsMethodOrDeclaringClassFinal(resolved_method)) {
// A final method has to be the target method.
return resolved_method;
} else if (info.IsExact()) {
// If we found a method and the receiver's concrete type is statically
// known, we know for sure the target.
return resolved_method;
} else {
// Even if we did find a method, the receiver type was not enough to
// statically find the runtime target.
return nullptr;
}
}
static uint32_t FindMethodIndexIn(ArtMethod* method,
const DexFile& dex_file,
uint32_t referrer_index)
SHARED_REQUIRES(Locks::mutator_lock_) {
if (IsSameDexFile(*method->GetDexFile(), dex_file)) {
return method->GetDexMethodIndex();
} else {
return method->FindDexMethodIndexInOtherDexFile(dex_file, referrer_index);
}
}
static uint32_t FindClassIndexIn(mirror::Class* cls,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache)
SHARED_REQUIRES(Locks::mutator_lock_) {
uint32_t index = DexFile::kDexNoIndex;
if (cls->GetDexCache() == nullptr) {
DCHECK(cls->IsArrayClass()) << PrettyClass(cls);
index = cls->FindTypeIndexInOtherDexFile(dex_file);
} else if (cls->GetDexTypeIndex() == DexFile::kDexNoIndex16) {
DCHECK(cls->IsProxyClass()) << PrettyClass(cls);
// TODO: deal with proxy classes.
} else if (IsSameDexFile(cls->GetDexFile(), dex_file)) {
index = cls->GetDexTypeIndex();
} else {
index = cls->FindTypeIndexInOtherDexFile(dex_file);
}
if (index != DexFile::kDexNoIndex) {
// Update the dex cache to ensure the class is in. The generated code will
// consider it is. We make it safe by updating the dex cache, as other
// dex files might also load the class, and there is no guarantee the dex
// cache of the dex file of the class will be updated.
if (dex_cache->GetResolvedType(index) == nullptr) {
dex_cache->SetResolvedType(index, cls);
}
}
return index;
}
class ScopedProfilingInfoInlineUse {
public:
explicit ScopedProfilingInfoInlineUse(ArtMethod* method, Thread* self)
: method_(method),
self_(self),
// Fetch the profiling info ahead of using it. If it's null when fetching,
// we should not call JitCodeCache::DoneInlining.
profiling_info_(
Runtime::Current()->GetJit()->GetCodeCache()->NotifyCompilerUse(method, self)) {
}
~ScopedProfilingInfoInlineUse() {
if (profiling_info_ != nullptr) {
size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
DCHECK_EQ(profiling_info_, method_->GetProfilingInfo(pointer_size));
Runtime::Current()->GetJit()->GetCodeCache()->DoneCompilerUse(method_, self_);
}
}
ProfilingInfo* GetProfilingInfo() const { return profiling_info_; }
private:
ArtMethod* const method_;
Thread* const self_;
ProfilingInfo* const profiling_info_;
};
bool HInliner::TryInline(HInvoke* invoke_instruction) {
if (invoke_instruction->IsInvokeUnresolved()) {
return false; // Don't bother to move further if we know the method is unresolved.
}
uint32_t method_index = invoke_instruction->GetDexMethodIndex();
ScopedObjectAccess soa(Thread::Current());
const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
VLOG(compiler) << "Try inlining " << PrettyMethod(method_index, caller_dex_file);
ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
// We can query the dex cache directly. The verifier has populated it already.
ArtMethod* resolved_method;
ArtMethod* actual_method = nullptr;
if (invoke_instruction->IsInvokeStaticOrDirect()) {
if (invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit()) {
VLOG(compiler) << "Not inlining a String.<init> method";
return false;
}
MethodReference ref = invoke_instruction->AsInvokeStaticOrDirect()->GetTargetMethod();
mirror::DexCache* const dex_cache = (&caller_dex_file == ref.dex_file)
? caller_compilation_unit_.GetDexCache().Get()
: class_linker->FindDexCache(soa.Self(), *ref.dex_file);
resolved_method = dex_cache->GetResolvedMethod(
ref.dex_method_index, class_linker->GetImagePointerSize());
// actual_method == resolved_method for direct or static calls.
actual_method = resolved_method;
} else {
resolved_method = caller_compilation_unit_.GetDexCache().Get()->GetResolvedMethod(
method_index, class_linker->GetImagePointerSize());
if (resolved_method != nullptr) {
// Check if we can statically find the method.
actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, resolved_method);
}
}
if (resolved_method == nullptr) {
// TODO: Can this still happen?
// Method cannot be resolved if it is in another dex file we do not have access to.
VLOG(compiler) << "Method cannot be resolved " << PrettyMethod(method_index, caller_dex_file);
return false;
}
if (actual_method != nullptr) {
bool result = TryInlineAndReplace(invoke_instruction, actual_method, /* do_rtp */ true);
if (result && !invoke_instruction->IsInvokeStaticOrDirect()) {
MaybeRecordStat(kInlinedInvokeVirtualOrInterface);
}
return result;
}
DCHECK(!invoke_instruction->IsInvokeStaticOrDirect());
// Check if we can use an inline cache.
