1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dead_code_elimination.h"
#include "base/array_ref.h"
#include "base/bit_vector-inl.h"
#include "base/scoped_arena_allocator.h"
#include "base/scoped_arena_containers.h"
#include "base/stl_util.h"
#include "ssa_phi_elimination.h"
namespace art {
static void MarkReachableBlocks(HGraph* graph, ArenaBitVector* visited) {
// Use local allocator for allocating memory.
ScopedArenaAllocator allocator(graph->GetArenaStack());
ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocDCE));
constexpr size_t kDefaultWorlistSize = 8;
worklist.reserve(kDefaultWorlistSize);
visited->SetBit(graph->GetEntryBlock()->GetBlockId());
worklist.push_back(graph->GetEntryBlock());
while (!worklist.empty()) {
HBasicBlock* block = worklist.back();
worklist.pop_back();
int block_id = block->GetBlockId();
DCHECK(visited->IsBitSet(block_id));
ArrayRef<HBasicBlock* const> live_successors(block->GetSuccessors());
HInstruction* last_instruction = block->GetLastInstruction();
if (last_instruction->IsIf()) {
HIf* if_instruction = last_instruction->AsIf();
HInstruction* condition = if_instruction->InputAt(0);
if (condition->IsIntConstant()) {
if (condition->AsIntConstant()->IsTrue()) {
live_successors = live_successors.SubArray(0u, 1u);
DCHECK_EQ(live_successors[0], if_instruction->IfTrueSuccessor());
} else {
DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
live_successors = live_successors.SubArray(1u, 1u);
DCHECK_EQ(live_successors[0], if_instruction->IfFalseSuccessor());
}
}
} else if (last_instruction->IsPackedSwitch()) {
HPackedSwitch* switch_instruction = last_instruction->AsPackedSwitch();
HInstruction* switch_input = switch_instruction->InputAt(0);
if (switch_input->IsIntConstant()) {
int32_t switch_value = switch_input->AsIntConstant()->GetValue();
int32_t start_value = switch_instruction->GetStartValue();
// Note: Though the spec forbids packed-switch values to wrap around, we leave
// that task to the verifier and use unsigned arithmetic with it's "modulo 2^32"
// semantics to check if the value is in range, wrapped or not.
uint32_t switch_index =
static_cast<uint32_t>(switch_value) - static_cast<uint32_t>(start_value);
if (switch_index < switch_instruction->GetNumEntries()) {
live_successors = live_successors.SubArray(switch_index, 1u);
DCHECK_EQ(live_successors[0], block->GetSuccessors()[switch_index]);
} else {
live_successors = live_successors.SubArray(switch_instruction->GetNumEntries(), 1u);
DCHECK_EQ(live_successors[0], switch_instruction->GetDefaultBlock());
}
}
}
for (HBasicBlock* successor : live_successors) {
// Add only those successors that have not been visited yet.
if (!visited->IsBitSet(successor->GetBlockId())) {
visited->SetBit(successor->GetBlockId());
worklist.push_back(successor);
}
}
}
}
void HDeadCodeElimination::MaybeRecordDeadBlock(HBasicBlock* block) {
if (stats_ != nullptr) {
stats_->RecordStat(MethodCompilationStat::kRemovedDeadInstruction,
block->GetPhis().CountSize() + block->GetInstructions().CountSize());
}
}
void HDeadCodeElimination::MaybeRecordSimplifyIf() {
if (stats_ != nullptr) {
stats_->RecordStat(MethodCompilationStat::kSimplifyIf);
}
}
static bool HasInput(HCondition* instruction, HInstruction* input) {
return (instruction->InputAt(0) == input) ||
(instruction->InputAt(1) == input);
}
static bool HasEquality(IfCondition condition) {
switch (condition) {
case kCondEQ:
case kCondLE:
case kCondGE:
case kCondBE:
case kCondAE:
return true;
case kCondNE:
case kCondLT:
case kCondGT:
case kCondB:
case kCondA:
return false;
}
}
static HConstant* Evaluate(HCondition* condition, HInstruction* left, HInstruction* right) {
if (left == right && !DataType::IsFloatingPointType(left->GetType())) {
return condition->GetBlock()->GetGraph()->GetIntConstant(
HasEquality(condition->GetCondition()) ? 1 : 0);
}
if (!left->IsConstant() || !right->IsConstant()) {
return nullptr;
}
if (left->IsIntConstant()) {
return condition->Evaluate(left->AsIntConstant(), right->AsIntConstant());
} else if (left->IsNullConstant()) {
return condition->Evaluate(left->AsNullConstant(), right->AsNullConstant());
} else if (left->IsLongConstant()) {
return condition->Evaluate(left->AsLongConstant(), right->AsLongConstant());
} else if (left->IsFloatConstant()) {
return condition->Evaluate(left->AsFloatConstant(), right->AsFloatConstant());
} else {
DCHECK(left->IsDoubleConstant());
return condition->Evaluate(left->AsDoubleConstant(), right->AsDoubleConstant());
}
}
// Simplify the pattern:
//
// B1 B2 ...