ArtMethod* caller = graph_->GetArtMethod();
if (Runtime::Current()->UseJit()) {
// Under JIT, we should always know the caller.
DCHECK(caller != nullptr);
ScopedProfilingInfoInlineUse spiis(caller, soa.Self());
ProfilingInfo* profiling_info = spiis.GetProfilingInfo();
if (profiling_info != nullptr) {
const InlineCache& ic = *profiling_info->GetInlineCache(invoke_instruction->GetDexPc());
if (ic.IsUninitialized()) {
VLOG(compiler) << "Interface or virtual call to "
<< PrettyMethod(method_index, caller_dex_file)
<< " is not hit and not inlined";
return false;
} else if (ic.IsMonomorphic()) {
MaybeRecordStat(kMonomorphicCall);
return TryInlineMonomorphicCall(invoke_instruction, resolved_method, ic);
} else if (ic.IsPolymorphic()) {
MaybeRecordStat(kPolymorphicCall);
return TryInlinePolymorphicCall(invoke_instruction, resolved_method, ic);
} else {
DCHECK(ic.IsMegamorphic());
VLOG(compiler) << "Interface or virtual call to "
<< PrettyMethod(method_index, caller_dex_file)
<< " is megamorphic and not inlined";
MaybeRecordStat(kMegamorphicCall);
return false;
}
}
}
VLOG(compiler) << "Interface or virtual call to "
<< PrettyMethod(method_index, caller_dex_file)
<< " could not be statically determined";
return false;
}
HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker,
HInstruction* receiver,
uint32_t dex_pc) const {
ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0);
DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
HInstanceFieldGet* result = new (graph_->GetArena()) HInstanceFieldGet(
receiver,
Primitive::kPrimNot,
field->GetOffset(),
field->IsVolatile(),
field->GetDexFieldIndex(),
field->GetDeclaringClass()->GetDexClassDefIndex(),
*field->GetDexFile(),
handles_->NewHandle(field->GetDexCache()),
dex_pc);
// The class of a field is effectively final, and does not have any memory dependencies.
result->SetSideEffects(SideEffects::None());
return result;
}
bool HInliner::TryInlineMonomorphicCall(HInvoke* invoke_instruction,
ArtMethod* resolved_method,
const InlineCache& ic) {
DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
<< invoke_instruction->DebugName();
const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
uint32_t class_index = FindClassIndexIn(
ic.GetMonomorphicType(), caller_dex_file, caller_compilation_unit_.GetDexCache());
if (class_index == DexFile::kDexNoIndex) {
VLOG(compiler) << "Call to " << PrettyMethod(resolved_method)
<< " from inline cache is not inlined because its class is not"
<< " accessible to the caller";
return false;
}
ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
size_t pointer_size = class_linker->GetImagePointerSize();
if (invoke_instruction->IsInvokeInterface()) {
resolved_method = ic.GetMonomorphicType()->FindVirtualMethodForInterface(
resolved_method, pointer_size);
} else {
DCHECK(invoke_instruction->IsInvokeVirtual());
resolved_method = ic.GetMonomorphicType()->FindVirtualMethodForVirtual(
resolved_method, pointer_size);
}
DCHECK(resolved_method != nullptr);
HInstruction* receiver = invoke_instruction->InputAt(0);
HInstruction* cursor = invoke_instruction->GetPrevious();
HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
if (!TryInlineAndReplace(invoke_instruction, resolved_method, /* do_rtp */ false)) {
return false;
}
// We successfully inlined, now add a guard.
bool is_referrer =
(ic.GetMonomorphicType() == outermost_graph_->GetArtMethod()->GetDeclaringClass());
AddTypeGuard(receiver,
cursor,
bb_cursor,
class_index,
is_referrer,
invoke_instruction,
/* with_deoptimization */ true);
// Run type propagation to get the guard typed, and eventually propagate the
// type of the receiver.
ReferenceTypePropagation rtp_fixup(graph_, handles_, /* is_first_run */ false);
rtp_fixup.Run();
MaybeRecordStat(kInlinedMonomorphicCall);
return true;
}
HInstruction* HInliner::AddTypeGuard(HInstruction* receiver,
HInstruction* cursor,
HBasicBlock* bb_cursor,
uint32_t class_index,
bool is_referrer,
HInstruction* invoke_instruction,
bool with_deoptimization) {
ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
class_linker, receiver, invoke_instruction->GetDexPc());
const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
// Note that we will just compare the classes, so we don't need Java semantics access checks.
// Also, the caller of `AddTypeGuard` must have guaranteed that the class is in the dex cache.
HLoadClass* load_class = new (graph_->GetArena()) HLoadClass(graph_->GetCurrentMethod(),
class_index,
caller_dex_file,
is_referrer,
invoke_instruction->GetDexPc(),
/* needs_access_check */ false,
/* is_in_dex_cache */ true);
HNotEqual* compare = new (graph_->GetArena()) HNotEqual(load_class, receiver_class);
// TODO: Extend reference type propagation to understand the guard.
if (cursor != nullptr) {
bb_cursor->InsertInstructionAfter(receiver_class, cursor);
} else {
bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
}
bb_cursor->InsertInstructionAfter(load_class, receiver_class);
bb_cursor->InsertInstructionAfter(compare, load_class);
if (with_deoptimization) {
HDeoptimize* deoptimize = new (graph_->GetArena()) HDeoptimize(
compare, invoke_instruction->GetDexPc());
bb_cursor->InsertInstructionAfter(deoptimize, compare);
deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
}
return compare;
}
bool HInliner::TryInlinePolymorphicCall(HInvoke* invoke_instruction,
ArtMethod* resolved_method,
const InlineCache& ic) {
DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
<< invoke_instruction->DebugName();
if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, resolved_method, ic)) {
return true;
}
ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
size_t pointer_size = class_linker->GetImagePointerSize();
const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
bool all_targets_inlined = true;
bool one_target_inlined = false;
for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
if (ic.GetTypeAt(i) == nullptr) {
break;
}
ArtMethod* method = nullptr;
if (invoke_instruction->IsInvokeInterface()) {
method = ic.GetTypeAt(i)->FindVirtualMethodForInterface(
resolved_method, pointer_size);
} else {
DCHECK(invoke_instruction->IsInvokeVirtual());
method = ic.GetTypeAt(i)->FindVirtualMethodForVirtual(
resolved_method, pointer_size);
}
HInstruction* receiver = invoke_instruction->InputAt(0);
HInstruction* cursor = invoke_instruction->GetPrevious();
HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
uint32_t class_index = FindClassIndexIn(
ic.GetTypeAt(i), caller_dex_file, caller_compilation_unit_.GetDexCache());
HInstruction* return_replacement = nullptr;
if (class_index == DexFile::kDexNoIndex ||
!TryBuildAndInline(invoke_instruction, method, &return_replacement)) {
all_targets_inlined = false;
} else {
one_target_inlined = true;
bool is_referrer = (ic.GetTypeAt(i) == outermost_graph_->GetArtMethod()->GetDeclaringClass());
// If we have inlined all targets before, and this receiver is the last seen,
// we deoptimize instead of keeping the original invoke instruction.
bool deoptimize = all_targets_inlined &&
(i != InlineCache::kIndividualCacheSize - 1) &&
(ic.GetTypeAt(i + 1) == nullptr);
HInstruction* compare = AddTypeGuard(
receiver, cursor, bb_cursor, class_index, is_referrer, invoke_instruction, deoptimize);
if (deoptimize) {
if (return_replacement != nullptr) {
invoke_instruction->ReplaceWith(return_replacement);
}
invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
// Because the inline cache data can be populated concurrently, we force the end of the
// iteration. Otherhwise, we could see a new receiver type.
break;
} else {
CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
}
}
}
if (!one_target_inlined) {
VLOG(compiler) << "Call to " << PrettyMethod(resolved_method)
<< " from inline cache is not inlined because none"
<< " of its targets could be inlined";
return false;
}
MaybeRecordStat(kInlinedPolymorphicCall);
// Run type propagation to get the guards typed.
ReferenceTypePropagation rtp_fixup(graph_, handles_, /* is_first_run */ false);
rtp_fixup.Run();
return true;
}
void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare,
HInstruction* return_replacement,
HInstruction* invoke_instruction) {
uint32_t dex_pc = invoke_instruction->GetDexPc();
HBasicBlock* cursor_block = compare->GetBlock();
HBasicBlock* original_invoke_block = invoke_instruction->GetBlock();
ArenaAllocator* allocator = graph_->GetArena();
// Spit the block after the compare: `cursor_block` will now be the start of the diamond,
// and the returned block is the start of the then branch (that could contain multiple blocks).
HBasicBlock* then = cursor_block->SplitAfterForInlining(compare);
// Split the block containing the invoke before and after the invoke. The returned block
// of the split before will contain the invoke and will be the otherwise branch of
// the diamond. The returned block of the split after will be the merge block
// of the diamond.
HBasicBlock* end_then = invoke_instruction->GetBlock();
HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction);
HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction);
// If the methods we are inlining return a value, we create a phi in the merge block
// that will have the `invoke_instruction and the `return_replacement` as inputs.
if (return_replacement != nullptr) {
HPhi* phi = new (allocator) HPhi(
allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc);
merge->AddPhi(phi);
invoke_instruction->ReplaceWith(phi);
phi->AddInput(return_replacement);
phi->AddInput(invoke_instruction);
}
// Add the control flow instructions.
otherwise->AddInstruction(new (allocator) HGoto(dex_pc));
end_then->AddInstruction(new (allocator) HGoto(dex_pc));
cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc));
// Add the newly created blocks to the graph.
graph_->AddBlock(then);
graph_->AddBlock(otherwise);
graph_->AddBlock(merge);
// Set up successor (and implictly predecessor) relations.
cursor_block->AddSuccessor(otherwise);
cursor_block->AddSuccessor(then);
end_then->AddSuccessor(merge);
otherwise->AddSuccessor(merge);
// Set up dominance information.