// goto goto goto
// \ | /
// \ | /
// B3
// i1 = phi(input, input)
// (i2 = condition on i1)
// if i1 (or i2)
// / \
// / \
// B4 B5
//
// Into:
//
// B1 B2 ...
// | | |
// B4 B5 B?
//
// Note that individual edges can be redirected (for example B2->B3
// can be redirected as B2->B5) without applying this optimization
// to other incoming edges.
//
// This simplification cannot be applied to catch blocks, because
// exception handler edges do not represent normal control flow.
// Though in theory this could still apply to normal control flow
// going directly to a catch block, we cannot support it at the
// moment because the catch Phi's inputs do not correspond to the
// catch block's predecessors, so we cannot identify which
// predecessor corresponds to a given statically evaluated input.
//
// We do not apply this optimization to loop headers as this could
// create irreducible loops. We rely on the suspend check in the
// loop header to prevent the pattern match.
//
// Note that we rely on the dead code elimination to get rid of B3.
bool HDeadCodeElimination::SimplifyIfs() {
bool simplified_one_or_more_ifs = false;
bool rerun_dominance_and_loop_analysis = false;
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
HInstruction* last = block->GetLastInstruction();
HInstruction* first = block->GetFirstInstruction();
if (!block->IsCatchBlock() &&
last->IsIf() &&
block->HasSinglePhi() &&
block->GetFirstPhi()->HasOnlyOneNonEnvironmentUse()) {
bool has_only_phi_and_if = (last == first) && (last->InputAt(0) == block->GetFirstPhi());
bool has_only_phi_condition_and_if =
!has_only_phi_and_if &&
first->IsCondition() &&
HasInput(first->AsCondition(), block->GetFirstPhi()) &&
(first->GetNext() == last) &&
(last->InputAt(0) == first) &&
first->HasOnlyOneNonEnvironmentUse();
if (has_only_phi_and_if || has_only_phi_condition_and_if) {
DCHECK(!block->IsLoopHeader());
HPhi* phi = block->GetFirstPhi()->AsPhi();
bool phi_input_is_left = (first->InputAt(0) == phi);
// Walk over all inputs of the phis and update the control flow of
// predecessors feeding constants to the phi.
// Note that phi->InputCount() may change inside the loop.
for (size_t i = 0; i < phi->InputCount();) {
HInstruction* input = phi->InputAt(i);
HInstruction* value_to_check = nullptr;
if (has_only_phi_and_if) {
if (input->IsIntConstant()) {
value_to_check = input;
}
} else {
DCHECK(has_only_phi_condition_and_if);
if (phi_input_is_left) {
value_to_check = Evaluate(first->AsCondition(), input, first->InputAt(1));
} else {
value_to_check = Evaluate(first->AsCondition(), first->InputAt(0), input);
}
}
if (value_to_check == nullptr) {
// Could not evaluate to a constant, continue iterating over the inputs.
++i;
} else {
HBasicBlock* predecessor_to_update = block->GetPredecessors()[i];
HBasicBlock* successor_to_update = nullptr;
if (value_to_check->AsIntConstant()->IsTrue()) {
successor_to_update = last->AsIf()->IfTrueSuccessor();
} else {
DCHECK(value_to_check->AsIntConstant()->IsFalse())
<< value_to_check->AsIntConstant()->GetValue();
successor_to_update = last->AsIf()->IfFalseSuccessor();
}
predecessor_to_update->ReplaceSuccessor(block, successor_to_update);
phi->RemoveInputAt(i);
simplified_one_or_more_ifs = true;
if (block->IsInLoop()) {
rerun_dominance_and_loop_analysis = true;
}
// For simplicity, don't create a dead block, let the dead code elimination
// pass deal with it.
if (phi->InputCount() == 1) {
break;
}
}
}
if (block->GetPredecessors().size() == 1) {
phi->ReplaceWith(phi->InputAt(0));
block->RemovePhi(phi);
if (has_only_phi_condition_and_if) {
// Evaluate here (and not wait for a constant folding pass) to open
// more opportunities for DCE.