then->SetDominator(cursor_block);
cursor_block->AddDominatedBlock(then);
otherwise->SetDominator(cursor_block);
cursor_block->AddDominatedBlock(otherwise);
merge->SetDominator(cursor_block);
cursor_block->AddDominatedBlock(merge);
// Update the revert post order.
size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block);
MakeRoomFor(&graph_->reverse_post_order_, 1, index);
graph_->reverse_post_order_[++index] = then;
index = IndexOfElement(graph_->reverse_post_order_, end_then);
MakeRoomFor(&graph_->reverse_post_order_, 2, index);
graph_->reverse_post_order_[++index] = otherwise;
graph_->reverse_post_order_[++index] = merge;
graph_->UpdateLoopAndTryInformationOfNewBlock(
then, original_invoke_block, /* replace_if_back_edge */ false);
graph_->UpdateLoopAndTryInformationOfNewBlock(
otherwise, original_invoke_block, /* replace_if_back_edge */ false);
// In case the original invoke location was a back edge, we need to update
// the loop to now have the merge block as a back edge.
graph_->UpdateLoopAndTryInformationOfNewBlock(
merge, original_invoke_block, /* replace_if_back_edge */ true);
}
bool HInliner::TryInlinePolymorphicCallToSameTarget(HInvoke* invoke_instruction,
ArtMethod* resolved_method,
const InlineCache& ic) {
// This optimization only works under JIT for now.
DCHECK(Runtime::Current()->UseJit());
if (graph_->GetInstructionSet() == kMips64) {
// TODO: Support HClassTableGet for mips64.
return false;
}
ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
size_t pointer_size = class_linker->GetImagePointerSize();
DCHECK(resolved_method != nullptr);
ArtMethod* actual_method = nullptr;
size_t method_index = invoke_instruction->IsInvokeVirtual()
? invoke_instruction->AsInvokeVirtual()->GetVTableIndex()
: invoke_instruction->AsInvokeInterface()->GetImtIndex();
// Check whether we are actually calling the same method among
// the different types seen.
for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
if (ic.GetTypeAt(i) == nullptr) {
break;
}
ArtMethod* new_method = nullptr;
if (invoke_instruction->IsInvokeInterface()) {
new_method = ic.GetTypeAt(i)->GetEmbeddedImTableEntry(
method_index % mirror::Class::kImtSize, pointer_size);
if (new_method->IsRuntimeMethod()) {
// Bail out as soon as we see a conflict trampoline in one of the target's
// interface table.
return false;
}
} else {
DCHECK(invoke_instruction->IsInvokeVirtual());
new_method = ic.GetTypeAt(i)->GetEmbeddedVTableEntry(method_index, pointer_size);
}
DCHECK(new_method != nullptr);
if (actual_method == nullptr) {
actual_method = new_method;
} else if (actual_method != new_method) {
// Different methods, bailout.
VLOG(compiler) << "Call to " << PrettyMethod(resolved_method)
<< " from inline cache is not inlined because it resolves"
<< " to different methods";
return false;
}
}
HInstruction* receiver = invoke_instruction->InputAt(0);
HInstruction* cursor = invoke_instruction->GetPrevious();
HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
if (!TryInlineAndReplace(invoke_instruction, actual_method, /* do_rtp */ false)) {
return false;
}
// We successfully inlined, now add a guard.
HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
class_linker, receiver, invoke_instruction->GetDexPc());
Primitive::Type type = Is64BitInstructionSet(graph_->GetInstructionSet())
? Primitive::kPrimLong
: Primitive::kPrimInt;
HClassTableGet* class_table_get = new (graph_->GetArena()) HClassTableGet(
receiver_class,
type,
invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable
: HClassTableGet::TableKind::kIMTable,
method_index,
invoke_instruction->GetDexPc());
HConstant* constant;
if (type == Primitive::kPrimLong) {
constant = graph_->GetLongConstant(
reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
} else {
constant = graph_->GetIntConstant(
reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
}
HNotEqual* compare = new (graph_->GetArena()) HNotEqual(class_table_get, constant);
HDeoptimize* deoptimize = new (graph_->GetArena()) HDeoptimize(
compare, invoke_instruction->GetDexPc());
// TODO: Extend reference type propagation to understand the guard.
if (cursor != nullptr) {
bb_cursor->InsertInstructionAfter(receiver_class, cursor);
} else {
bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
}
bb_cursor->InsertInstructionAfter(class_table_get, receiver_class);
bb_cursor->InsertInstructionAfter(compare, class_table_get);
bb_cursor->InsertInstructionAfter(deoptimize, compare);
deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
// Run type propagation to get the guard typed.
ReferenceTypePropagation rtp_fixup(graph_, handles_, /* is_first_run */ false);
rtp_fixup.Run();
MaybeRecordStat(kInlinedPolymorphicCall);
return true;
}
bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction, ArtMethod* method, bool do_rtp) {
HInstruction* return_replacement = nullptr;
if (!TryBuildAndInline(invoke_instruction, method, &return_replacement)) {
return false;
}
if (return_replacement != nullptr) {
invoke_instruction->ReplaceWith(return_replacement);
}
invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
FixUpReturnReferenceType(invoke_instruction, method, return_replacement, do_rtp);
return true;
}
bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction,
ArtMethod* method,
HInstruction** return_replacement) {
const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
// Check whether we're allowed to inline. The outermost compilation unit is the relevant
// dex file here (though the transitivity of an inline chain would allow checking the calller).
if (!compiler_driver_->MayInline(method->GetDexFile(),
outer_compilation_unit_.GetDexFile())) {
if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) {
VLOG(compiler) << "Successfully replaced pattern of invoke " << PrettyMethod(method);
MaybeRecordStat(kReplacedInvokeWithSimplePattern);
return true;
}
VLOG(compiler) << "Won't inline " << PrettyMethod(method) << " in "
<< outer_compilation_unit_.GetDexFile()->GetLocation() << " ("
<< caller_compilation_unit_.GetDexFile()->GetLocation() << ") from "
<< method->GetDexFile()->GetLocation();
return false;
}
uint32_t method_index = FindMethodIndexIn(
method, caller_dex_file, invoke_instruction->GetDexMethodIndex());
if (method_index == DexFile::kDexNoIndex) {
VLOG(compiler) << "Call to "
<< PrettyMethod(method)
<< " cannot be inlined because unaccessible to caller";
return false;
}
bool same_dex_file = IsSameDexFile(*outer_compilation_unit_.GetDexFile(), *method->GetDexFile());
const DexFile::CodeItem* code_item = method->GetCodeItem();
if (code_item == nullptr) {
VLOG(compiler) << "Method " << PrettyMethod(method)
<< " is not inlined because it is native";
return false;
}
size_t inline_max_code_units = compiler_driver_->GetCompilerOptions().GetInlineMaxCodeUnits();
if (code_item->insns_size_in_code_units_ > inline_max_code_units) {
VLOG(compiler) << "Method " << PrettyMethod(method)
<< " is too big to inline: "
<< code_item->insns_size_in_code_units_
<< " > "
<< inline_max_code_units;
return false;
}
if (code_item->tries_size_ != 0) {
VLOG(compiler) << "Method " << PrettyMethod(method)
<< " is not inlined because of try block";
return false;
}
if (!method->GetDeclaringClass()->IsVerified()) {
uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex();
if (Runtime::Current()->UseJit() ||
!compiler_driver_->IsMethodVerifiedWithoutFailures(
method->GetDexMethodIndex(), class_def_idx, *method->GetDexFile())) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, caller_dex_file)
<< " couldn't be verified, so it cannot be inlined";
return false;
}
}
if (invoke_instruction->IsInvokeStaticOrDirect() &&
invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) {
// Case of a static method that cannot be inlined because it implicitly
// requires an initialization check of its declaring class.
VLOG(compiler) << "Method " << PrettyMethod(method_index, caller_dex_file)
<< " is not inlined because it is static and requires a clinit"
<< " check that cannot be emitted due to Dex cache limitations";
return false;
}
if (!TryBuildAndInlineHelper(invoke_instruction, method, same_dex_file, return_replacement)) {
return false;
}
VLOG(compiler) << "Successfully inlined " << PrettyMethod(method_index, caller_dex_file);
MaybeRecordStat(kInlinedInvoke);
return true;
}
static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction,
size_t arg_vreg_index)
SHARED_REQUIRES(Locks::mutator_lock_) {
size_t input_index = 0;
for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) {
DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
if (Primitive::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) {
++i;
DCHECK_NE(i, arg_vreg_index);
}
}
DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
return invoke_instruction->InputAt(input_index);
}
// Try to recognize known simple patterns and replace invoke call with appropriate instructions.
bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction,
ArtMethod* resolved_method,
HInstruction** return_replacement) {
InlineMethod inline_method;
if (!InlineMethodAnalyser::AnalyseMethodCode(resolved_method, &inline_method)) {
return false;
}
switch (inline_method.opcode) {
case kInlineOpNop:
DCHECK_EQ(invoke_instruction->GetType(), Primitive::kPrimVoid);
*return_replacement = nullptr;
break;
case kInlineOpReturnArg:
*return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction,
inline_method.d.return_data.arg);
break;
case kInlineOpNonWideConst:
if (resolved_method->GetShorty()[0] == 'L') {
DCHECK_EQ(inline_method.d.data, 0u);
*return_replacement = graph_->GetNullConstant();
} else {
*return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data));
}
break;
case kInlineOpIGet: {
const InlineIGetIPutData& data = inline_method.d.ifield_data;
if (data.method_is_static || data.object_arg != 0u) {
// TODO: Needs null check.
return false;
}
Handle<mirror::DexCache> dex_cache(handles_->NewHandle(resolved_method->GetDexCache()));
HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
HInstanceFieldGet* iget = CreateInstanceFieldGet(dex_cache, data.field_idx, obj);
DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset);
DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile);
invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction);
*return_replacement = iget;
break;
}
case kInlineOpIPut: {
const InlineIGetIPutData& data = inline_method.d.ifield_data;
if (data.method_is_static || data.object_arg != 0u) {
// TODO: Needs null check.