HInstruction* result = first->AsCondition()->TryStaticEvaluation();
if (result != nullptr) {
first->ReplaceWith(result);
block->RemoveInstruction(first);
}
}
}
if (simplified_one_or_more_ifs) {
MaybeRecordSimplifyIf();
}
}
}
}
// We need to re-analyze the graph in order to run DCE afterwards.
if (simplified_one_or_more_ifs) {
if (rerun_dominance_and_loop_analysis) {
graph_->ClearLoopInformation();
graph_->ClearDominanceInformation();
graph_->BuildDominatorTree();
} else {
graph_->ClearDominanceInformation();
// We have introduced critical edges, remove them.
graph_->SimplifyCFG();
graph_->ComputeDominanceInformation();
graph_->ComputeTryBlockInformation();
}
}
return simplified_one_or_more_ifs;
}
void HDeadCodeElimination::ConnectSuccessiveBlocks() {
// Order does not matter. Skip the entry block by starting at index 1 in reverse post order.
for (size_t i = 1u, size = graph_->GetReversePostOrder().size(); i != size; ++i) {
HBasicBlock* block = graph_->GetReversePostOrder()[i];
DCHECK(!block->IsEntryBlock());
while (block->GetLastInstruction()->IsGoto()) {
HBasicBlock* successor = block->GetSingleSuccessor();
if (successor->IsExitBlock() || successor->GetPredecessors().size() != 1u) {
break;
}
DCHECK_LT(i, IndexOfElement(graph_->GetReversePostOrder(), successor));
block->MergeWith(successor);
--size;
DCHECK_EQ(size, graph_->GetReversePostOrder().size());
DCHECK_EQ(block, graph_->GetReversePostOrder()[i]);
// Reiterate on this block in case it can be merged with its new successor.
}
}
}
bool HDeadCodeElimination::RemoveDeadBlocks() {
// Use local allocator for allocating memory.
ScopedArenaAllocator allocator(graph_->GetArenaStack());
// Classify blocks as reachable/unreachable.
ArenaBitVector live_blocks(&allocator, graph_->GetBlocks().size(), false, kArenaAllocDCE);
live_blocks.ClearAllBits();
MarkReachableBlocks(graph_, &live_blocks);
bool removed_one_or_more_blocks = false;
bool rerun_dominance_and_loop_analysis = false;
// Remove all dead blocks. Iterate in post order because removal needs the
// block's chain of dominators and nested loops need to be updated from the
// inside out.
for (HBasicBlock* block : graph_->GetPostOrder()) {
int id = block->GetBlockId();
if (!live_blocks.IsBitSet(id)) {
MaybeRecordDeadBlock(block);
block->DisconnectAndDelete();
removed_one_or_more_blocks = true;
if (block->IsInLoop()) {
rerun_dominance_and_loop_analysis = true;
}
}
}
// If we removed at least one block, we need to recompute the full
// dominator tree and try block membership.
if (removed_one_or_more_blocks) {
if (rerun_dominance_and_loop_analysis) {
graph_->ClearLoopInformation();
graph_->ClearDominanceInformation();
graph_->BuildDominatorTree();
} else {
graph_->ClearDominanceInformation();
graph_->ComputeDominanceInformation();
graph_->ComputeTryBlockInformation();
}
}
return removed_one_or_more_blocks;
}
void HDeadCodeElimination::RemoveDeadInstructions() {
// Process basic blocks in post-order in the dominator tree, so that
// a dead instruction depending on another dead instruction is removed.
for (HBasicBlock* block : graph_->GetPostOrder()) {
// Traverse this block's instructions in backward order and remove
// the unused ones.
HBackwardInstructionIterator i(block->GetInstructions());
// Skip the first iteration, as the last instruction of a block is
// a branching instruction.
DCHECK(i.Current()->IsControlFlow());
for (i.Advance(); !i.Done(); i.Advance()) {
HInstruction* inst = i.Current();
DCHECK(!inst->IsControlFlow());
if (inst->IsDeadAndRemovable()) {
block->RemoveInstruction(inst);
MaybeRecordStat(stats_, MethodCompilationStat::kRemovedDeadInstruction);
}
}
}
}
void HDeadCodeElimination::Run() {
// Do not eliminate dead blocks if the graph has irreducible loops. We could
// support it, but that would require changes in our loop representation to handle
// multiple entry points. We decided it was not worth the complexity.
if (!graph_->HasIrreducibleLoops()) {
// Simplify graph to generate more dead block patterns.
ConnectSuccessiveBlocks();
bool did_any_simplification = false;
did_any_simplification |= SimplifyIfs();
did_any_simplification |= RemoveDeadBlocks();
if (did_any_simplification) {
// Connect successive blocks created by dead branches.
ConnectSuccessiveBlocks();
}
}
SsaRedundantPhiElimination(graph_).Run();
RemoveDeadInstructions();
}
} // namespace art
|