return false;
}
Handle<mirror::DexCache> dex_cache(handles_->NewHandle(resolved_method->GetDexCache()));
HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg);
HInstanceFieldSet* iput = CreateInstanceFieldSet(dex_cache, data.field_idx, obj, value);
DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset);
DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile);
invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
if (data.return_arg_plus1 != 0u) {
size_t return_arg = data.return_arg_plus1 - 1u;
*return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg);
}
break;
}
case kInlineOpConstructor: {
const InlineConstructorData& data = inline_method.d.constructor_data;
// Get the indexes to arrays for easier processing.
uint16_t iput_field_indexes[] = {
data.iput0_field_index, data.iput1_field_index, data.iput2_field_index
};
uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg };
static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch");
// Count valid field indexes.
size_t number_of_iputs = 0u;
while (number_of_iputs != arraysize(iput_field_indexes) &&
iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) {
// Check that there are no duplicate valid field indexes.
DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1,
iput_field_indexes + arraysize(iput_field_indexes),
iput_field_indexes[number_of_iputs]));
++number_of_iputs;
}
// Check that there are no valid field indexes in the rest of the array.
DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs,
iput_field_indexes + arraysize(iput_field_indexes),
[](uint16_t index) { return index != DexFile::kDexNoIndex16; }));
// Create HInstanceFieldSet for each IPUT that stores non-zero data.
Handle<mirror::DexCache> dex_cache;
HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, /* this */ 0u);
bool needs_constructor_barrier = false;
for (size_t i = 0; i != number_of_iputs; ++i) {
HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]);
if (!value->IsConstant() ||
(!value->AsConstant()->IsZero() && !value->IsNullConstant())) {
if (dex_cache.GetReference() == nullptr) {
dex_cache = handles_->NewHandle(resolved_method->GetDexCache());
}
uint16_t field_index = iput_field_indexes[i];
HInstanceFieldSet* iput = CreateInstanceFieldSet(dex_cache, field_index, obj, value);
invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
// Check whether the field is final. If it is, we need to add a barrier.
size_t pointer_size = InstructionSetPointerSize(codegen_->GetInstructionSet());
ArtField* resolved_field = dex_cache->GetResolvedField(field_index, pointer_size);
DCHECK(resolved_field != nullptr);
if (resolved_field->IsFinal()) {
needs_constructor_barrier = true;
}
}
}
if (needs_constructor_barrier) {
HMemoryBarrier* barrier = new (graph_->GetArena()) HMemoryBarrier(kStoreStore, kNoDexPc);
invoke_instruction->GetBlock()->InsertInstructionBefore(barrier, invoke_instruction);
}
*return_replacement = nullptr;
break;
}
default:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
return true;
}
HInstanceFieldGet* HInliner::CreateInstanceFieldGet(Handle<mirror::DexCache> dex_cache,
uint32_t field_index,
HInstruction* obj)
SHARED_REQUIRES(Locks::mutator_lock_) {
size_t pointer_size = InstructionSetPointerSize(codegen_->GetInstructionSet());
ArtField* resolved_field = dex_cache->GetResolvedField(field_index, pointer_size);
DCHECK(resolved_field != nullptr);
HInstanceFieldGet* iget = new (graph_->GetArena()) HInstanceFieldGet(
obj,
resolved_field->GetTypeAsPrimitiveType(),
resolved_field->GetOffset(),
resolved_field->IsVolatile(),
field_index,
resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
*dex_cache->GetDexFile(),
dex_cache,
// Read barrier generates a runtime call in slow path and we need a valid
// dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
/* dex_pc */ 0);
if (iget->GetType() == Primitive::kPrimNot) {
ReferenceTypePropagation rtp(graph_, handles_, /* is_first_run */ false);
rtp.Visit(iget);
}
return iget;
}
HInstanceFieldSet* HInliner::CreateInstanceFieldSet(Handle<mirror::DexCache> dex_cache,
uint32_t field_index,
HInstruction* obj,
HInstruction* value)
SHARED_REQUIRES(Locks::mutator_lock_) {
size_t pointer_size = InstructionSetPointerSize(codegen_->GetInstructionSet());
ArtField* resolved_field = dex_cache->GetResolvedField(field_index, pointer_size);
DCHECK(resolved_field != nullptr);
HInstanceFieldSet* iput = new (graph_->GetArena()) HInstanceFieldSet(
obj,
value,
resolved_field->GetTypeAsPrimitiveType(),
resolved_field->GetOffset(),
resolved_field->IsVolatile(),
field_index,
resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
*dex_cache->GetDexFile(),
dex_cache,
// Read barrier generates a runtime call in slow path and we need a valid
// dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
/* dex_pc */ 0);
return iput;
}
bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction,
ArtMethod* resolved_method,
bool same_dex_file,
HInstruction** return_replacement) {
ScopedObjectAccess soa(Thread::Current());
const DexFile::CodeItem* code_item = resolved_method->GetCodeItem();
const DexFile& callee_dex_file = *resolved_method->GetDexFile();
uint32_t method_index = resolved_method->GetDexMethodIndex();
ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
Handle<mirror::DexCache> dex_cache(handles_->NewHandle(resolved_method->GetDexCache()));
DexCompilationUnit dex_compilation_unit(
nullptr,
caller_compilation_unit_.GetClassLoader(),
class_linker,
callee_dex_file,
code_item,
resolved_method->GetDeclaringClass()->GetDexClassDefIndex(),
method_index,
resolved_method->GetAccessFlags(),
/* verified_method */ nullptr,
dex_cache);
bool requires_ctor_barrier = false;
if (dex_compilation_unit.IsConstructor()) {
// If it's a super invocation and we already generate a barrier there's no need
// to generate another one.
// We identify super calls by looking at the "this" pointer. If its value is the
// same as the local "this" pointer then we must have a super invocation.
bool is_super_invocation = invoke_instruction->InputAt(0)->IsParameterValue()
&& invoke_instruction->InputAt(0)->AsParameterValue()->IsThis();
if (is_super_invocation && graph_->ShouldGenerateConstructorBarrier()) {
requires_ctor_barrier = false;
} else {
Thread* self = Thread::Current();
requires_ctor_barrier = compiler_driver_->RequiresConstructorBarrier(self,
dex_compilation_unit.GetDexFile(),
dex_compilation_unit.GetClassDefIndex());
}
}
InvokeType invoke_type = invoke_instruction->GetOriginalInvokeType();
if (invoke_type == kInterface) {
// We have statically resolved the dispatch. To please the class linker
// at runtime, we change this call as if it was a virtual call.
invoke_type = kVirtual;
}
const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId();
HGraph* callee_graph = new (graph_->GetArena()) HGraph(
graph_->GetArena(),
callee_dex_file,
method_index,
requires_ctor_barrier,
compiler_driver_->GetInstructionSet(),
invoke_type,
graph_->IsDebuggable(),
/* osr */ false,
caller_instruction_counter);
callee_graph->SetArtMethod(resolved_method);
OptimizingCompilerStats inline_stats;
HGraphBuilder builder(callee_graph,
&dex_compilation_unit,
&outer_compilation_unit_,
resolved_method->GetDexFile(),
compiler_driver_,
&inline_stats,
resolved_method->GetQuickenedInfo(),
dex_cache);
if (builder.BuildGraph(*code_item, handles_) != kAnalysisSuccess) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be built, so cannot be inlined";
return false;
}
if (!RegisterAllocator::CanAllocateRegistersFor(*callee_graph,
compiler_driver_->GetInstructionSet())) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " cannot be inlined because of the register allocator";
return false;
}
size_t parameter_index = 0;
for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions());
!instructions.Done();
instructions.Advance()) {
HInstruction* current = instructions.Current();
if (current->IsParameterValue()) {
HInstruction* argument = invoke_instruction->InputAt(parameter_index++);
if (argument->IsNullConstant()) {
current->ReplaceWith(callee_graph->GetNullConstant());
} else if (argument->IsIntConstant()) {
current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue()));
} else if (argument->IsLongConstant()) {
current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue()));
} else if (argument->IsFloatConstant()) {
current->ReplaceWith(
callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue()));
} else if (argument->IsDoubleConstant()) {
current->ReplaceWith(
callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue()));
} else if (argument->GetType() == Primitive::kPrimNot) {
current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo());
current->AsParameterValue()->SetCanBeNull(argument->CanBeNull());
}
}
}
// Run simple optimizations on the graph.
HDeadCodeElimination dce(callee_graph, stats_);
HConstantFolding fold(callee_graph);
HSharpening sharpening(callee_graph, codegen_, dex_compilation_unit, compiler_driver_);
InstructionSimplifier simplify(callee_graph, stats_);
IntrinsicsRecognizer intrinsics(callee_graph, compiler_driver_, stats_);
HOptimization* optimizations[] = {
&intrinsics,
&sharpening,
&simplify,
&fold,
&dce,
};
for (size_t i = 0; i < arraysize(optimizations); ++i) {
HOptimization* optimization = optimizations[i];
optimization->Run();
}
size_t number_of_instructions_budget = kMaximumNumberOfHInstructions;
if (depth_ + 1 < compiler_driver_->GetCompilerOptions().GetInlineDepthLimit()) {
HInliner inliner(callee_graph,
outermost_graph_,
codegen_,
outer_compilation_unit_,
dex_compilation_unit,
compiler_driver_,
handles_,
stats_,
total_number_of_dex_registers_ + code_item->registers_size_,
depth_ + 1);
inliner.Run();
number_of_instructions_budget += inliner.number_of_inlined_instructions_;
}
// TODO: We should abort only if all predecessors throw. However,
// HGraph::InlineInto currently does not handle an exit block with
// a throw predecessor.
HBasicBlock* exit_block = callee_graph->GetExitBlock();
if (exit_block == nullptr) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because it has an infinite loop";
return false;
}
bool has_throw_predecessor = false;
for (HBasicBlock* predecessor : exit_block->GetPredecessors()) {
if (predecessor->GetLastInstruction()->IsThrow()) {
has_throw_predecessor = true;
break;
}
}
if (has_throw_predecessor) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because one branch always throws";
return false;
}
HReversePostOrderIterator it(*callee_graph);
it.Advance(); // Past the entry block, it does not contain instructions that prevent inlining.
size_t number_of_instructions = 0;
bool can_inline_environment =
total_number_of_dex_registers_ < kMaximumNumberOfCumulatedDexRegisters;
for (; !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
if (block->IsLoopHeader() && block->GetLoopInformation()->IsIrreducible()) {
// Don't inline methods with irreducible loops, they could prevent some
// optimizations to run.
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because it contains an irreducible loop";
return false;
}
for (HInstructionIterator instr_it(block->GetInstructions());
!instr_it.Done();
instr_it.Advance()) {
if (number_of_instructions++ == number_of_instructions_budget) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " is not inlined because its caller has reached"
<< " its instruction budget limit.";
return false;
}
HInstruction* current = instr_it.Current();
if (!can_inline_environment && current->NeedsEnvironment()) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " is not inlined because its caller has reached"
<< " its environment budget limit.";
return false;
}
if (current->IsInvokeInterface()) {
// Disable inlining of interface calls. The cost in case of entering the
// resolution conflict is currently too high.
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because it has an interface call.";
return false;
}
if (!same_dex_file && current->NeedsEnvironment()) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because " << current->DebugName()
<< " needs an environment and is in a different dex file";
return false;
}
if (!same_dex_file && current->NeedsDexCacheOfDeclaringClass()) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because " << current->DebugName()
<< " it is in a different dex file and requires access to the dex cache";
return false;
}
if (current->IsNewInstance() &&
(current->AsNewInstance()->GetEntrypoint() == kQuickAllocObjectWithAccessCheck)) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because it is using an entrypoint"
<< " with access checks";
// Allocation entrypoint does not handle inlined frames.
return false;
}
if (current->IsNewArray() &&
(current->AsNewArray()->GetEntrypoint() == kQuickAllocArrayWithAccessCheck)) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because it is using an entrypoint"
<< " with access checks";
// Allocation entrypoint does not handle inlined frames.
return false;
}
if (current->IsUnresolvedStaticFieldGet() ||
current->IsUnresolvedInstanceFieldGet() ||
current->IsUnresolvedStaticFieldSet() ||
current->IsUnresolvedInstanceFieldSet()) {
// Entrypoint for unresolved fields does not handle inlined frames.
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because it is using an unresolved"
<< " entrypoint";
return false;
}
}
}
number_of_inlined_instructions_ += number_of_instructions;
DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId())
<< "No instructions can be added to the outer graph while inner graph is being built";
const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId();
graph_->SetCurrentInstructionId(callee_instruction_counter);
*return_replacement = callee_graph->InlineInto(graph_, invoke_instruction);
DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId())
<< "No instructions can be added to the inner graph during inlining into the outer graph";
return true;
}
void HInliner::FixUpReturnReferenceType(HInvoke* invoke_instruction,
ArtMethod* resolved_method,
HInstruction* return_replacement,
bool do_rtp) {
// Check the integrity of reference types and run another type propagation if needed.
if (return_replacement != nullptr) {
if (return_replacement->GetType() == Primitive::kPrimNot) {
if (!return_replacement->GetReferenceTypeInfo().IsValid()) {
// Make sure that we have a valid type for the return. We may get an invalid one when
// we inline invokes with multiple branches and create a Phi for the result.
// TODO: we could be more precise by merging the phi inputs but that requires
// some functionality from the reference type propagation.
DCHECK(return_replacement->IsPhi());
size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
mirror::Class* cls = resolved_method->GetReturnType(false /* resolve */, pointer_size);
if (cls != nullptr) {
ReferenceTypeInfo::TypeHandle return_handle = handles_->NewHandle(cls);
return_replacement->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
return_handle, return_handle->CannotBeAssignedFromOtherTypes() /* is_exact */));
} else {
return_replacement->SetReferenceTypeInfo(graph_->GetInexactObjectRti());
}
}
if (do_rtp) {
// If the return type is a refinement of the declared type run the type propagation again.
ReferenceTypeInfo return_rti = return_replacement->GetReferenceTypeInfo();
ReferenceTypeInfo invoke_rti = invoke_instruction->GetReferenceTypeInfo();
if (invoke_rti.IsStrictSupertypeOf(return_rti)
|| (return_rti.IsExact() && !invoke_rti.IsExact())
|| !return_replacement->CanBeNull()) {
ReferenceTypePropagation(graph_, handles_, /* is_first_run */ false).Run();
}
}
} else if (return_replacement->IsInstanceOf()) {
if (do_rtp) {
// Inlining InstanceOf into an If may put a tighter bound on reference types.
ReferenceTypePropagation(graph_, handles_, /* is_first_run */ false).Run();
}
}
}
}
} // namespace art
|